This weightless assignment is due on Crowdmark by Monday, March 15, at 9:00pm EST. It does not count toward your course grade.

Exercise 1. Read Spivak Chapter 23, "Infinite Series."

- (a) Each argument below is wrong. In each case, point out the convergence test attempted, and where the error lies.
 - (i) Set $a_n = 1/n^2$ and $b_n = 1/n$. Since $0 \le a_n \le b_n$ for all n, and $\sum_{n=1}^{\infty} a_n$ converges, so does $\sum_{n=1}^{\infty} b_n$.
 - (ii) Set $a_n = \frac{1}{n!e^n}$. Since $a_n > 0$ for all n, and

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{e(n+1)} = 0,$$

the convergence test we are using is inconclusive.

- (iii) Set $a_n = \frac{\log n}{n}$, for $n \ge 4$. Define $f(x) := \frac{\log x}{x}$, on $[4, \infty)$. Since f is positive and decreasing on $[4, \infty)$, and $\int_4^{\infty} f(x) dx$ converges, so does $\sum_{n=4}^{\infty} a_n$.
- (iv) Set $a_n = \frac{1}{\sqrt{n}}$ and $b_n = \frac{1}{n^2}$. Since

$$\lim_{n \to \infty} a_n / b_n = \lim_{n \to \infty} n^{3/2} = \infty \neq 0,$$

and since $\sum_{n=1}^{\infty} b_n$ converges, so does $\sum_{n=1}^{\infty} a_n$.

(b) Set $a_n = \frac{1}{\sqrt{n}}$. Justify whether the following is true or false: The infinite series

$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converges, say to S. Moreover, every rearrangement of $\{(-1)^n a_n\}$ converges to the same number S.