LENGTH OF A CONTINUOUSLY DIFFERENTIABLE CURVE
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We say that a function is continuously differential if it is differentiable and its derivative
is continuous.

Theorem. Let v: [a,b] — R? be a curve. Write v(t) = (z(t),y(t)). Assume that the
functions x,y: [a,b] — R are C'; denote their derivatives by @ and y. Define s: [a,b] — R

by s := /22 + 9?; call it the speed of y. Then length(v) = f: s(t)dt.
We will now give two lemmas. We will use Lemma 1 to prove Lemma 2, and we will use

Lemma 2 to prove the theorem.

Lemma 1. Let f,g: [a,b] — R be continuous functions. Then for every € > 0 there exists
d > 0 such that, for every p,o,T that are contained in a subinterval of [a,b] of length < ¢,

we have ‘\/f(p)2 +9(0)2 =/ f(1)2+ g(7)?

< €.

Proof of Lemma 1. Let € > 0.

Let M = IF%T( 2+ Ifl%]x g*. The square root function on the closed interval [0, M] is con-

tinuous, hence uniformly continuous. Let €¢; > 0 be such that, for every ry,ry € [0, M], if

|11 — 79| < €1, then ‘w/'rl — «/7’2‘ < e

The functions f? and g* on the closed interval [a,b] are continuous, hence uniformly contin-
€

uous. Let § > 0 be such that, for every 7,7 € [a,b], if |7 — 7| < & , then |f(7)2 — f(7)?| < =

[\]

€1
>
Let p,0,7 be in a subinterval of [a,b] of length < 6. Let r; := f(p)? + g(0)? and 7y :=
f(1)*+g(7)?. Then ry,ry € [0, M], and we have | —ro| = |f(p)? — f(7)*> + g(0)? — g(7)?| <
|f(p)? — f(7)?] + |g(0)? — g(7)?|, which, by the choice of §, is < €;. By the choice of €y, it
follows that ‘\/ﬂ — /2 ‘ < ¢, which proves the lemma.

and |g(7)? — g(7)?] <

O

Lemma 2. Let vy: [a,b] — R? and s: [a,b] — R be as in the statement of the theorem. Then
for every € > 0 there exists 0 > 0 such that, for every partition P with mesh < &, we have

)z(%P) - fabs(t)dt’ <e

€

Proof of Lemma 2. Let € > 0 be arbitrary. Let € .= ———.
b—a+1

Because the (Darboux) integral fab s(t)dt is equal to the Riemann integral, and by the def-
inition of the Riemann integral, we can find 4; > 0 such that, for every tagged partition
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(P, {7;}) with mesh < 6y, the corresponding Riemann sum S(s, P, {7;}) satisfies

/ s(t)dt — 5(s, P, {r;})

By Lemma 1, we can find 5 > 0 such that, for every p, o, 7 that are contained in a subin-
terval of [a,b] of length < 0, we have ’\/m(p)Q +9(0)2 — \/i(7)2+ y(7)2| < & that is,

)\/:t(p)z +y(0)? — 3(7)‘ < € Let § = min{dy, d2}.

Let (P,{7;}) be any tagged partition of [a, b] with mesh < §. Write P = {to,t1,...,%,}, and
write v(t;) = (z;j,y;). By the mean value theorem for the functions z(t) and y(¢) on the
intervals [t;_1,1;], for every j there exist p;,0; € [t;_1,t;] such that

rj—xj1 = (t; —t;1)@(p;) and  y; —yi = (t; —t1)9(0y).

Squaring, summing, and taking the square root, we get
\/(%’ —ri)?+ (Y —y)? = (1 - tjfl)\/j?(pj)Q +9(0;)%

For every j, since the points p;, 0}, 7; are contained in the subinterval [t;_, ¢;] that has length

<€

< dy, we have ‘\/a'c(pj)2 +y(oj)? — 8(Tj)‘ < €. By the above equation,

(t; —ti-1)(s(m3) =€) < \/(%‘ —xia)? (= y1)? < (G = 1) (s(m) +6),
Summing over j, and by the definitions of ¢(v, P) and S(s, P, {;}), we get
S(s, P, {r;}) —€lb—a) < L(v,P) < S(s,P,{r;}) +€(b—a).
Since the Riemann sum S(s, P, {r;}) is e-close to f: s(t)dt, and since (b —a + 1)e = € by the
choice of €, the above equation implies that ¢(v, P) is e-close to f: s(t)dt, as required. [

We are now ready to prove the theorem. Below, when we write “length(y) < ¢”, we mean
that v is rectifiable and length(y) < ¢. Similarly, when we write “length(y) > ¢”, we mean
that either v is rectifiable and length(y) > ¢, or that v is not rectifiable.

Proof of the theorem. Let € > 0. Let § > 0 be as in Lemma 2. Let P be a partition of [a, b]
of mesh < 9. Then

b
length(vy) > (v, P) > / s(t)dt — e,
where the first inequality is by the definition of length(y) and the second inequality is by
the choice of . Since € > 0 was arbitrary, length(y) > fab s(t)dt.
Let P be any partition. Let () be a refinement of P with mesh < §. Then

€0.P) £ (1) < [ sttt +e

where the first inequality is because @) is a refinement of P and the second is by the choice
of 0. Since P was arbitrary, length() < f; s(t)dt +e€. Since € > 0 was arbitrary, length(y) <

17 s(t)dt. 0



