MA157 – ANALYSIS 1, 2020–2021. ASSIGNMENT 12

- (1) Consider the floor function $f(x) := \lfloor x \rfloor$ on the interval [0, 5]. Prove that $\int_0^5 f(x) dx = 10$.
- (2) Find a continuous function f on the interval [0, 1], and, for each $n \in \mathbb{N}$, a partition P_n , such that the corresponding lower or upper (which?) Darboux sum is $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$.
- (3) Evaluate without doing any computations; justify briefly.
 - (a) $\int_{-2}^{2} (2 |x|) dx$ (b) $\int_{-2}^{2} \sqrt{4 - x^2} dx$ (c) $\int_{-5}^{5} x^3 \cos x dx$
- (4) Let $f: [a, b] \to \mathbb{R}$ be a bounded function, and suppose that f is Darboux integrable.
 - (a) Prove that the function |f| is Darboux integrable.
 - (b) Prove that $\left|\int_{a}^{b} f(t)dt\right| \leq \int_{a}^{b} |f(t)| dt$.

(Based on Spivak's Ch. 13 Prob. 37.)

(Hint: show that if $m \leq y_1 \leq M$ and $m \leq y_2 \leq M$ then $||y_1| - |y_2|| \leq M - m$.)

Comment:

In Question 3 above, give a heuristic justification: you can rely on symmetry properties of the function, or on an interpretation of the integral as an area and your prior knowledge of areas of simple shapes.