MA157 - ANALYSIS 1, 2020-2021. ASSIGNMENT 3, FOR CREDIT

- (1) We say that a subset A of \mathbb{R} is **dense** in \mathbb{R} if every open interval contains an element of A.
 - (a) Consider the statement

The set of rational numbers is dense in \mathbb{R} .

Rewrite this statement without using the word "dense" and without using the word "interval".

- (b) Prove that every interval of length > 1 contains an integer. (Hint: given an interval (x, y), take the largest integer l that is smaller than y. Why does it exist? Why does it do the job?)
- (c) Prove that the set of rational numbers is dense in \mathbb{R} . (Hint: given an interval (x, y), for large enough n the interval (nx, ny) has length > 1. Why?)
- (d) Prove that the set of irrational numbers is dense in \mathbb{R} . (Hint: given an interval (x, y), consider the interval $(\sqrt{2}x, \sqrt{2}y)$ and apply (c).)
- (2) Let A and B be subsets of \mathbb{Q} . Assume:
 - (i) A and B are non-empty, and their union is \mathbb{Q} (i.e., every rational number is in A or in B).
 - (ii) If $a \in A$ and $b \in B$, then a < b.

Prove that there exists a real number γ such that, for every rational number x, if $x < \gamma$ then $x \in A$ and if $x > \gamma$ then $x \in B$. (Hint: take $\gamma := \sup A$. Why does it exist?.)

- (3) Fix a set A of real numbers. Define $-A := \{-x \mid x \in A\}$.
 - (a) Give the definitions of a lower bound for A and of the greatest lower bound for A (which is denoted inf A).
 - (b) Prove that if β is a lower bound for A then $-\beta$ is an upper bound for -A.
 - (c) Prove that if $\beta = \inf A$ then $-\beta = \sup(-A)$.
 - (d) Prove that if A is non-empty and has a lower bound then A has a greatest lower bound.(Use the least upper bound axiom.)