
The Poincaré upper half plane model for hyperbolic geometry1

The Poincaré upper half plane is an interpretation of the primitive terms of Neutral Ge-
ometry, with which all the axioms of Neutral geometry are true, and in which the hyperbolic
parallel postulate is true. In this handout we will give this interpretation and verify most of
its properties. We won’t verify here all the axioms, but we’ll verify enough of them to give
you a reasonable grasp on this model.

If you find a mistake in this handout, please tell it to me so that I will fix it. I will give
you extra bonus homework points for this.

We follow the theory of Neutral Geometry that is developed in John Lee’s textbook Ax-
imatic Geometry, 2013. It relies on the theory of sets and the theory of real numbers, as
summarized in Appendices G and H of this book. The primitive terms for Neutral Geometry
are point, line, distance between points, and measure of an angle. The postulates are
summarized in Appendix D of the book.

With the Poincaré upper half-plane interpretation of the primitive terms “point”, “line”,
“distance”, and “angle measure”, the postulates of Neutral Geometry become statements
about real numbers. To show that this interpretation really is a model, we need to prove
these statements about real numbers. Thus, the proofs in this document are proofs within
the theory of real numbers (and not within the axiomatic theory of Neutral Geometry).

To avoid ambiguity, it will be convenient to use slightly different terminology for objects
in the axiomatic theory and for their interpretation. We will use the terms h-point, h-line, h-
distance, and h-angle measure for the Poincaré’s upper half-plane interpretations of “point”,
“line”, “distance”, and “angle measure”. We will often use the prefix h- (which stands for
“hyperbolic”) also for interpretations of other (non-primitive) terms.

“Points” and “lines” of the Poincaré upper half plane
The h-points and h-lines are described in Example 2.17 of our textbook, which we now

recall.
An h-point is a pair (x, y) of real numbers such that y > 0. Thus, the set of h-points is

the upper half-plane

H = {(x, y) ∈ R2 | y > 0}.
An h-line is the intersection of the upper half-plane either with a vertical line or with a circle
whose centre is on the x-axis. Thus, an h-line is either a set of the form

Lm := {(x, y) ∈ H | x = m}

where m ∈ R, or a set of the form

Lc,r := {(x, y) ∈ H | (x− c)2 + y2 = r2}

where c ∈ R and r > 0.

The Set Postulate, with the Poincaré upper half plane interpretation, becomes

Every h-line is a set of points, and there is a set of all h-points.

1Yael Karshon, MAT402, Fall 2016.
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This statement is true; it follows from the above definitions of H, Lm, and Lc,r.

Because every h-point is in particular an element of R2, we can refer to the x-coordinate
and y-coordinate of an h-point.

Exercise 1. Fix c ∈ R and r > 0. Consider the h-line Lc,r. Note that (x, y) ∈ Lc,r if and
only if y is positive and (x− c)2 + y2 = r2.

• Show that every two distinct h-points on Lc,r have distinct x-coordinates.
• Show that the map (x, y) 7→ x defines a bijection from Lc,r to the open interval

(c− r, c+ r).

The Unique Line Postulate, with the Poincaré upper half plane interpretation, becomes

Given any two distinct h-points, there exists a unique h-line that contains both
of them.

To prove this statement, we need to first rephrase it as a statement about real numbers, by
spelling out the meanings of h-point and h-line. A tricky aspect of this is that there are two
possible descriptions of h-lines. (In the Cartesian model R2 there are also two descriptions
of lines: a line could be given by an equation of the form x = m or by an equation of the
form y = ax + b. See Chapter 6 of the textbook.) Here is one way to rephrase the above
statement that we need to prove:

Given any two distinct points A and B in the upper half plane H, exactly one
of the following two possibilities occurs.
(1) There exists a unique real number m such that A and B both lie on Lm,

and there is no pair (c, r) with c ∈ R and r > 0 such that A and B both
lie on Lc,r.

(2) There exists a unique pair (c, r), with c ∈ R and r > 0, such that A and
B both lie on Lc,r, and there is no m ∈ R such that A and B both lie
on Lm.

We now prove this statement. Let A = (xA, yA) and B = (xB, yB) be distinct h-points. That
is, yA > 0 and yB > 0, and A and B are distinct.

Case 1: suppose that xA = xB.
Let m = xA. Then A and B both lie on Lm, and, for any m′ 6= m, A and B don’t both
lie on Lm′ (moreover, neither of them lies on Lm′). Also, in this case there is no pair (c, r)
with c ∈ R and r > 0 such that A and B both lie on Lc,r, because distinct points on Lc,r

have distinct x-coordinates (by Exercise 1) whereas A and B have the same x-coordinate
(by assumption).

Case 2: suppose that xA 6= xB.
Then the Euclidean(=Cartesian) segment from A to B is not vertical. (Can you see why?)
Let ` be its (Euclidean) perpendicular bisector; then ` is not horizontal. So ` meets the
x-axis exactly once. Let (c, 0) be the point where the ` meets the x-axis. Because (c, 0)
is on the (Euclidean) perpendicular bisector ` of the Euclidean segment from A to B, its
Euclidean distance from A is equal to its Euclidean distance from B. Denote this distance
by r. Then A and B are on the Euclidean circle with centre (c, 0) and radius r. So they are
on Lc,r. It remains to show that A and B are not on any other h-line. First suppose that
they are on Lc′,r′ . Then (c′, 0), being of the same Euclidean distance (namely, distance r′)
from A and B, must be on the perpendicular bisector ` to the Euclidean segment from A to
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B. But ` meets the x-axis in only the one point (c, 0). So (c′, 0) = (c, 0), and then r′ = r.
Finally, because xA 6= xB, there is no m such that A and B are on Lm.

The Existence Postulate, with the Poincaré upper half plane interpretation, becomes

There exist three distinct h-points such that no h-line contains all of them.

The purpose of the following exercise is to verify that the Existence Postulate is true in
the Poincaré upper half plane interpretation.

Exercise 2. Let A = (7, 1), B = (7, 2), and C = (2, 1). Find an h-line that passes through
A and B. Show that this h-line does not pass through C. Prove that there is no h-line that
contains all of these three h-points. (Hint: uniqueness.)

The Poincaré upper half plane interpretation has the hyperbolic parallel property. This
fact can be verified directly. But, using the “all or nothing theorem” of neutral geometry,
we can also deduce this fact by showing that the axioms of Neutral geometry are true in
the Poincaré upper half plane model and that the Euclidean Parallel Property is false in the
Poincaré upper half plane model. The purpose of the following exercise is to verify that the
Euclidean parallel postulate is false in the Poincaré upper half plane interpretation.

Exercise 3.

• Draw two different pictures that illustrate the hyperbolic parallel property in the
Poincaré upper half plane model. You do not need to provide proofs.
• Let ` be the h-line that is given by the equation x2 +y2 = 1, and let A = (3, 3). Show

that the equation x = 3 defines an h-line through A that does not meet `. Show
that the equation (x− 7)2 + y2 = 25 defines another h-line through A that does not
meet `.

Endpoints of an h-line
Points on the x-axis are not h-points. But we can still refer to them as points in R2.
We think of the h-line Lc,r as having the endpoints (c− r, 0) and (c+ r, 0). (Please make

sure that you see why.) These are not h-points. They are points on R2 but they are not in
the upper half plane. We can think of them as “points at infinity” of Lc,r, but – warning –

• Since the Euclidean Parallel Property is false in the Poincaré upper half plane, we
do not have “transitivity of parallelism”, and we cannot make sense of the projective
completion in the same way that we did for Euclidean planes earlier on in our course.
• In the projective completion of a Euclidean plane, each line had only one “point at

infinity”. In our current situation, the h-line Lc,r has two distinct endpoints.

To consider endpoints of the h-line Lm, we introduce the extended x-axis,

(the x-axis) t∞.
We think of the h-line Lm has having the endpoints (m, 0) and ∞. (Please make sure that
you see why.)

We denote the Euclidean distance in R2 by d(·, ·). Thus, for P = (xP , yP ) and Q =

(xQ, yQ), we have d(P,Q) =
√

(xP − xQ)2 + (yP − yQ)2.

Exercise 4. Show that, for any two distinct elements A′, B′ of the extended x-axis, there
exists a unique h-line with endpoints A′ and B′. (Hint: consider two cases – one where A′

or B′ is ∞, and another where A′ and B′ are both on the x-axis.)
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Cross ratio
Let A′, A,B,B′ be any four points in R2 such that A 6= A′, A 6= B′, B 6= A′, and B 6= B′.

Define their cross-ratio to be

(A′, A,B,B′) =
d(A′, B) d(A,B′)

d(A′, A) d(B,B′)
.

We note that, with the usual identification of R2 with the set C of complex numbers, the
upper half plane becomes the set of complex numbers with positive imaginary part, and
the x-axis becomes the set R of real numbers viewed as a subset of the set C of complex
numbers. In the literature there is the notion of the cross-ration of four complex numbers,

which can be defined as (z1, z2, z3, z4) = (z1−z3)(z2−z4)
(z1−z2)(z3−z4) . Identifying R2 with C, the cross ratio

in our sense becomes the absolute value of the cross-value in the complex sense, because∣∣∣ (z1−z3)(z2−z4)(z1−z2)(z3−z4)

∣∣∣ = |z1−z3||z2−z4|
|z1−z2||z3−z4| .

We will be interested in the cross-ration (A′, A,B,B′) when A,B are h-points on an h-line
and A′, B′ are the endpoints of this h-line (so A′, B′ themselves are not h-points). We will
want to also allow A′ or B′ to be the element ∞ of the extended x-axis. When A′ or B′ is
∞, we define

(A′, A,B,∞) =
d(A′, B)

d(A′, A)
and (∞, A,B,B′) =

d(A,B′)

d(B,B′)
.

This is consistent with our previous formula for the cross-ratio if we take the informal
conventions that for any h-point P we have d(P,∞) = ∞ and that ∞∞ = 1. For example,
with these informal conventions, we can write

(A′, A,B,∞) =
d(A′, B) d(A,∞)

d(A′, A) d(B,∞)
=
d(A′, B)

d(A′, A)
· ∞
∞

=
d(A′, B)

d(A′, A)
.

Exercise 5. Prove the following three properties of the cross-ratio in each of the three cases
below.

(a) The cross-ration (A′, A,B,B′) is a positive real number.
(b) If A = B, then the cross-ration (A′, A,B,B′) is equal to 1.

(c) (B′, A,B,A′) =
1

(A′, A,B,B′)
.

The three cases are

(i) A′, A,B,B′ are points in R2 such that A 6= A′, A 6= B′, B 6= A′, and B 6= B′.
(ii) A′, A,B are points in R2 such that A 6= A′ and B 6= A′, and B′ =∞.

(iii) A,B,B′ are points in R2 such that A 6= B′ and B 6= B′, and A′ =∞.

“Distance” in the Poincaré upper half plane
Now, let A,B be any two h-points. If A = B, we define h-dist(A,B) = 0. If A 6= B, then

A and B determine a unique h-line; let A′ and B′ be the endpoints of this h-line; we then
define

h-dist(A,B) = | ln(A′, A,B,B′)|
where ln(·) is the natural logarithm function and (A′, A,B,B′) is the cross-ratio. Because
(A′, A,B,B′) is positive, its natural logarithm is a well defined real number, and the absolute
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value | ln(A′, A,B,B′)| is a well-defined non-negative real number. But the association of
the symbols A′ and B′ to the two endpoints of the h-line was arbitrary. For the definition of
h-distance to be unambiguous, we need to confirm that the expression | ln(A′, A,B,B′)| that
defines the h-distance does not change its value when we switch A′ and B′. And, indeed,
since

(B′, A,B,A′) =
1

(A′, A,B,B′)

(by Exercise 5), we have ln(B′, A,B,A′) = − ln(A′, A,B,B′), which implies that | ln(B′, A,B,A′)| =
| ln(A′, A,B,B′)|, as required.

We have now shown that the Distance Postulate holds in the Poincaré upper half plane
interpretation:

For every pair of h-points A and B, the h-distance h-dist(A,B) is a non-
negative real number determined by A and B.

Note that for any h-line and any two points A,B on this h-line, if A′, B′ are the two
endpoints of the h-line, then

h-dist(A,B) = | ln(A′, A,B,B′)|.
If A 6= B, this equality is true by definition. If A = B, the left hand side of this equality
is zero by definition, and the right hand side is zero because (A′, A,B,B′) = 1 whenever
A = B (by Exercise 5).

Next, we would like to verify the Ruler Postulate in the Poincaré upper half plane inter-
pretation:

For every h-line L, there exists a function f : L → R that is a bijection and
such that for any two h-points A,B on L we have h-dist(A,B) = |f(A)−f(B)|.

Our verification of the ruler postulate will use the two facts that are listed in the following
exercise.

Exercise 6. Explain each of the following two facts in one paragraph. You don’t need to
provide a formal proof; just give an explanation that a first year calculus student will find
convincing.

(1) The formula x 7→ 1 + x

1− x
defines a bijection from the interval (−1, 1) to the set (0,∞)

of positive real numbers.
(2) The formula y 7→ ln y defines a bijection from the set of positive real numbers to the

set of all real numbers.

Confirmation of the Ruler Postulate, part 1.
We begin with an h-line of the form Lm. Its endpoints are A′ = (m, 0) and B′ =∞. Let

A,B be two h-points on Lm. Then A = (m, yA) and B = (m, yB) for some positive real

numbers yA and yB. We have (A′, A,B,B′) =
d(A′, B)

d(A′, A)
=
yB
yA

. So

h-dist(A,B) =

∣∣∣∣ln yByA
∣∣∣∣ .

Define f : Lm → R by
f(P ) = ln yP
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where yP is the y-coordinate of P . We now show that this is a coordinate function.

• From the definition of Lm, the function P 7→ yP is a bijection from Lm to the set of
positive real numbers. As noted earlier, the function y 7→ ln y is a bijection from the
set of positive real numbers to the set of all real numbers. The function f , being the
composition of these two bijections, is a bijection.
• For any A,B in Lm, writing A = (m, yA) and B = (m, yB), we have

h-dist(A,B) =

∣∣∣∣ln yByA
∣∣∣∣ = |ln yB − ln yA| = |f(B)− f(A)| ,

as required.

Confirmation of the Ruler Postulate, part 2.
Next, we consider h-lines of the form Lc,r. We begin with the special case that c = 0 and

r = 1, so that the h-line is the intersection of the upper half plane with the circle that is
centred at the origin and has radius one.

The first step is to work out the formula for the h-distance. The endpoints are A′ = (−1, 0)
and B′ = (1, 0). (Can you see why?) Let A,B be any two h-points on this h-line. Write
them as A = (xA, yA) and B = (xB, yB). Note that yA and yB are positive, and x2A + y2A =
x2B + y2B = 1. (Can you see why?) We calculate the Euclidean distances that appear in the
formula for the cross-product.

d(A′, B) =
√

(1 + xB)2 + y2B =
√

2 + 2xB

d(A,B′) =
√

(1− xA)2 + y2A =
√

2− 2xA

d(A′, A) =
√

(1 + xA)2 + y2A =
√

2 + 2xA

d(B,B′) =
√

(1− xB)2 + y2B =
√

2− 2xB.

Please make sure that you can justify each of the above equalities. We now substitute these
in the formula for the cross-ratio:

(A′, A,B,B′) =
d(A′, B)d(A,B′)

d(A′, A)d(B,B′)
=

√
2 + 2xB

√
2− 2xA√

2 + 2xA
√

2− 2xB
=

(
(1 + xB)(1− xA)

(1 + xA)(1− xB)

) 1
2

.

To obtain the h-distance, we take the absolute value of the natural logarithm:

h-dist(A,B) = |ln(A′, A,B,B′)| =

∣∣∣∣∣ln
((

(1 + xB)(1− xA)

(1 + xA)(1− xB)

) 1
2

)∣∣∣∣∣
=

1

2

∣∣∣∣ln(1 + xB
1− xB

)
− ln

(
1 + xA
1− xA

)∣∣∣∣ .
Again, please make sure that you can justify these algebraic manipulations; if you’re not
sure then ask.

Still for L = Lc,r with c = 0 and r = 1, define

f : L→ R
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by

f(P ) =
1

2
ln

1 + xP
1− xP

where xP is the x-coordinate of P . We now show that this is a coordinate function.

• The function P 7→ xP is a bijection from L to (−1, 1), the function x 7→ 1 + x

1− x
is a

bijection from (−1, 1) to the set of positive real numbers, and the natural logarithm
is a bijection from the set of positive real numbers to the set of all real numbers (see
Exercise 6). Because the function f is the composition of these three bijections, it is
a bijection.
• For any A,B in L, denoting their x-coordinates by xA and xB, we have

h-dist(A,B) =
1

2

∣∣∣∣ln(1 + xB
1− xB

)
− ln

(
1 + xA
1− xA

)∣∣∣∣ = |f(B)− f(A)| ,

as required.

Confirmation of the Ruler Postulate, part 3.
Next, we consider a general h-line of the form Lc,r.
The map

g(x, y) = (
1

r
(x− c), 1

r
y)

is a bijection from the h-line Lc,r to the h-line L0,1.
Indeed, subtracting c from the x-coordinate creates a shift of distance c to the left. So it

takes the circle of radius r centered at (c, 0) to the circle of radius r centred at the origin.
And multiplying by 1

r
takes the circle of radius r centred at the origin to the circle of radius

1 centred at the origin. (Can you see why?) Finally, both of these maps take the upper half
plane onto itself. So their composition g takes Lc,r to L0,1. To show that it is a bijection, it is
enough to find an inverse. And, indeed, the map h(x, y) 7→ (c+rx, ry) takes the h-line L0,1 to
the h-line Lc,r and is an inverse to g: we have (x′, y′) = g(x, y) if and only if (x, y) = h(x′, y′).

Exercise 7. In this exercise you will show that the map g is an isometry, which means that it
does not distort h-distance: for any two h-points A and B, h-dist(A,B) = h-dist(g(A), g(B)).

(a) Show that, for every P and Q in R2, we have d(g(P ), g(Q)) = 1
r
d(P,Q).

(b) Conclude that, for any A′, A,B,B′ in R2 such that each of A′, B′ is different from A
and from B, we have (g(A′), g(A), g(B), g(B′)) = (A′, A,B,B′).

(c) For any two distinct h-points A and B, take A′ and B′ to be the endpoints of the h-line
through A and B, and use Part (b) to show that h-dist(g(A), g(B)) = h-dist(A,B).

We obtain a coordinate function for Lc,r by composing the map g with a coordinate
function for L0,1. Namely, we take a coordinate function f0 : L0,1 → R for the h-line L0,1

(such as the one that we described earlier), and on the h-line Lc,r we take the composition

f := f0 ◦ g : Lc,r → R.
We now show that this is a coordinate function.

• The function g is a bijection from Lc,r to L0,1, as we have shown, and the function
f0 is a bijection from L0,1 to R, because it’s a coordinate function. Because f is a
composition of these two bijections, it is a bijection.
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• For any A,B in Lc,r, we have

h-dist(A,B) = h-dist(g(A), g(B)) = |f0(g(A))− f0(g(B))| = |f(A)− f(B)|.
The first equality is by Exercise 7, the second is because f0 is a coordinate function
on L0,r, and the third is from the definition of f . We conclude that f is a coordinate
function on Lc,r.

Plane Separation
The two sides of an h-line Lm are the sets

{(x, y) ∈ H | x < m} and {(x, y) ∈ H | x > m}.
The two sides of an h-line Lc,r are the sets

{(x, y) ∈ H | y >
√
r2 − (x− c)2} and {(x, y) ∈ H | y <

√
r2 − (x− c)2}.

The proof that these sets satisfy the properties that are required in the Plane Separation
postulate uses the intermediate value theorem of calculus (applied to a parametrization of
the h-segment between two h-points that are not on the h-line). We omit the details.

Rays in the Poincaré upper half plane
The h-rays that lie on the h-line Lm and start from the h-point (m, yA) are

{(x, y) | x = m and y ≥ yA}
and

{(x, y) | x = m and 0 < y ≤ yA}.
The h-rays that lie on the h-line Lc,r and start from the h-point (xB, yB) are

{(x, y) | c− r < x ≤ xB and y =
√
r2 − (x− c)2}

and

{(x, y) | xB ≤ x < c+ r and y =
√
r2 − (x− c)2}.

In particular, an h-ray that starts from point A is a portion of a circle or a line in R2 that
starts from point A.

Figure 1 gives illustrations of h-rays. Please make sure that you understand how these
illustrations relate to the above formulas.

Figure 1. h-rays
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Angle measures in the Poincaré upper half plane
Finally, we need to give the interpretation of angle measure. This is easy – the angle

measure in the Poicaré upper half plane is the ordinary (Euclidean) angle measure between
the corresponding portions of circles or lines.

We give more details.
Let γ be an h-line and let A be a point on γ. An h-ray that starts at A and lies on γ

determines a Euclidean ray that starts at A and lies on the (Euclidean) tangent to γ at A.
For example, the h-ray {(x, y) | x = m and y ≥ yA} is itself a Euclidean ray, and the h-ray
{(x, y) | x = m and 0 < y ≤ yA} determines the Euclidean ray {(x, y) | x = m and y ≤ yA}.

The tangent line to y =
√
r2 − (x− c)2 at the point (xA, yA) is{
(x, y) | y = yA −

xA − c
yA

(x− xA)

}
.

(Check this!) The h-ray that lies on Lc,r and starts at (xA, yA) and whose points have
x-coordinates ≤ xA determines the Euclidean ray that lies on the tangent line to Lc−r at
(xA, yA) and whose points have x-coordinates ≤ xA. Similarly, the h-ray that lies on Lc,r and
starts at (xA, yA) and whose points have x-coordinates ≥ xA determines the Euclidean ray
that lies on the tangent line to Lc−r at (xA, yA) and whose points have x-coordinates ≥ xA.

An h-angle consists of two h-rays in H that start at the same point. Each of these
determines a Euclidean ray in R2 that starts at that point, so together they determine a
Euclidean angle in R2 with vertex at that point. We define the h-angle measure of the given
h-angle to be the ordinary (Euclidean) angle measure of the angle that it determines.

With this interpretation, the Angle Measure postulate in the Poincaré upper half plane is
true: for every h-angle, its h-angle measure is a real number in the closed interval [0, 180]
that is determined by the h-angle.

The Protractor postulate in the Poincaré upper half plane is a consequence of the protrac-
tor postulate in the Cartesian plane R2 (which is sketched in the textbook), together with
the following fact:

For every h-point, every Euclidean ray that starts from that point corresponds
to some h-ray that starts from that point.

It is convenient to encode a Euclidean ray by its unit tangent vector that is based at the
starting point of the ray and points in the direction of the ray. See Figures 2 and 3.

We then claim that for every point z in H and every direction v at z, there exists a unique
h-ray emanating from z in the direction v.

If vector v is vertical, it’s easy; see Figure 2.
Explicitly, if z = (m,n) and v = (0, 1), we take the h-ray {(m, y) | y ≥ n}, and if

z = (m,n) and v = (0,−1), we take the h-ray {(m, y) | 0 < y ≤ n}.
If vector v is not vertical, we seek a Euclidean circle through z, centered at the origin,

whose tangent at z is v. Because the tangent of a circle is perpendicular to its radius, we
consider the Euclidean line through z in the direction perpendicular to v. This line meets
the x-axis; let (c, 0) be the point of intersection. Then v is tangent at z to the circle through
z centered at (c, 0). The intersection of this circle with the upper half plane H is the h-line
Lc,r, where r is the Euclidean distance between z and (c, 0). Part of this h-line forms an
h-ray that emanates from z in the direction v.
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Figure 2. h-rays in vertical direction

Figure 3. Seeking an h-ray in direction v at point z.

The SAS postulate is also true in the Poincaré upper half plane interpretation. To show it,
we need to examine the isometries of the Poincaré upper half plane: the maps that preserve
h-distance. These include the map g that we used to verify the ruler postulate, as well as
so-called hyperbolic reflections and hyperbolic rotations. Once we obtain a good enough
understanding of these maps, we can prove that the SAS postulate is true in the Poincaré
upper half plane by imitating Euclid’s idea of his “proof” of SAS. We do not have the space
and time to discuss here the details.
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