LIMITS AND CONTINUITY

MAT157, FALL 2020-2021. YAEL KARSHON

These notes supplement Chapters 5 and 6 of Spivak. Please let me know if you find a mistake or if any part of the notes is unclear.

Definition. Let $a \in \mathbb{R}$ and $\delta > 0$. The δ -neighbourhood of a is $(a - \delta, a + \delta)$. The punctured δ -neighbourhood of a is $(a - \delta, a + \delta) \setminus \{a\}$ (namely, $\{x \mid 0 < |x - a| < \delta\}$).

Notation: we can replace δ by other symbols, for example, δ_1 , δ_2 , ϵ , $\hat{\epsilon}$, ϵ_1 , ϵ_2 .

Exercise (Exercise about neighbourhoods).

- (i) For any number ℓ , if ℓ is positive, then there exists an $\epsilon > 0$ such that all the numbers in the ϵ -neighbourhood of ℓ are positive.
- (ii) For any two numbers a and b, if $a \neq b$, then there exists an $\epsilon > 0$ such that the ϵ -neighbourhood of a is disjoint from the ϵ -neighbourhood of b.
- (iii) For any two numbers a and b, if a < b, then there exists a $\delta > 0$ such that, for every x_1 and x_2 , if x_1 is in the δ -neighbourhood of a and x_2 is in the δ -neighbourhood of b, then $x_1 < x_2$.
- (iv) For any number a, and for any $\delta_1 > 0$ and $\delta_2 > 0$, there exists a number x that is both in the δ_1 -punctured neighbourhood of a and in the δ_2 -punctured neighbourhood of a.

Definition. Fix a function f, a number a, and a number ℓ . We say that $\mathbf{f}(\mathbf{x})$ approaches the limit ℓ as \mathbf{x} approaches a, and we write $\lim_{x\to a} f(x) = \ell$ or $f(x) \xrightarrow[x\to a]{} \ell$, if the following condition holds:

For every $\epsilon > 0$ there exists $\delta > 0$ such that, for every x, if x is in the punctured δ -neighbourhood of a, then f(x) is in the ϵ -neighbourhood of ℓ .

Equivalently,

For every $\epsilon > 0$ there exists $\delta > 0$ such that, for every x, if $0 < |x - a| < \delta$, then $|f(x) - \ell| < \epsilon$.

(The point a need not be in the domain of f.)

Remarks: (1) Informally, the above condition means that we can guarantee that f(x) be in the ϵ -neighbourhood of ℓ by requiring that x be in the punctured δ -neighbourhood of a. (2) We follow the conventions of Spivak's textbook, by which " $|f(x) - \ell| < \epsilon$ " means that x is in the domain of f and the inequality holds.

¹Some authors call this the "deleted δ -neighbourhood of a"

Assume that f is is defined on some punctured neighbourhood of a. The negation of $\lim_{x\to a} f(x) = \ell$ is this:

There exists $\epsilon > 0$ such that, for every $\delta > 0$, there exists x such that $0 < |x - a| < \delta$ and $|f(x) - \ell| \ge \epsilon$

Example. The Heaviside function, given by f(x) = 1 when $x \ge 0$ and f(x) = 0 when x < 0, does not approach any limit at the point x = 0. We showed this in class in detail.

Example. Consider the identity function, f(x) := x. Then, for any a, we have $\lim_{x \to a} f(x) = a$.

Proof. Let $\epsilon > 0$. Let $\delta = \epsilon$. Let x be such that $0 < |x - a| < \delta$. Then

$$|f(x) - a| = |x - a|$$
 because $f(x) = x$
 $< \delta$ by the assumption on x
 $= \epsilon$ by the choice of δ .

Example. Let $c \in \mathbb{R}$. Let f(x) be the constant function with value c. Then $\lim_{x \to a} f(x) = c$.

Proof. Let $\epsilon > 0$. Let $\delta = 1$. Let x be such that $0 < |x - a| < \delta$. Then $|f(x) - c| = 0 < \epsilon$. \square **Lemma.** Suppose that $f(x) \xrightarrow[x \to a]{} \ell$ and that ℓ is positive. Then there exists $\delta > 0$ such that,

for all x, if x is in the punctured δ -neighbourhood of a, then f(x) is positive.

Proof. Let $\epsilon > 0$ be such that all the numbers in the ϵ -neighbourhood of ℓ are positive. (Such an ϵ exists by the above exercise about neighbourhoods.)

Let $\delta > 0$ be such that, for all x, if x is in the punctured δ -neighbourhood of a, then f(x) is in the ϵ -neighbourhood of ℓ . (Such a δ exists because $f(x) \xrightarrow[x \to a]{} \ell$.)

Let x be in the punctured δ -neighbourhood of a.

Then f(x) is in the ϵ -neighbourhood of ℓ , by our choice of δ .

And so f(x) is positive, by our choice of ϵ .

Theorem (Uniqueness of limit). Suppose that $f(x) \xrightarrow[x \to a]{} \ell_1$ and $f(x) \xrightarrow[x \to a]{} \ell_2$. Then $\ell_1 = \ell_2$.

Proof. Seeking a contradiction, suppose that $\ell_1 \neq \ell_2$. Let $\epsilon > 0$ be such that the ϵ -neighbourhood of ℓ_1 is disjoint from the ϵ -neighbourhood of ℓ_2 . (Such an ϵ exists by the above exercise about neighbourhoods.)

Let $\delta_1 > 0$ be such that, for all x, if x is in the punctured δ_1 -neighbourhood of a, then f(x) is in the ϵ -neighbourhood of ℓ_1 . (Such a δ_1 exists because $f(x) \xrightarrow[x \to a]{} \ell_1$.)

Let $\delta_2 > 0$ be such that, for all x, if x is in the punctured δ_2 -neighbourhood of a, then f(x) is in the ϵ -neighbourhood of ℓ_2 . (Such a δ_2 exists because $f(x) \xrightarrow[x \to a]{} \ell_2$.)

Let x be a number that is both in the punctured δ_1 -neighbourhood of a and in the punctured δ_2 -neighbourhood of a. (Such an x exists by the above exercise about neighbourhoods.)

Then f(x) is both in the ϵ -neighbourhood of ℓ_1 and in the ϵ -neighbourhood of ℓ_2 , by our choice of δ_1 and of δ_2 .

So the ϵ -neighbourhood of ℓ_1 is not disjoint from the ϵ -neighbourhood of ℓ_2 , which contradicts our choice of ϵ .

Definition. A function f is **continuous** at a point a if

$$\lim_{x \to a} f(x) = f(a).$$

(In particular, a must be in the domain of f.)

Exercise. a function f is continuous at a point a if and only if it satisfies the following condition.

For every $\epsilon > 0$ there exists $\delta > 0$ such that, for every x, if $|x - a| < \delta$, then $|f(x) - f(a)| < \epsilon$.

Exercise. Given a function $f: D \to \mathbb{R}$ and a point a,

$$\lim_{x \to a} f(x) = \ell$$

if and only if the function

$$g(x) := \begin{cases} f(x) & \text{if } x \neq a; \\ \ell & \text{if } x = a \end{cases}$$

is continuous at the point a.

Example. Consider the multiplicative inverse function $x \mapsto 1/x$ on $\mathbb{R} \setminus \{0\}$. According to the handout "Approximations", at any point $a \neq 0$, for any $\epsilon > 0$ there exists $\delta > 0$ such that $|x-a| < \delta$ implies $|1/x - 1/a| < \epsilon$. Thus, the function $x \mapsto 1/x$ is continuous at a.

Example. Consider the square-root function $x \mapsto \sqrt{x}$ on $\mathbb{R}_{>0}$. According to the handout "Approximations", at any point a>0, for any $\epsilon>0$ there exists $\delta>0$ such that $|x-a|<\delta$ implies $|\sqrt{x} - \sqrt{a}| < \epsilon$. Thus, the function $x \mapsto \sqrt{x}$ is continuous at a.

Theorem. Suppose that $\lim_{x\to a} f(x) = \ell$ and $\lim_{x\to a} g(x) = m$. Then the following hold.

- (1) If $f(x) \ge g(x)$ for all x, then $\ell \ge m$. (2) $\lim_{x \to a} (f+g)(x) = \ell + m$.
- $\lim_{x \to a} (f \cdot g)(x) = \ell + \eta$ (3) $\lim_{x \to a} (f \cdot g)(x) = \ell \cdot m.$
- (4) If $\ell \neq 0$, then $\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{\ell}$;

Proof of Part (1) of the theorem.

Seeking a contradiction, assume that $\ell < m$

Let $\epsilon > 0$ be such that, for every t_1 and t_2 , if t_1 is in the ϵ -neighbourhood of ℓ and t_2 is in the ϵ -neighbourhood of m, then $t_1 < t_2$. (Such an ϵ exists by the above exercise about neighbourhoods.)

Let $\delta_1 > 0$ be such that, for every x, if x is in the punctured δ_1 -neighbourhood of a, then f(x) is in the ϵ -neighbourhood of ℓ . (Such a δ_1 exists because $f(x) \longrightarrow \ell$.)

Let $\delta_2 > 0$ be such that, for every x, if x is in the punctured δ_2 -neighbourhood of a, then g(x) is in the ϵ -neighbourhood of m. (Such a δ_1 exists because $g(x) \xrightarrow[x \to a]{} m$.)

Let x be a number that is both in the δ_1 -punctured neighbourhood of a and in the δ_2 -punctured neighbourhood of a. (Such an x exists by the above exercise about neighbourhoods.)

Then f(x) is in the ϵ -neighbourhood of ℓ and g(x) is in the ϵ -neighbourhood of m (by our choices of δ_1 and δ_2).

So f(x) < g(x) (by our choice of ϵ), which contradicts the assumption that $f(x) \ge g(x)$ for all x.

Proof of Part (2) of the theorem.

Let $\epsilon > 0$.

We need to find $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|(f + g)(x) - (\ell + m)| < \epsilon$.

As shown in the handout "Approximations" (in slightly different notation), there exists $\hat{\epsilon} > 0$ such that if $|y_1 - \ell| < \hat{\epsilon}$ and $|y_2 - m| < \hat{\epsilon}$ then $|(y_1 + y_2) - (\ell + m)| < \epsilon$. Choose such an $\hat{\epsilon}$.

Let $\delta_1 > 0$ be such that $0 < |x - a| < \delta_1$ implies $|f(x) - \ell| < \hat{\epsilon}$.

Let $\delta_2 > 0$ be such that $0 < |x - a| < \delta_2$ implies $|g(x) - m| < \hat{\epsilon}$.

We will show that $\delta := \min\{\delta_1, \delta_2\}$ is as required.

Let x be such that $0 < |x - a| < \delta$.

By our choice of δ , $|f(x) - \ell| < \hat{\epsilon}$ and $|g(x) - m| < \hat{\epsilon}$.

By our choice of $\hat{\epsilon}$, $|(f(x) + g(x)) - (\ell + m)| < \epsilon$, as required.

Proof of Part (3) of the theorem.

Let $\epsilon > 0$.

We need to find $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|(fg)(x) - (\ell m)| < \epsilon$.

As shown in the handout "Approximations" (in slightly different notation), there exists $\hat{\epsilon} > 0$ such that if $|y_1 - \ell| < \hat{\epsilon}$ and $|y_2 - m| < \hat{\epsilon}$ then $|(y_1 y_2) - (\ell m)| < \epsilon$. Choose such an $\hat{\epsilon}$.

Let $\delta_1 > 0$ be such that $0 < |x - a| < \delta_1$ implies $|f(x) - \ell| < \hat{\epsilon}$.

Let $\delta_2 > 0$ be such that $0 < |x - a| < \delta_2$ implies $|g(x) - m| < \hat{\epsilon}$.

We will show that $\delta := \min\{\delta_1, \delta_2\}$ is as required.

Let x be such that $0 < |x - a| < \delta$.

By our choice of δ , $|f(x) - \ell| < \hat{\epsilon}$ and $|g(x) - m| < \hat{\epsilon}$.

By our choice of $\hat{\epsilon}$, $|f(x)g(x) - (\ell m)| < \hat{\epsilon}$, as required.

Proof of Part (4) of the theorem.

Let $\epsilon > 0$.

We need to find $\delta > 0$ such that $0 < |x - a| < \delta$ implies $\left| \frac{1}{f(x)} - \frac{1}{\ell} \right| < \epsilon$.

As shown in the handout "Approximations" (in slightly different notation), there exists $\hat{\epsilon} > 0$ such that if $|y - \ell| < \hat{\epsilon}$ then $|\frac{1}{y} - \frac{1}{\ell}| < \epsilon$. Choose such an $\hat{\epsilon}$.

Let $\delta > 0$ be such that $0 < |x - a| < \delta$ implies $|f(x) - \ell| < \hat{\epsilon}$.

We will show that this δ is as required.

Let x be such that $0 < |x - a| < \delta$.

By our choice of δ , $|f(x) - \ell| < \hat{\epsilon}$.

By our choice of $\hat{\epsilon}$, $\left|\frac{1}{f(x)} - \frac{1}{\ell}\right| < \epsilon$, as required.

Theorem. Suppose that $\lim_{x\to a} f(x) = b$, that $\lim_{t\to b} h(t) = \ell$, and that h is continuous at the point b. Then $\lim_{x\to a} h(f(x)) = \ell$.

Proof. Let $\epsilon > 0$.

We need to find $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|h(f(x)) - \ell| < \epsilon$.

Let $\hat{\epsilon} > 0$ be such that $0 < |t - b| < \hat{\epsilon}$ implies $|h(t) - \ell| < \epsilon$.

Let $\delta > 0$ be such that $0 < |x - a| < \delta$ implies $|f(x) - b| < \hat{\epsilon}$.

We will show that this δ is as required.

Let x be such that $0 < |x - a| < \delta$.

By our choice of δ , $|f(x) - b| < \hat{\epsilon}$.

We now consider two cases.

Case 1: $f(x) \neq b$.

Then $0 < |f(x) - b| < \hat{\epsilon}$, and by our choice of $\hat{\epsilon}$, $|h(f(x)) - \ell| < \epsilon$, as required.

Case 2: f(x) = b.

Then h(f(x)) = h(b). Because h is continuous at b, and by the uniqueness of the limit, $h(b) = \ell$. So $h(f(x)) = \ell$, and so $|h(f(x)) - \ell| < \epsilon$.

In each of these two cases, we obtain $|h(f(x)) - \ell| < \epsilon$, as required.

Exercise. Suppose that $\lim_{x\to a} f(x) = b$ and that $\lim_{t\to b} h(t) = \ell$. Can we still conclude that $\lim_{t\to a} h(f(x)) = \ell$? If we can, prove it. If not, find a counterexample.