
APPROXIMATIONS.

YAEL KARSHON

Addition: Fix real numbers a and b. Fix ε > 0. We claim that there exists δ > 0 such that,
for all x and y, if |x− a| < δ and |y − b| < δ then |(x+ y)− (a+ b)| < ε.

(Thus, we can guarantee that x + y be arbitrarily close to a + b by requiring that x and y
be sufficiently close to, respectively, a and b.)

Discussion: Express (x + y) − (a + b) in terms of x − a and y − b and apply the triangle
inequality:

(1) |(x+ y)− (a+ b)| = |(x− a) + (y − b)| ≤ |x− a|+ |y − b|.

Solution: Take δ = 1
2
ε.

Proof that it works: Suppose that |x − a| < δ and |y − b| < δ. Then the right hand side
of (1) is < 2δ, which is equal to ε. So the left hand side is < ε, as required.

Multiplication: Fix real numbers a and b. Let ε > 0. We claim that there exists δ > 0
such that, for all x and y, if |x− a| < δ and |y − b| < δ, then |xy − ab| < ε.

(Thus, we can guarantee that xy be arbitrarily close to ab by requiring that x and y be
sufficiently close to, respectively, a and b.)

Discussion: Express xy − ab in terms of x− a and y − b and apply the triangle inequality:

(2) |xy− ab| = |(x− a)(y− b) + a(y− b) + (x− a)b| ≤ |x− a||y− b|+ |a||y− b|+ |b||x− a|

Suppose that |x− a| < δ and |y− b| < δ. Then the second and third summands on the right
hand side of (3) are, respectively, ≤ |a|δ and ≤ |b|δ. If also δ ≤ 1, then the first summand
on the right hand side of (3) is < δ, and the entire right hand side of (3) is < (1 + |a|+ |b|)δ.
Note that 1 + |a|+ |b| is positive.

Solution: Take δ = min{1 , 1
1+|a|+|b|ε}.

Proof that it works: Suppose that |x − a| < δ and |y − b| < δ. Then the right hand side
of (1) is < (1 + |a|+ |b|)δ, which is ≤ ε. So the left hand side is < ε, as required.

Inverse: Fix a non-zero real number a. Let ε > 0. We claim that there exists δ > 0 such
that, for all x, if |x− a| < δ, then | 1

x
− 1

a
| < ε.

(Thus, we can guarantee that 1
x

be arbitrarily close to 1
a

by requiring that x be sufficiently
close to a.)
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Discussion: Express 1
x
− 1

a
in terms of x− a:

(3)

∣∣∣∣1

x
− 1

a

∣∣∣∣ =

∣∣∣∣a− xxa

∣∣∣∣ =
|a− x|
|x||a|

.

Suppose that |x − a| < δ. By the reverse triangle inequality, |x| > |a| − δ. So if δ ≤ 1
2
|a|,

then |x| > 1
2
|a|; the denominator of the right hand side of (3) is then > 1

2
|a|2, and the entire

right hand side of (3) is then < δ
1
2
|a|2 .

Solution: Take δ = min{1
2
|a| , 1

2
|a|2ε}.

Proof that it works: Suppose that |x − a| < δ. Then the right and side of (3) is < δ
1
2
|a|2 ,

which is ≤ ε. So the left hand side is < ε, as required.

Square root: Fix a positive real number a. Let ε > 0. We claim that there exists δ > 0
such that, for all x, if |x− a| < δ, then |

√
x−
√
a| < ε.

(Thus, we can guarantee that
√
x be arbitrarily close to

√
a by requiring that x be sufficiently

close to a.)

Discussion: To guarantee that
√
x is well defined whenever |x− a| < δ, we require δ ≤ a.

To express
√
x−
√
a in terms of x− a, multiply and divide it by

√
x+
√
a:

(4)
∣∣√x−√a∣∣ =

∣∣∣∣ x− a√
x+
√
a

∣∣∣∣ =
|x− a|√
x+
√
a
.

Suppose that |x − a| < δ. The denominator of the right hand side of (4) is ≥
√
a, so the

entire right hand side of (4) is < δ√
a
.

Solution: Take δ = min{ a ,
√
a · ε }.

Proof that it works: Suppose that |x − a| < δ. Then the right hand side of (4) is < δ√
a
,

which is ≤ ε. So the left hand side is < ε, as required.
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