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Definition. A sequence (an)∞n=1 converges to 7 if for every ε > 0 there exists N ∈ N such
that for every n > N we have |an − 7| < ε.

Theorem (Monotone convergence theorem). • If a sequence (an) is weakly increasing
and is bounded from above, then the sequence converges to its supremum.
• If a sequence (an) is weakly decreasing and is bounded from below, then the sequence

converges to its infimum.

Theorem (Sandwich theorem). Let (an), (bn), and (cn) be sequences. Assume that (an) and
(cn) both converge to 7 and that an ≤ bn ≤ cn for all n. Then (bn) also converges to 7.

Exercise. Prove the monotone convergence theorem and the sandwich theorem.

Let (an)∞n=1 be a sequence of real numbers. Suppose that {an}∞n=1 is bounded from below by
−11 and from above by 19. Then the “tail” {ak}k≥15 is also bounded, from below by −11
and from above by 19, so it has an infimum m15 and a supremum M15, which are between
−11 and 19. Moreover, for every subset of {ak}k≥15, in particular for the subset {ak}k≥20,
its supremum is ≤M15 and its infimum is ≥ m15.

More generally, given any bounded sequence of real numbers (an)∞n=1, for every n ∈ N let

mn := inf{ak}k≥n and Mn := sup{ak}k≥n.
Then (mn) is weakly increasing, (Mn) is weakly decreasing, and any lower and upper bounds
of the sequence (an) are also lower and upper bounds for the sequences (mn) and (Mn). By
the monotone convergence theorem, the sequences (mn) and (Mn) have limits.

Definition. The lim-sup and the lim-inf of (an) are the limits

lim
n→∞

an := lim
n→∞

Mn and lim
n→∞

an := lim
n→∞

mn.

Example. Let an = (−1)n − 1
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Lemma. Let (an)∞n=1 be a sequence of real numbers. Suppose that for all n > 200 we have
−5 ≤ an ≤ 77. Then {an} is bounded, and −5 ≤ lim an ≤ lim an ≤ 77.

Proof. The number max{a1, . . . , a200, 77} is an upper bound for the sequence, and the number
min{a1, . . . , a200,−5} is a lower bound for the sequence. So the sequence is bounded.

Let n > 200. Then the “tail” {ak}k≥n is bounded from below by −5 and from above by 77.
So its infimum and supremum satisfy −5 ≤ mn ≤ Mn ≤ 77. Taking the limits as n → ∞,
these equalities imply that −5 ≤ lim an ≤ lim an ≤ 77. �

Theorem. Let (an)n∈N be a sequence of real numbers. Then (an) converges if and only if it
is bounded and lim an = lim an.

Proof of “if”: Assume that {an} is bounded and that lim an = lim an.

Let ` := lim an = lim an. Let Mn = sup{ak}k≥n and mn = inf{ak}k≥n. Then, for every n,
we have

mn ≤ an ≤Mn.

Since (Mn) and (mn) converge to `, by the “sandwich theorem” (an) also converges to `. �

Proof of “only”: Assume that (an) converges to `.

Let ε > 0. Let N ∈ N be such that for all n > N we have `− ε < an < ` + ε. By a variant
of the lemma (with 200 replaced by N and with −5 and 77 replaced by `− ε and `+ ε), we
conclude that the sequence (an) is bounded and that ` − ε ≤ lim an ≤ lim an ≤ ` + ε. So
| lim an − `| < ε and | lim an − `| < ε. Because this is true for all ε > 0, we conclude that
lim an = ` and that lim an = `. �

Definition. A Cauchy sequence is a sequence (an)∞n=1 such that for every ε > 0 there
exists N ∈ N such that for every n and m greater than N we have |am − an| < ε.

Theorem (Cauchy criterion for convergence). For any sequence of real numbers, the se-
quence converges if and only if it is a Cauchy sequence.

Proof of “if”: Let (an)∞n=1 be a Cauchy sequence of real numbers.

Let ε > 0. Let N ∈ N be such that for every m and n greater than N we have |am− an| < ε.
Taking m = N + 1, for every n > N we have aN+1 − ε < an < aN+1 + ε. By a variant of
the lemma, we obtain that the sequence is bounded and that aN+1 − ε ≤ lim an ≤ lim an ≤
aN+1 + ε. This implies that | lim an − lim an| ≤ 2ε. Because ε > 0 is arbitrary, this implies
that lim an = lim an. By the previous theorem, the sequence converges. �

Proof of “only if”: Let (an)∞n=1 be a sequence of real numbers that converges to a limit `.

Let ε > 0. Let N ∈ N be such that for all n > N we have |an − `| < 1
2
ε. Let m and n be

greater than N . Then |am − an| ≤ |am − `|︸ ︷︷ ︸
< 1

2
ε

+ |`− an|︸ ︷︷ ︸
< 1

2
ε

< ε.

(Here, the first inequality follows from the triangle inequality.) �
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