THE RIEMANN INTEGRAL

MAT157, WINTER 2021. YAEL KARSHON

Reminders on the Darboux integral.

For a bounded function $f: [a, b] \to \mathbb{R}$, its lower and upper Darboux sums for a partition $P = \{t_0, t_1, \ldots, t_n\}$ with $a = t_0 < t_1 < \ldots < t_n = b$ are

$$L(f, P) = \sum_{j=1}^{n} m_j(t_j - t_{j-1}) \text{ where } m_j = \inf_{[t_{j-1}, t_j]} f \text{ and}$$
$$U(f, P) = \sum_{j=1}^{n} M_j(t_j - t_{j-1}) \text{ where } M_j = \sup_{[t_{j-1}, t_j]} f.$$

The lower and upper Darboux integrals are

$$\underline{\int}_{a}^{b} f := \sup_{P} L(P, f) \quad \text{and} \quad \overline{\int}_{a}^{b} f := \inf_{P} U(P, f)$$

By definition, f is Darboux integrable if its lower and upper Darboux integrals are equal, and, if so, we define its integral to be their common value:

$$\int_{a}^{b} f := \int_{a}^{b} f = \int_{a}^{\overline{b}} f.$$

Criterion: f is Darboux integrable iff for each $\epsilon > 0$ there exists a partition P such that $|U(f, P) - L(f, P)| < \epsilon$.

The Riemann integral.

A tagged partition $(P, \{x_j\})$ of a closed interval [a, b] is a partition $P = \{t_0, t_1, \ldots, t_n\}$ of [a, b] together with a choice of a point $x_j \in [t_{j-1}, t_j]$ for each j. The corresponding **Riemann** sum is

$$S(f, P, \{x_j\}) := \sum_{j=1}^n f(x_j)(t_j - t_{j-1}).$$

The Riemann sum satisfies $L(f, P) \leq S(f, P, \{x_j\}) \leq U(f, P)$. The **mesh** of a partition $P = \{t_0, t_1, \dots, t_n\}$ where $a = t_0 < t_1 < \dots < t_n = b$ is

$$|P| := \max_{1 \le j \le n} |t_j - t_{j-1}|$$

Definition: f is **Riemann integrable** with Riemann integral equal to I if it satisfies the following condition:

For every $\epsilon > 0$ there exists $\delta > 0$ such that, for every tagged partition $(P, \{x_j\})$ with mesh $|P| < \delta$, its Riemann sum satisfies $|S(f, P, \{x_j\}) - I| < \epsilon$.

Theorem: f is Riemann integrable if and only if f is bounded and is Darboux integrable. If this is so, the Riemann integral of f and the Darboux integral of f are equal.

The Appendix to Chapter 13 of Spivak's book contains a proof that if f is bounded and Darboux integrable then f is Riemann integrable with Riemann integral equal to its Darboux integral. The other direction we leave to you as the following two-step exercise.

(1) Let $f: [a, b] \to \mathbb{R}$ be any function. Suppose that f is Riemann integrable. Prove that f is bounded.

(Hint: It is enough to show that if f is not bounded from above or from below then it is not Riemann integrable. Suppose that f is not bounded from above; the other case is similar. It is enough to show that, for each $M \in \mathbb{R}$ and for each $\delta > 0$, there is a tagged partition with mesh $< \delta$ for which the Riemann sum of f is > M.

Fix $M \in \mathbb{R}$ and $\delta > 0$. Choose an arbitrary partition $P = \{t_0, t_1, \ldots, t_n\}$ of [a, b] with mesh $< \delta$. Show that there is at least one interval $[t_{j-1}, t_j]$ of the partition on which f is not bounded from above. Choose arbitrary points $x_{j'} \in [t_{j'-1}, t_{j'}]$ for all $j' \neq j$. Finally, choose $x_j \in [t_{j-1}, t_j]$ such that $f(x_j)$ is sufficiently large.)

(2) Let $f: [a, b] \to \mathbb{R}$ be a bounded function. Suppose that f is Riemann integrable. Prove that f is Darboux integrable.

(Hint: The Riemann integral of f is \leq the upper Darboux integral of f and \geq the lower Darboux integral of f. We claim that the opposite equalities hold too. Let $P = \{t_0, \ldots, t_n\}$ be a partition of [a, b], and let m_j and M_j be the infimum and supremum of the values of f on $[t_{j-1}, t_j]$. For any $\epsilon > 0$, there exists $x_j \in [t_{j-1}, t_j]$ such that $f(x_j) > M_j - \epsilon$; the corresponding Riemann sum satisfies $S(f, P, \{x_j\}) > U(f, P) - \epsilon(b-a)$. It follows that the Riemann integral of f is \geq the upper Darboux integral of f. By a similar argument, the Riemann integral of f is also \leq the lower Darboux integral of f.)