POSTULATES FOR THE REAL NUMBERS, AND SOME CONSEQUENCES.

We have the following structure.

e A set, denoted R, whose elements we call the real numbers.

e Two distinguished elements of R, denoted 0 and 1.

e An operation, called addition, which associates to any pair of real numbers (a,b) a
third real number, denoted a + b.

e An operation, called multiplication, which associates to any pair of real numbers
(a,b) a third real number, denoted a - b.

e A distinguished subset P of R, whose elements we call the positive numbers.

Postulates (P1)—(P4) are about addition.

(P1) (addition is associative):
for all a,b,c € R, a+(b+c)=(a+b)+ec.

(P2) (0 is neutral for addition):
for all a € R, a+0=04+a=a.

Theorem (Uniqueness of the neutral element for addition).
If for all a € R we have a +x = x + a = a, then z = 0.

(P3) (Existence of an additive inverse):
For every a € R there exists x € R such that a + v =2+ a = 0.

Theorem (Uniqueness of the additive inverse).
Ifa+rz=x+a=0anda+y=y+a=0, then x =y.

Notation. We denote the z such that a +x =2 +a =0 by —a.
Theorem. —(—a)=a. —(a+0b)=(-b)+(—a). —-0=0.
Notation. a — b :=a + (-b).
Theorem. a—a=0. (a+b) —c=a+((b—-c). —(a—b)=b—a.
(P4) (addition is commutative):
foralla,be R, a+b=0b+a.
Postulates (P5)—(P8) are about multiplication.
(P5) (multiplication is associative):
for all a,b,c€R, a-(b-c)=(a-b)-c.
(P6) (1 is neutral for multiplication and is different from 0):
1#0,and, foralla e R, a-1=1-a=na.

Theorem (Uniqueness of the neutral element for multiplication).
If for all a € R we have a-x =x-a = a, then x = 1.

(P7) (Existence of a multiplicative inverse):

for every a # 0 there exists an x such that a -z =2 -a = 1.
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Theorem (Uniqueness of the multiplicative inverse).
Ifa#0anda-x=z-a=1anda-y=y-a=1, thenx =y.

Notation. For a # 0, we denote the z such that a-2 =2 -a=1by a™ 1.
Theorem. (a7 t=a. (ab)t=0YHe?!). 171=1.
Notation. For b#0, a/b:=a-b"'.
Theorem. a/a=1. (a-b)/c=a-(b/c). (a/b)~'=0b/a.
(P8) (Multiplication is commutative):
foralla,be R, a-b=b-a.
Postulate (P9) relates addition to multiplication.

(P9) (Distributive law):
for all a,b,c € R, a-(b+c)=a-b+a-c.

Theorem.

e Foralla, a-0=0.
e Foralla,b, (—a)-b=—(a-b
e Foralla,b, (—a)-(=b)=a-

)
b.

Postulates (P10)—(P12) are about positive numbers. They imply properties of the ordering
of real numbers.

(P10) (Trichotomy): for every = € R, exactly one of the following three cases holds:
r=0, zeP, —xe€eP.

(P11) (Positive numbers are closed under addition):
for every x,y € R, ifx,y € P, thenx+y € P.

(P12) (Positive numbers are closed under multiplication):
for every x,y € R, ifx,y € P,thenx-y € P.

Definition.

We say that a > bifa—b e P.
We say that a < b if b > a.

We say that @ > bif a > b or a = b.
We say that a < bif a <bor a=0.

Theorem (Characterization of positive numbers). a € P if and only if a > 0.

Theorem (Trichotomy). For every a,b € R, exactly one of the following three cases holds:
a>b, a=0b a<b.

Theorem (Antisymmetry of <).

For every a,b € R, ifa < b and b < a, then a = b.
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Theorem (Transitivity of <).
For every a,b,c e R, if a < b and b < ¢, then a < c.

Also: if a <b and b < c thena <c;ifa<bandb < c then a < c.
Theorem. If x # 0, then x - x > 0.

Corollary. 1 > 0.

Corollary. —1 < 0.

Theorem. There does not exist an x such that x - x = —1.
Theorem. Ifa <b, thena+c<b+c.

Theorem. Ifa <b andc >0, thena-c<b-c.

Theorem.

Ifa >0 and b >0, then a-b > 0.
Ifa <0 and b <0, thena-b> 0.
If a >0 and b <0, then a-b < 0.
If a <0 and b >0, then a-b < 0.
Ifa >0, then a=* > 0.
Ifa <0, then a™! < 0.

Definition. The absolute value of a is

a ifa>0,
la| == :
—a ifa<0.

Theorem (Properties of the absolute value).

Non-negativity: |z| > 0.

Non-degeneracy: |x| =0 if and only if x = 0.
Symmetry: | —z| = |z|.

The triangle inequality: |z +y| < |z| + |y|.

Definition. The distance from a to b is
dist(a,b) :==|b — al.

Theorem (Properties of the distance).

Non-negativity: dist(a, b) > 0.

Non-degeneracy: dist(a,b) = 0 if and only if a = b.
Symmetry: dist(a,b) = dist(b, a).

The triangle inequality: dist(a,c) < dist(a, b) + dist(b, ).

3



Postulate (P13), the “least upper bound property” (or “completeness”) of the real numbers,
expresses the intuitive fact that “the real number line has no holes”. In Spivak’s book it
appears in Chapter 8.

Let X be a set of real numbers. We recall and introduce some vocabulary:

e An upper bound for X is a number u such that x < u for all x € X.
e X is bounded from above if it has an upper bound.
e X is bounded if it is bounded from above and from below.
e The least upper bound of X, also called the supremum of X and denoted sup X,
is a number u such that
— wu is an upper bound for X.
— For every upper bound y for X, u <.

The least upper bound property of the real numbers, which we take as an axiom, is this:

Let X C R be a set of real numbers that is non-empty and

(P13) bounded from above. Then X has a least upper bound.

We leave the proof of the following lemma as an exercise to the reader.

Lemma. Let X CR. Let u and u be least upper bounds of X. Then u = u.

We have the analogous notion of lower bound, bounded from below, and greatest
lower bound, also called the infimum of X and denoted inf X. For each of these notions,
please write down its definition, please give one example and one non-example, and please
determine if this notion is a number (which is a noun) or a property of the set X (which is
an adjective describing X'). Can you state a lemma that justifies calling this “the infimum”
rather than “an infimum”?

The following theorem is a consequence of the least upper bound axiom. Can you prove it?
(Hint: define —X = {—z | x € X}. Then ¢ is a lower bound for X if and only if —¢ is an
upper bound for —X.)

Theorem. Let X C R be a set of real numbers that is non-empty and bounded from below.
Then X has a greatest lower bound.



