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We would like to define log and exp to be inverses of each other, such that the derivative
of exp is exp, and such that exp(0) = 1. By the formula for the derivative of an inverse
function, the derivative of log(x) should then be 1

x
. (Make sure that you see why!).

Definition of log. For x > 0,

log x =

∫ x

1

1

t
dt.

Remark. If 0 < x < 1 then, by definition,

∫ x

1

1

t
dt = −

∫ 1

x

1

t
dt.

Properties of log.

(i) log x is positive if x > 1, negative if 0 < x < 1, and zero if x = 1.

(ii) log is continuous and strictly monotone increasing.

(iii)
d

dx
log x =

1

x
.

(iv) log(xy) = log(x) + log(y). Consequently, log(1/x) = − log x, and for any n ∈ N we
have log(xn) = n log x.

(v) lim
x→∞

log(x) =∞; lim
x→0
x>0

log(x) = −∞.

Proof. (i) and (ii) follow from the properties of definite integrals, and (iii) follows from the
fundamental theorem of calculus. (Please check the details, also in the case that 0 < x < 1.)

Fix y > 0, and consider the function f(x) := log(xy)− log x, for x > 0. We have d
dx
f(x) =

d
dx

(log(xy)− log x) = 1
xy
y − 1

x
= 0, where the second equality is by the chain rule. So

f(x) is constant. Since f(1) = log y and f is constant, f(x) = log y for all x. That is,
log(xy) = log x+ log y for all x. Since y was arbitrary, this proves (iv).

The conclusion log(1/x) = − log x is obtained by setting y = 1/x. The conclusion log(xn) =
n log x is proved by induction on n, using the recursive definition of xn for n ∈ N.

To prove (v), let M ∈ R. Let n be an integer that is greater than M/ log 2; such an
integer exists by the Archimedian property of the real numbers. For all x > 2n we have
log x > log(2n) = n log 2 > M . Because M was arbitrary, this proves that lim

x→∞
log x =∞.

Similarly, given any M ∈ R, if n is an integer that is greater than −M/ log 2, then for all
0 < x < 1/2n we have log x < log(1/2n) = −n log 2 < M ; because M was arbitrary, this
proves that lim

x→0
log x = −∞. �
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Properties (ii) and (v) imply that the function log : R>0 → R is one-to-one and onto, so it
has an inverse function that is defined on all of R and whose image is R>0.

Definition of exp. The function exp is the inverse function of log.

Properties of exp.

(i) exp(x) > 1 if x is positive, 0 < exp(x) < 1 if x is negative, and exp(0) = 1.

(ii) exp is monotone increasing.

(iii) d
dx

expx = expx.

(iv) exp(x+ y) = exp(x) exp(y).

Proof. (i), (ii), and (iii) follow from the corresponding properties of log (please check the
details). For (iv), take any x and y in R. Because log is onto, there exist α and β such that
x = logα and y = log β. (iv) then follows from log(αβ) = logα + log β (please check the
details). �

Growth of exp.

(i) For all x ∈ R, exp x ≥ 1 + x.

(ii) For all x > 0 and all n ∈ N, exp x ≥ 1 + x+
x2

2!
+ . . .+

xn

n!
.

(iii) For all n ∈ N, lim
x→∞

ex

xn
=∞.

(iv) For all n ∈ N, lim
x→0+

e−1/x

xn
= 0.

(v) The function

f(x) =

{
e−1/|x| x 6= 0

0 x = 0

is infinitely differentiable and its derivatives to all orders vanish at x = 0.

Proof. For (i) with x > 0, write exp x−1 =
∫ x

0
exp tdt; the integral is ≥ x because exp t ≥ 1.

For (i) with x < 0, write expx − 1 = −
∫ 0

x
exp tdt; here exp t ≤ 1, so the integral is ≤ |x|,

and its negative is ≥ x as required.

(ii) is proved by induction on n. The case n = 1 is in (i). As before, write expx− 1 =∫ x

0
exp(t)dt. Assuming the inequality for n and substituting it in the integrand, we get

expx− 1 ≥
∫ x

0
(1+ t+ t2

2!
+ . . .+ tn

n!
)dt; evaluating the integral, we get the inequality for n+1.

(ii) implies that for all x > 0 and n ∈ N we have the inequality ex > xn+1

(n+1)!
. To obtain (iii)

from this inequality, we divide both sides by xn and note that the resulting right hand side
diverges to ∞ as x→∞. To obtain (iv) from the inequality, we substitute in it 1/x instead

of x; after a minor manipulation this becomes the inequality e−1/x

xn ≤ (n + 1)!x, whose right
hand side converges to 0 when x→ 0+. (Please check the details.)
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We now show (v). For every k ∈ Z≥0 there exists a rational function rk(x) (i.e., a ratio of
two polynomials) such that f (k)(x) = rk(x)e−1/x for x > 0. Indeed, for k = 0 we can take
r0(x) = 1, and for higher k this follows by induction on k (please check the details). For any
rational function r(x) we have lim

x→0+
r(x)e−1/x = 0; this is a consequence of (iv) (please check

the details). From these two facts we obtain that for all k ∈ Z≥0 we have lim
x→0+

f (k)(x)/x = 0.

A similar argument shows that lim
x→0−

f (k)(x)/x = 0 (please check this; note that the absolute

value in the definition of f is important). We get that lim
x→0

f (k)(x)/x = 0 (because the left

and right limits are both zero). We can now use this to prove by induction that all the
derivatives f (k)(0) exist and are equal to zero. The base case, f(0) = 0, follows from the
definition of f . For the induction step, assume that f (k)(0) = 0; then the difference quotient
f (k)(x)−f (k)(0)

x−0 is equal to f (k)(x)/x, which converges to 0 as x → 0, and so f (k+1)(0) exists
and is equal to 0. �

Remark. The function that is given by e−1/x
2

when x 6= 0 and 0 when x = 0 has similar
properties: it is infinitely differentiable and all its derivatives vanish at x = 0.

Exponentiation. For a > 0 and b ∈ R, we define

ab := exp(b log(a)).

This is consistent with the recursive definition of an for n ∈ N, because with our new
definition we still have a0 = 1 and ab+1 = ab · a.

In fact, we have all the usual properties of exponentials: a0 = 1, a1 = a, ab+c = ab · ac,
(ab)c = ac · bc, (ab)

c
= abc, a−b = 1/ab, and a1/m = m

√
a for m ∈ N. Also, d

dx
xb = bxb−1

and d
dx
ax = ax log a. All of these follow from this new definition of exponentiation by the

properties of exp and log.

Finally, we define
e := exp(1).

Then for all x, we have ex = exp(x).
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