APPROXIMATIONS.

YAEL KARSHON

Addition: Fix real numbers a and b. Fix $\epsilon > 0$. We claim that there exists $\delta > 0$ such that, for all x and y, if $|x - a| < \delta$ and $|y - b| < \delta$ then $|(x + y) - (a + b)| < \epsilon$.

(Thus, we can guarantee that x + y be arbitrarily close to a + b by requiring that x and y be sufficiently close to, respectively, a and b.)

Discussion: Express (x + y) - (a + b) in terms of x - a and y - b and apply the triangle inequality:

(1)
$$|(x+y) - (a+b)| = |(x-a) + (y-b)| \le |x-a| + |y-b|.$$

Solution: Take $\delta = \frac{1}{2}\epsilon$.

Proof that it works: Suppose that $|x - a| < \delta$ and $|y - b| < \delta$. Then the right hand side of (1) is $< 2\delta$, which is equal to ϵ . So the left hand side is $< \epsilon$, as required.

Multiplication: Fix real numbers a and b. Let $\epsilon > 0$. We claim that there exists $\delta > 0$ such that, for all x and y, if $|x - a| < \delta$ and $|y - b| < \delta$, then $|xy - ab| < \epsilon$.

(Thus, we can guarantee that xy be arbitrarily close to ab by requiring that x and y be sufficiently close to, respectively, a and b.)

Discussion: Express xy - ab in terms of x - a and y - b and apply the triangle inequality:

Suppose that $|x - a| < \delta$ and $|y - b| < \delta$. Then the second and third summands on the right hand side of (3) are, respectively, $\leq |a|\delta$ and $\leq |b|\delta$. If also $\delta \leq 1$, then the first summand on the right hand side of (3) is $< \delta$, and the entire right hand side of (3) is $< (1 + |a| + |b|)\delta$. Note that 1 + |a| + |b| is positive.

Solution: Take $\delta = \min\{1, \frac{1}{1+|a|+|b|}\epsilon\}.$

Proof that it works: Suppose that $|x - a| < \delta$ and $|y - b| < \delta$. Then the right hand side of (1) is $< (1 + |a| + |b|)\delta$, which is $\le \epsilon$. So the left hand side is $< \epsilon$, as required.

Inverse: Fix a non-zero real number *a*. Let $\epsilon > 0$. We claim that there exists $\delta > 0$ such that, for all *x*, if $|x - a| < \delta$, then $|\frac{1}{x} - \frac{1}{a}| < \epsilon$.

(Thus, we can guarantee that $\frac{1}{x}$ be arbitrarily close to $\frac{1}{a}$ by requiring that x be sufficiently close to a.)

Discussion: Express $\frac{1}{x} - \frac{1}{a}$ in terms of x - a:

(3)
$$\left|\frac{1}{x} - \frac{1}{a}\right| = \left|\frac{a - x}{xa}\right| = \frac{|a - x|}{|x||a|}$$

Suppose that $|x - a| < \delta$. By the reverse triangle inequality, $|x| > |a| - \delta$. So if $\delta \le \frac{1}{2}|a|$, then $|x| > \frac{1}{2}|a|$; the denominator of the right hand side of (3) is then $> \frac{1}{2}|a|^2$, and the entire right hand side of (3) is then $< \frac{\delta}{\frac{1}{2}|a|^2}$.

Solution: Take $\delta = \min\{\frac{1}{2}|a|, \frac{1}{2}|a|^2\epsilon\}.$

Proof that it works: Suppose that $|x - a| < \delta$. Then the right and side of (3) is $< \frac{\delta}{\frac{1}{2}|a|^2}$, which is $\leq \epsilon$. So the left hand side is $< \epsilon$, as required.

Square root: Fix a positive real number a. Let $\epsilon > 0$. We claim that there exists $\delta > 0$ such that, for all x, if $|x - a| < \delta$, then $|\sqrt{x} - \sqrt{a}| < \epsilon$.

(Thus, we can guarantee that \sqrt{x} be arbitrarily close to \sqrt{a} by requiring that x be sufficiently close to a.)

Discussion: To guarantee that \sqrt{x} is well defined whenever $|x - a| < \delta$, we require $\delta \le a$. To express $\sqrt{x} - \sqrt{a}$ in terms of x - a, multiply and divide it by $\sqrt{x} + \sqrt{a}$:

(4)
$$\left|\sqrt{x} - \sqrt{a}\right| = \left|\frac{x-a}{\sqrt{x} + \sqrt{a}}\right| = \frac{|x-a|}{\sqrt{x} + \sqrt{a}}$$

Suppose that $|x - a| < \delta$. The denominator of the right hand side of (4) is $\geq \sqrt{a}$, so the entire right hand side of (4) is $< \frac{\delta}{\sqrt{a}}$.

Solution: Take $\delta = \min\{a, \sqrt{a} \cdot \epsilon\}.$

Proof that it works: Suppose that $|x - a| < \delta$. Then the right hand side of (4) is $< \frac{\delta}{\sqrt{a}}$, which is $\leq \epsilon$. So the left hand side is $< \epsilon$, as required.