Study guide for the 3rd term test.

Coverage:

- All the material that was covered in the first and second term tests
- Inverse functions: Spivak's Chapter 12
- Lengths of curves: handout "Length of a curve" (Also see Spivak's Appendix to Chapter 12)
- Darboux integral: Spivak's Chapter 13
- Riemann integral: handout "The Riemann Integral"; Spivak's Appendix to Chap. 13
- Lengths of C^1 curves: handout "Length of a continuously differentiable curve". (Also see Spivak Appendix to Chapter 13, problems 2, 3, 4)
- The fundamental theorem of calculus: Spivak's Chapter 14
- Improper integrals: class notes. (Also see Spivak Chapter 14, problems 25, 26, 27, 28, 29, 30)
- Logarithm and exponential functions: Spivak's Chapter 18; handout "The logarithm and exponential functions"

If you will need to use the axioms for the real numbers, then I will provide them.

Sources.

- Your notes from class
- Your notes from tutorial
- Yael's notes from class
- Spivak's textbook
- Handouts on course website
- Weightless assignments
- For-credit assignments

Tentative list of relevant terms.

- Inverse functions; inverse function theorem
- Continuous monotone functions on intervals
- Partition of an interval; refinement of a partition; mesh of a partition
- Parametrized curve; rectifiable curve; length of a curve
- Properties of length: continuity (as a function of endpoints), concatenation, reparametrization, composition with rotations
- Lower and upper Darboux sums; lower and upper Darboux integrals, Darboux integrable function; Darboux integral of a function
- Properties of Darboux integrals: concatenation, comparison, linearity, continuity (as a function of endpoints)
- Tagging of a partition; tagged partition; Riemann sum; Riemann integrable function; Riemann integral of a function
- C^1 (continuously differentiable) function, C^1 (continuously differentiable) curve, velocity, speed, length as an integral of speed
- First and second fundamental theorems of calculus; applications
- Improper integrals on half-closed intervals and on open intervals (allowing infinite intervals)
- Logarithm and exponential functions: definitions and properties

Some practice questions from *earlier* material:

- (1) Prove: if $\forall \epsilon > 0 |x y| < \epsilon$, then x = y.
- (2) Prove: if $\forall n \in \mathbb{N} |x-y| < \frac{1}{n}$, then x = y.
- (3) For each of the following properties, determine which functions $f : \mathbb{R} \to \mathbb{R}$ satisfy the property.
 - $\forall x \exists y \text{ such that } f(x) > y.$
 - $\exists y \text{ such that } \forall x \ f(x) > y.$
 - $\exists x \text{ such that } \forall y \ f(x) > y.$
 - $\forall y \exists x \text{ such that } f(x) > y.$
- (4) Let $f, g: \mathbb{R} \to \mathbb{R}$ be bounded from above. Let $a = \sup f$ and $b = \sup g$. Define $h(x) = \begin{cases} f(x) & \text{if } f(x) \ge g(x) \\ g(x) & \text{if } f(x) < g(x) \end{cases}$. (That is, $h = \max\{f, g\}$.) Prove that the function $h: \mathbb{R} \to \mathbb{R}$ is bounded from above and that $\sup h = \max\{a, b\}$.

(5) Let $f \colon \mathbb{R} \to \mathbb{R}$ be a bounded function. Prove that the limits $\lim_{x \to \infty} \left(\sup_{(x,\infty)} f \right)$ and

 $\lim_{x \to \infty} \left(\inf_{(x,\infty)} f \right) \text{ exist.}$

(These limits are called the "lim-sup" and "lim-inf" of f(x) as $x \to \infty$, and they are often denoted $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} f(x)$. What are they when $f(x) = e^{-|x|} \sin x$? when $f(x) = e^{-1/|x|} \sin x$?)