This weightless assignment is due on Crowdmark by Monday, April 5, at 9:00pm EST. It does not count toward your course grade.

Exercise 1. Read Spivak Chapter 20, "Approximation by Polynomial Functions." Suppose f is at least twice differentiable on \mathbb{R} , and

$$f'' - f = 0$$
$$f(0) = 0$$
$$f'(0) = 0$$

We will prove f = 0, in a similar way to Spivak's arguments about solving f'' + f = 0 near the end of the chapter (find them!).

Proof. The set $\{f^{(k)} \mid k \in \mathbb{N}\}$ has ______ elements [Hint: $f^{(3)} = (f'')' = f'$, by assumption on f. What about $f^{(4)}$?] Moreover,

$$f^{(k)} = \begin{cases} ---- & \text{if } k \text{ is } ---- \\ ---- & \text{if } k \text{ is } ---- \end{cases}$$

In particular, $f^{(k)}(0) = \underline{\qquad}$ for all k. Fix n. This means $P_{n,0}(x) = \underline{\qquad}$. On the other hand, by Taylor's theorem, assuming for the moment x > 0,

$$R_{n,0}(x) =$$
____, for some $t \in [0, x]$.

[Spivak writes unclearly here; he has a when it should be 0.] Since $f = P_{n,0} + R_{n,0}$, we conclude $f = \underline{\qquad}$.

Now, f and f' are continuous, so by the boundedness theorem on [0, x], there exists some M_0 and M_1 such that

$$|f(t)| \le M_0$$
, $|f'(t)| \le M_1$, for all $t \in [0, x]$.

Therefore, $|f^{(n+1)}(t)| \leq \underline{\qquad}$ for all $t \in [0, x]$ [Hint: it should probably be bigger than both M_0 and M_1 .] In particular, we can bound

$$R_{n,0}(x) \le \underline{\qquad}$$

For any $\varepsilon > 0$, we may therefore choose *n* so that $R_{n,0}(x) = - \varepsilon$. In other words, $|f(x)| < \varepsilon$ for all $\varepsilon > 0$, which means |f(x)| = 0. Since *x* was arbitrary and positive, we conclude f = 0 on $[0, \infty)$. A similar argument holds on $(-\infty, 0]$.

[Aside: this implies that given a, b, there is a unique function f satisfying f'' - f = 0 and f(0) = a and f'(0) = b. Choosing a = 0 and b = 1, the unique solution f is called the "hyperbolic sine function," denoted sinh. Choosing a = 1 and b = 0, the unique solution f is called the "hyperbolic cosine function," denoted cosh.]