LENGTH OF A CURVE

MAT157, WINTER 2021. YAEL KARSHON

Drawing diagrams while reading this note will much help you to follow the note.

A (parametrized) curve in the plane is a continuous map $\gamma: I \to \mathbb{R}^2$ from an interval I to the plane \mathbb{R}^2 . See Spivak's appendix to Chapter 12. We can write the curve as $\gamma(t) = (x(t), y(t))$ for $x, y: I \to \mathbb{R}$. Continuous has an ϵ - δ definition using the notion of distance in the plane and is equivalent to x and y being continuous as functions from I to \mathbb{R} .

A partition of an interval I = [a, b] is a set of points that can be written as $P = \{t_0, t_1, \ldots, t_n\}$ where $a = t_0 < t_1 < \ldots < t_n = b$.

Fix a curve in the plane,

$$\gamma \colon [a, b] \to \mathbb{R}^2$$
 , $\gamma(t) = (x(t), y(t))$

For any partition $P = \{t_0, t_1, \ldots, t_n\}$ of [a, b], consider the polygonal line through the points $\gamma(t_0), \gamma(t_1), \ldots, \gamma(t_n)$, and define

$$\ell(\gamma, P) := \sum_{j=1}^{n} \|\gamma(t_{j-1}) - \gamma(t_j)\|.$$

Definition. γ is **rectifiable** if the set of numbers

 $\{\ell(\gamma, P) \mid P \text{ is a partition of } [a, b]\}$

is bounded. If so, define the length of the curve γ to be the supremum of this set:

$$\operatorname{length}(\gamma) := \sup_{P} \ell(\gamma, P).$$

Exercise (Characterization of length).

- (i) The following two properties of γ are equivalent.
 - (i a) γ is rectifiable, and length(γ) $\leq c$.
 - (i b) For every partition P of I, we have $\ell(\gamma, P) \leq c$.
- (ii) The following two properties of γ are equivalent.
 - (ii a) γ is not rectifiable, or length $(\gamma) \ge c$.
 - (ii b) For every $\epsilon > 0$, there exists a partition P such that $\ell(\gamma, P) > c \epsilon$.

Definition. Given two partitions P and Q of the same closed interval I, Q is a **refinement** of P if every point of P is also in Q.

¹As always, please let me know if you find typos.

Lemma. If Q is a refinement of P, then $\ell(\gamma, P) \leq \ell(\gamma, Q)$.

Proof. Let Q be a refinement of P. Then Q can be obtained from P by adding finitely many points.

Consider first the special case in which Q is obtained from P by adding one point: $P = \{t_0, \ldots, t_n\}$, and $Q = \{t_0, \ldots, t_{k-1}, u, t_k, \ldots, t_n\}$ where $a = t_0 < t_1 < \ldots < t_{k-1} < u < t_k < \ldots < t_n = b$. By the triangle inequality,

$$\|\gamma(t_{k-1}) - \gamma(t_k)\| \le \|\gamma(t_{k-1}) - \gamma(u)\| + \|\gamma(u) - \gamma(t_k)\|.$$

Adding $\sum_{j=1}^{k-1} \|\gamma(t_{j-1}) - \gamma(t_j)\|$ and $\sum_{j=k+1}^n \|\gamma(t_{j-1}) - \gamma(t_j)\|$ to both sides, we obtain the inequality $\ell(\gamma, P) \leq \ell(\gamma, Q)$.

The case that Q is obtained from P by adding m points follows by induction on m.

We define π to be the length of a half-circle. The following example shows that π is between 3 and 4.

Example. Consider the portion of the unit circle $\{x^2 + y^2 = 1\}$ that lies to the right of the y axis. Parametrize it as

$$\gamma(t) = (\sqrt{1 - t^2}, t) \quad , \quad -1 \le t \le 1.$$

Then γ is rectifiable, and $3 \leq \text{length}(\gamma) \leq 4$.

Proof. It is enough to find a partition P such that $\ell(\gamma, P) \geq 3$, and to show that for every partition P we have $\ell(\gamma, P) \leq 4$. (Please make sure that you understand why this is enough.) Consider the partition P of [-1, 1] whose points are $-1 < -\frac{1}{2} < \frac{1}{2} < 1$. Then $\ell(\gamma, P) = 3$. (Please check this!)

Now let P be an arbitrary partition of [-1, 1]. We would like to show that $\ell(\gamma, P) \leq 4$.

We begin with the special case that the partition P contains the point 0. In this case, we can write the points of P as $-1 = t_0 < \ldots < t_k < \ldots < t_n = 1$ with $t_k = 0$. Then

$$\ell(\gamma, P) = \ell(\gamma_1, P_1) + \ell(\gamma_2, P_2),$$

where γ_1 and γ_2 are the restrictions of γ to the subintervals [-1, 0] and [0, 1], where P_1 is the partition of [-1, 0] whose points are $-1 = t_0 < t_1 < \ldots < t_k = 0$, and where P_2 is the partition of [0, 1] whose points are $0 = t_k < t_{k+1} < \ldots < t_n = 1$. (Exercise: check this.)

Write $\gamma(t_j) = (x_j, y_j)$ and $R_j = (x_j, y_{j-1})$. Then

(*)
$$\|\gamma(t_{j-1}) - \gamma(t_j)\| \le \|\gamma(t_{j-1}) - R_j\| + \|R_j - \gamma(t_j)\|$$
 by the triangle inequality
$$= |x_j - x_{j-1}| + |y_j - y_{j-1}|$$
 (exercise).

The sequence $y_j = t_j$ is increasing for j = 0, 1, ..., n. The sequence $x_j = \sqrt{1 - t_j^2}$ is increasing for j = 0, 1, ..., k and decreasing for j = k, k + 1, ..., n. So the right hand side of (\star) is equal to $(x_j - x_{j-1}) + (y_j - y_{j-1})$ if $1 \le j \le k$ and to $(x_{j-1} - x_j) + (y_j - y_{j-1})$ if

 $k+1 \leq j \leq n$. Summing the left and right hand sides of (\star) over $j \in \{1, \ldots, k\}$, the left hand side adds up to $\ell(\gamma_1, P_1)$, and the right hand side becomes a telescopic sum:

$$\ell(\gamma_1, P_1) \le \sum_{j=1}^k (x_j - x_{j-1}) + \sum_{j=1}^k (y_j - y_{j-1}) = (x_k - x_0) + (y_k - y_0) = (1 - 0) + (0 - (-1)) = 2.$$

Similarly, summing the left and right hand sides of (\star) over $j \in \{k+1, \ldots, n\}$ yields

$$\ell(\gamma_2, P_2) \le \sum_{j=k+1}^n (x_{j-1} - x_j) + \sum_{j=k+1}^n (y_j - y_{j-1}) = (x_k - x_n) + (y_n - y_k) = (1 - 0) + (1 - 0) = 2.$$

Thus, $\ell(\gamma, P) = \underbrace{\ell(\gamma_1, P_1)}_{\leq 2} + \underbrace{\ell(\gamma_2, P_2)}_{\leq 2} \leq 4.$

If P does not contain the point 0, let P' be obtained from P by adding the point 0. Applying the special case that we proved to the partition P', we obtain $\ell(\gamma, P') \leq 4$. By the lemma, $\ell(\gamma, P) \leq \ell(\gamma, P')$. From these two inequalities we obtain $\ell(\gamma, P) \leq 4$.

Please make sure that you understand the properties of "length" that are described in the following exercises.

Exercise (concatenation). Let $a, b, c \in \mathbb{R}$ be such that a < b < c. Let $\gamma : [a, c] \to \mathbb{R}^2$ be a curve. Let $\gamma_1 : [a, b] \to \mathbb{R}^2$ and $\gamma_2 : [b, c] \to \mathbb{R}^2$ be the restrictions of γ to the subintervals [a, b] and [b, c]. Show that γ is rectifiable if and only if γ_1 and γ_2 are rectifiable and, if so, then length $(\gamma) = \text{length}(\gamma_1) + \text{length}(\gamma_2)$.

Hint:

- (1) If P_1 is a partition of [a, b] and P_2 is a partition of [b, c], then $P_1 \cup P_2$ is a partition of [a, b], and $\ell(\gamma, P_1 \cup P_2) = \ell(\gamma_1, P_1) + \ell(\gamma_2, P_2)$. Conclude that if γ is rectifiable then so are γ_1 and γ_2 , oand length $\gamma \ge \text{length } \gamma_1 + \text{length } \gamma_2$.
- (2) If P is a partition of [a, c] and $Q := P \cup \{b\}$, then $P_1 := Q \cap [a, b]$ is a partition of [a, b]and $P_2 := Q \cap [b, c]$ is a partition of [b, c], and $\ell(\gamma, P) \leq \ell(\gamma_1, P_1) + \ell(\gamma_2, P_2)$. Conclude that if γ_1 and γ_2 are rectifiable then so is γ , and length $(\gamma) \leq \text{length}(\gamma_1) + \text{length}(\gamma_2)$.

Exercise (Invariance under reparametrization). Let $a, b, c, d \in \mathbb{R}$ be such that a < b and c < d. Let

$$\gamma\colon [a,b] \to \mathbb{R}^2$$

be a curve. Let

$$h \colon [c,d] \to [a,b]$$

be a continuous function that is strictly monotone increasing and takes c to a and d to b, and consider the curve

$$\gamma \circ h \colon [c,d] \to \mathbb{R}^2.$$

Show that γ is rectifiable if and only if $\gamma \circ h$ is rectifiable, and, if so, then length $(\gamma) =$ length $(\gamma \circ h)$.

Hint:

- (1) By a theorem that we proved about strictly increasing continuous functions, the image of h is [a, b], and the inverse function $h^{-1}: [a, b] \to [c, d]$ is also a strictly increasing continuous function.
- (2) If $Q = \{\tau_0, \tau_1, \ldots, \tau_n\}$ is a partition of [c, d], and if we define $t_j := h(\tau_j)$ for each j, then $P := \{t_0, t_1, \ldots, t_n\}$ is a partition of [a, b], and $\ell(\gamma, P) = \ell(\gamma \circ h, Q)$. Conclude that length $(\gamma) \ge \text{length}(\gamma \circ h)$.
- (3) If $P = \{t_0, t_1, \ldots, t_n\}$ is a partition of [a, b], and if we define $\tau_j := h^{-1}(t_j)$ for each j, then $Q := \{\tau_0, \tau_1, \ldots, \tau_n\}$ is a partition of [c, d], and $\ell(\gamma \circ h, Q) = \ell(\gamma, P)$. Conclude that length $(\gamma \circ h) \ge \text{length}(\gamma)$.

Exercise (Invariance under rotations). Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be the map $R(x, y) := (\frac{x-y}{\sqrt{2}}, \frac{x+y}{\sqrt{2}})$. This map takes the origin to itself, and it preserves distances in the sense that, for any two points p and q, we have ||R(p) - R(q)|| = ||p - q||. (Geometrically, this map is a rotation by 45 degrees about the origin. Can you see why?) Let $\gamma: [a, b] \to \mathbb{R}^2$ be a curve. Consider the curve $R \circ \gamma: [a, b] \to \mathbb{R}^2$. Then γ is rectifiable if and only if $R \circ \gamma$ is rectifiable, and, if so, length $(\gamma) = \text{length}(R \circ \gamma)$.

Hint: For any partition $P = \{t_0, \ldots, t_n\}$ of [a, b], we have $\ell(\gamma, P) = \ell(R \circ \gamma, P)$.

Lemma. Suppose that (γ is continuous and) $\gamma: [a, b] \to \mathbb{R}^2$ is rectifiable. Then

 $L(t) := \operatorname{length}(\gamma|_{[a,t]})$

(and L(a) := 0) is continuous from the left at b and from the right at a.

Proof. By concatenation,

 $L\colon [a,b]\to [0,\infty)$

is non-decreasing. Let $\epsilon > 0$. Let $\epsilon_1 = \frac{1}{2}\epsilon$. Let $\delta > 0$ be such that for all $t \in (b - \delta, b]$

$$\|\gamma(t) - \gamma(b)\| < \epsilon_1.$$

Let $c = \text{length}(\gamma)$.

Let $\epsilon_2 = \frac{1}{2}\epsilon$. Let $P = \{t_0, \ldots, t_n\}$ with $a = t_0 < \ldots < t_{n-1} < t_n = b$ be a partition of [a, b] such that $\ell(\gamma, P) > c - \epsilon_2$.

Then for all τ such that

$$\max_{4} \{t_{n-1}, b-\delta\} < \tau \le b,$$

we have

$$L(\tau) = \operatorname{length}(\gamma|_{[a,\tau]})$$

$$\geq \left(\sum_{j=1}^{n-1} \|\gamma(t_{j-1}) - \gamma(t_j)\|\right) + \|\gamma(t_{n-1}) - \gamma(\tau)\|$$

by considering the partition $a = t_0 < \ldots < t_{n-1} < \tau$ of $[a, \tau]$

$$= \left(\sum_{j=1}^{n-1} \|\gamma(t_{j-1}) - \gamma(t_j)\|\right)$$

+ $\underbrace{\|\gamma(t_{n-1}) - \gamma(\tau)\| + \|\gamma(\tau) - \gamma(b)\|}_{\geq \|\gamma(t_{n-1}) - \gamma(b)\| \text{ by the triangle inequality}} - \underbrace{\|\gamma(\tau) - \gamma(b)\|}_{<\epsilon_1 \text{ since } \tau \in (b-\delta,b]}$
> $\underbrace{\left(\sum_{j=1}^n \|\gamma(t_{j-1}) - \gamma(t_j)\|\right)}_{>c-\epsilon_2 \text{ by the choice of } P} - \epsilon_1$
> $c - \epsilon_1 - \epsilon_2$
= $c - \epsilon$ by the choice of ϵ_1 and ϵ_2 .

Thus, L is left continuous at b. A similar argument shows that L is right continuous at a. \Box **Theorem.** Suppose that $\gamma: [a, b] \to \mathbb{R}^2$ is (continuous and) rectifiable. Then $L(t) := \text{length}(\gamma|_{[a,t]})$ is continuous.

Proof. It is enough to prove that L is continuous from the left at x for all $x \in (a, b]$ and continuous from the right at x for all $x \in [a, b)$.

If $x \in (a, b]$ then by the lemma applied to $\gamma|_{[a,x]}$ L(t) is continuous from the left at x. If $x \in [a, b)$ then for all $t \in [x, b]$ we have

$$L(t) = \underbrace{\operatorname{length}(\gamma|_{[a,x]})}_{=\operatorname{constant}} + \operatorname{length}(\gamma|_{[x,t]})$$

by concatenation. By the lemma applied to $\gamma|_{[x,b]}$ the 2nd summand, hence L(t), is continuous from the right at x.