MAT402 Classical Geometries, Fall 2016. Problem set 9

Read Chapters 6 and 7 of John Lee's textbook.

This problem set is due in class on Friday Nov.25th. You are encouraged to work in a group, but you must write your solution later, separately, on your own.

- If you worked in a group, please indicate with whom you worked.
- Copy the following sentence, and sign it when you're done preparing your submission: "I declare that I wrote these solutions entirely on my own."

As usual, when proving a theorem in Neutral geometry that appears in our textbook, you may use parts of Neutral geometry that appear earlier in the textbook: postulates, theorems (or lemmas/propositions/corollaries etc), primitive notions, and definitions.

- (1) Let \overrightarrow{r} be a ray starting at point O. Let ℓ be a line through O. Prove:
 - (i) If $\ell = \overleftarrow{r}$, then $\ell \cap \overrightarrow{r} = \overrightarrow{r}$.
 - (ii) If $\ell \neq \overleftarrow{r}$, then $\ell \cap \overrightarrow{r} = \{O\}$.

Let $\angle ab$ be a proper angle with vertex O. Let ℓ be a line through O. Prove:

- (iii) If $\ell = \overleftarrow{a}$ then $\ell \cap \angle ab = \overrightarrow{a}$. If $\ell = \overleftarrow{b}$ then $\ell \cap \angle ab = \overrightarrow{b}$.
- (v) If $\ell \neq \overleftarrow{a}$ and $\ell \neq \overleftarrow{b}$ then $\ell \cap \angle ab = \{O\}$.
- Let $\angle ab$ and $\angle cd$ be angles. Suppose that $\angle ab = \angle cd$. Prove:
- (vi) $\angle ab$ is a proper angle if and only if $\angle cd$ is a proper angle.
- (vii) Suppose that $\angle ab$ and $\angle cd$ are proper angles. Then $\overrightarrow{c} = \overrightarrow{d}$ or $\overrightarrow{c} = \overrightarrow{b}$.
- (viii) Suppose that $\angle ab$ and $\angle cd$ are proper angles. Then $\overrightarrow{c} = \overrightarrow{a}$ and $\overrightarrow{d} = \overrightarrow{b}$ or $\overrightarrow{c} = \overrightarrow{b}$ and $\overrightarrow{d} = \overrightarrow{a}$.
- (2) Prove the Isosceles Triangle Altitude Theorem: In an isosceles triangle, the altitude to the base coincides with the median to the base and with the bisector of the angle opposite the base (Theorem 7.6 of the textbook).
- (3) Prove that every segment has a unique perpendicular bisector (Theorem 7.7 of the textbook).
- (4) Prove Lemma 7.12 of the textbook ("Properties of Closest Points").
- (5) Prove Theorem 7.13 of the textbook ("Closest Point on a Line").

Additional questions, for you to solve but not to hand in:

- Prove the Corresponding Angles Theorem (Theorem 7.20 of the textbook).
- Prove the Consecutive Interior Angles theorem (Theorem 7.21 of the textbook).
- Show that "Euclid's Segment Cutoff Theorem" is false in the rational plane by constructing explicit segments \overline{AB} and \overline{CD} with rational endpoints such that AB > CDbut such that there is no rational point $E \in \overline{AB}$ with $\overline{AE} \cong \overline{CD}$. ("Rational point" is a pair (x, y) with x, y rational numbers. See Example 6.20 in the textbook.)
- Show that the taxicab geometry that is described in Chapter 6 of the textbook satisfies the ruler postulate. See the hints provided in Exercise 6C on page 140 of the textbook.