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This is a second set of notes that supplement Spivak’s Chapter 24.

The following three examples show that convergence of functions might not be “well behaved”
with respect to continuity, integration, and differentiation.

(1) There is a sequence of continuous functions fn that converges pointwise to a discon-
tinuous function f . For example, take fn(x) = xn for 0 ≤ x ≤ 1 and

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1.

(2) There is a sequence of Darboux integrable functions fn : [0, 1] → R that converges
pointwise to a Darboux integrable function f : [0, 1]→ R but such that the sequence

of numbers
∫ 1

0
fn does not converge to the number

∫ 1

0
f . For example, take

fn(x) =


4n2x if 0 ≤ x ≤ 1

2n

4n− 4n2x if 1
2n
< x ≤ 1

n

0 if 1
n
< x ≤ 1

and f ≡ 0.

(3) There is a sequence of differentiable functions fn that converges uniformly to a dif-
ferentiable function f but such that the sequence of functions f ′n does not converge
to the function f ′. For example, take fn(x) = 1

n
sinnx and f ≡ 0.

The following three theorems give conditions under which convergence of functions is “well
behaved” with respect to continuity, integration, and differentiation.

Exercise. Suppose fn → f uniformly on some set A. Then for each ε̂ > 0 there exists an n
such that |fn(x)− f(x)| < ε̂ for all x ∈ A.

Theorem 1. Suppose fn → f uniformly on some neighbourhood U of a point γ. Assume
that for each n the function fn is continuous at γ. Then the function f is continuous at γ.

Proof. For each n and each x ∈ U ,

|f(x)− f(γ)| ≤ |f(x)− fn(x)| + |fn(x)− fn(γ)| + |fn(γ)− f(γ)|.

The middle term can be made arbitrarily small by requiring x to be close enough to γ. But
how close is “close enough” depends on n. So we must first fix an n and only then decide
how close x must be to γ.

Let ε > 0. Let n be such that |fn(x) − f(x)| < ε/3 for all x ∈ U . Then the first and third
summand above are < ε/3. Let δ > 0 be such that |fn(x) − fn(γ)| < ε/3 for all x in the
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δ-neighbourhood of γ. Then for all such x, the second summand above is also < ε/3, and so
|f(x)− f(γ)| < ε. �

Theorem 2. Suppose fn → f uniformly on [a, b]. Suppose that for each fn the function fn
is Darboux integrable on [a, b]. Then

(i) The function f is Darboux integrable on [a, b].

(ii) The sequence
∫ b
a
fn converges to

∫ b
a
f .

For the proof of (ii) assuming (i), see Spivak’s book.

We now prove (i). Recall the criterion for integrability:

A function g : [a, b] → R is Darboux integrable if and only if for every ε > 0
there exists a partition of [a, b] such that |U(f, P )− L(f, P )| < ε.

Let ε > 0. We need to find a partition P such that |U(f, P )−L(f, P )| < ε. Let ε̂ = ε
1+2(b−a) .

Let m be such that |f(x)− fm(x)| < ε̂ for all x ∈ [a, b]. For any partition P of [a, b] and any
interval [tj−1, tj] of the partition, since fm − ε̂ < f < fm + ε̂, we have

sup
[tj−1,tj ]

fm − ε̂ ≤ sup
[tj−1,tj ]

f ≤ sup
[tj−1,tj ]

fm + ε̂.

Multiplying by (tj − tj−1) and summing over j, we obtain that

U(fm, P )− ε̂(b− a) ≤ U(f, P ) ≤ U(fm, P ) + ε̂(b− a).

A similar argument applies to the lower Darboux sums. So

|U(f, P )− U(fm, P )| ≤ ε̂ (b− a) and |L(f, P )− L(fm, P )| ≤ ε̂ (b− a).

All this works for any partition P . Now, let P be a partition of [a, b] such that |U(fm, P )−
L(fm, P )| < ε̂. Then

|U(f, P )− L(f, P )|
≤ |U(f, P )− U(fm, P )|︸ ︷︷ ︸

≤ε̂(b−a)

+ |U(fm, P )− L(fm, P )|︸ ︷︷ ︸
<ε̂

+ |L(fm, P )− L(f, P )|︸ ︷︷ ︸
≤ε̂(b−a)

< ε.

Theorem 3. Let fn for n ∈ N, f , and g be functions on [a, b]. Suppose that fn are C1

(continuously differentiable), that fn → f pointwise, and that f ′n → g uniformly. Then f
is C1, and f ′ = g.

Proof. Because fn are C1, their derivatives f ′n are continuous, hence Darboux integrable.
Because fn → g uniformly, by the earlier theorem about continuity g is also continuous. By
the earlier theorem about integrals applied to the intervals [a, x],∫ x

a

f ′n
n→∞−−−→

∫ x

a

g.

But ∫ x

a

f ′n = fn(x)− fn(a)
n→∞−−−→ f(x)− f(a),
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where the first equality is by the second fundamental theorem of calculus and the second
equality is because fn → f pointwise. So

∫ x
a
g = f(x)− f(a), which we rewrite as

f(x) = f(a) +

∫ x

a

g.

By the first fundamental theorem of calculus, the right hand side is differentiable and its
derivative is g(x). It follows that the f is differentiable and its derivative is g. �

The special case of power series is particularly nice.

Theorem. Suppose that a power series
∞∑
n=0

anx
n converges to a function f on the interval

(−r, r). Then

(i) The function f : (−r, r)→ R is C1, and
∞∑
n=1

nanx
n−1 = f ′(x).

(ii)
∞∑
n=0

an
xn+1

n+ 1
=

∫ x

0

f.

Proof. Fix any x0 ∈ (−r, r). Choose any r̂ such that |x0| < r̂ < r. Because r̂ ∈ (−r, r), the
series

∑∞
n=0 r̂

n converges. Fix a ρ such that |x0| < ρ < r̂. By a theorem from the previous
handout, the three series

∞∑
n=0

anx
n ,

∞∑
n=1

nanx
n−1 ,

∞∑
n=0

an
xn+1

n+ 1

all converge uniformly on [−ρ, ρ].

Restricting to a neighbourhood of x0 and applying the earlier theorem about derivatives to
the sequence of partial sums of the series

∑∞
n=0 anx

n, we obtain (i).

Restricting to the interval [0, x0] (or to [x0, 0] if x0 < 0) and applying the earlier theorem
about integrals to the sequence of partial sums of the series

∑∞
n=0 anx

n, we obtain (ii). �

Corollary. Suppose that
∑∞

n=0 an(x − γ)n = f(x) near γ. Then f is differentiable near γ,
and

∑∞
n=1 nan(x− γ)n−1 = f ′(x).

Proof. Apply the previous theorem to the series
∑
anξ

n, which converges to the function
f(γ + ξ). �

Arguing inductively, we obtain expressions for the kth derivative of
∑
an(x− γ)n for all k;

substituting x = γ, we obtain the following corollary.

Corollary. Suppose that
∑∞

n=0 an(x − γ)n = f(x) near γ. Then f is differentiable to all
orders at γ, and for all n we have an = 1

n!
f (n)(γ).
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