Today's goals are

- (1) to define isotropy representations and the adjoint and coadjoint actions. These are relevant for the problem set.
- (2) To being studying compact Lie groups, in preparation for "local normal forms".

Isotropy representation. Let G act on a manifold N, and let x be a fixed point for the action. For every $a \in G$, the map $a: N \to N$ takes x to itself, so its differential at x is a linear operator $a_*: T_x N \to T_x N$. In this way we get a linear G action on $T_x N$.

More generally, if G acts on N and x is an arbitrary point of N, we get a linear action of $H := \operatorname{Stab}(x)$ on $T_x N$. This action is called the *isotropy representation* at x.

Remark 0.1. Some people also call the stabilizer of x the "isotropy group" at x.

Adjoint and coadjoint representations. Let a Lie group G act on itself by conjugation:

$$a: g \mapsto aga^{-1}$$

The point g = 1 is a fixed point for this action. The istropy action of G on $T_1G = \mathfrak{g}$ is called the *Adjoint action*, or *Adjoint representation*. It is denoted Ad.

The coadjoint action, or coadjoint representation, is the dual representation of G on $\mathfrak{g}^* = \operatorname{Hom}(\mathfrak{g}, \mathbb{R})$: for $a \in G$ and $\varphi \in \mathfrak{g}^*$,

$$\left(\operatorname{Ad}^{*}(a)\varphi\right)(\xi) = \varphi\left(\operatorname{Ad}^{*}(a^{-1})\xi\right)$$

for all $\xi \in \mathfrak{g}$.

Example 0.2. Suppose $G \subset GL(n)$, so $\mathfrak{g} \subset M_{n,n}$. From

$$a(\exp t\xi)a^{-1} = a(I + t\xi + O(t^2))a^{-1} = I + t(a\xi a^{-1}) + O(t^2)$$

we deduce that the Adjoint action is conjugation:

$$\operatorname{Ad}(a)(\xi) = a\xi a^{-1}.$$

Invariant measures on compact Lie groups.

Theorem 0.3. Let G be a compact Lie group. Then there exists a probability measure on G that is invariant under left and right translations and under inversion.

Remark 0.4. On a locally compact topological group, a *Haar measure* is a regular Borel measure that is left-invariant. Fact: it exists and it is unique up to a positive scalar. But it might not be right-invariant.

If the compact Lie group G is connected, to prove Theorem 0.3 we take a left-invariant volume form and prove that it is also right-invariant and invariant under inversion. If G is not connected, to overcome issues of orientation, we will work with densities instead of volume forms.

Remark on orientations. A Lie group is parallelizable:

$$TG \cong G \times \mathfrak{g}$$
 via left translation: $a \cdot \xi \longleftrightarrow (a, \xi)$,

hence orientable.

- If G is connected, then for every $a \in G$ the left and right translations L_a and R_a can be deformed through diffeomorphisms of G to the identity map on G. So they preserve orientation.
- A disconnected example:

$$G = \mathbb{Z}_2 \ltimes K$$

where K is a torus of odd dimension (e.g. S^1) and where the non-trivial element of \mathbb{Z}_2 acts on K by inversion $g \to g^{-1}$, which reverses orientation. (Inversion is an automorphism of K because K is abelian.) I.E.,

$$(\epsilon_1, k_1) \cdot (\epsilon_2, k_2) = \begin{cases} (\epsilon_1 \epsilon_2, k_1 k_2) & \text{if } \epsilon_2 = 1\\ (\epsilon_1 \epsilon_2, k_1^{-1} k_2) & \text{if } \epsilon_2 = -1. \end{cases}$$

Because conjugation by the non-zero element ϵ of \mathbb{Z}_2 does not preserve orientation, L_{ϵ} and R_{ϵ} cannot both preserve orientation.

A lemma about orientations.

Lemma 0.5. Let G be a Lie group. Pick an orientation on the Lie algebra \mathfrak{g} . Equip G with the orientation induced from the left trivialization

$$\begin{array}{rccc} TG &\cong & G \times \mathfrak{g} \\ a \cdot \xi &\longleftrightarrow & (a, \xi). \end{array}$$

Fix $b \in G$. Then

 $R_b\colon G\to G$

either preserves orientation everywhere or reverses orientation everywhere.

Proof. Because left and right translations commute, we have a commuting diagram

neighbourhood of
$$g \xrightarrow{R_b}$$
 neighbourhood of gb
 $L_g \uparrow \qquad \qquad L_g \uparrow$
neighbourhood of 1 $\xrightarrow{R_b}$ neighbourhood of b

Because left translations L_g preserve orientation, if $R_b|_1$ preserves orientation then $R_b|_g$ preserves orientation for all g, and if $R_b|_1$ reverses orientation then $R_b|_g$ reverses orientation for all g.

Volume forms and densities. Recall that a volume form is a non-vanishing section of $\bigwedge^{\text{top}} T^*G$, and that $\bigwedge^{\text{top}} T^*G$ is a rank one real line bundle. A volume form vol determines an orientation. Integration with respect to this orientation gives a positive measure. Because G is compact, its total measure is finite, so we can rescale to get a probability measure.

This measure can also be described as the integration of a *density*, which we denote |vol|. A density is a section of the tensor of $\bigwedge^{\text{top}} T^*M \otimes L$ where L is the orientation line bundle.

(The orientation line bundle L is a real line bundle that can be constructed in the following way. Take an atlas $\{\varphi_i : U_i \to \Omega_i\}$ for M. Define $\psi_{ij} : U_i \cap U_j \to \{1, -1\}$ by the signs of the Jacobi determinants of the transition maps $\varphi_j \circ \varphi_i^{-1}$. Obtain L by gluing the trivial bundles $U_i \times \mathbb{R}$ with the functions ψ_{ij} .)

The bundle $\bigwedge^{\text{top}} T^*M \otimes L$ is trivializable, but there is no natural trivialization. A section of this bundle over an open subset U of M can be viewed as an equivalence class of pairs (α, o) , where α is a top degree form on U and o is an orientation of o, under the equivalence $(\alpha, o) \sim (-\alpha, -o)$. A compactly supported section of this bundle can be integrated: the integral of (α, o) is the integral of the form α with respect to the orientation o. The answer is independent of choices of orientations.

Finally – a density can be pulled back through a diffeomorphism (but not through an arbitrary smooth map). Such a pullback does not effect its integral.

A density is a special case of a "differential form of odd type" as described in de Rham's 1955 book "Differentiable Manifolds" (English translation: 1984, Springer-Verlag).

Proof of Theorem 0.3. Pick $0 \neq v \in \bigwedge^{\text{top}} \mathfrak{g}^*$. Define vol to be the left invariant volume form on G with vol $|_1 = v$. I.E., vol $|_a = (L_{a^{-1}})^* v$.

Claim: Let $b \in G$. Then R_b^* vol $= \pm$ vol.

Proof of the claim: Because dim $\bigwedge^{\text{top}} \mathfrak{g}^* = 1$, there exists a real number λ such that $(R_b^* \operatorname{vol})|_1 = \lambda \operatorname{vol}|_1$.

$$L_a^*(R_b^*\operatorname{vol}) = R_b^*(L_a^*\operatorname{vol}) = R_b^*\operatorname{vol}$$

because L_a and R_b commute and because L_a^* vol = vol. So R_b^* vol is left invariant.

Because R_b^* vol and λ vol are left invariant and coincide at g = 1, they coincide everywhere:

$$R_b^* \operatorname{vol} = \lambda \operatorname{vol}$$
.

We now integrate these forms with respect to the left invariant orientation induced from vol:

$$\int_G R_b^* \operatorname{vol} = \lambda \int_G \operatorname{vol}$$

By the lemma on orientations, the diffeomorphism R_b either preserves orientation everywhere or reverses orientation everywhere. The left hand side is equal to vol or - vol according to these two cases. We deduce that $\lambda = \pm 1$. So R_b^* vol $= \pm$ vol, and R_b^* vol $= |R_b^*$ vol | = | vol |. *Claim:* | vol | is invariant under inversion

$$\begin{array}{rcccc} I \colon G & \to & G \\ g & \mapsto & g^{-1} \end{array}$$

Proof of the claim: Because |vol| is right invariant, I^* vol is left invariant:

$$L_a^* I^* |\operatorname{vol}| = (IL_a)^* |\operatorname{vol}| = (R_{a^{-1}}I)^* |\operatorname{vol}| = I^* (R_{a^{-1}}^* |\operatorname{vol}|) = I^* |\operatorname{vol}|.$$

Let $\lambda > 0$ be such that $I^* |\operatorname{vol}|_1 = \lambda |\operatorname{vol}|_1$. Then $I^* |\operatorname{vol}|$ and $\lambda |\operatorname{vol}|$ are left invariant densities that coincide at 1, so they are equal: $I^* |\operatorname{vol}| = \lambda |\operatorname{vol}|$. Integrating both sides over G, we deduce that $\lambda = 1$.

*** Can we also prove Theorem 0.3 by taking an invariant volume form on the identity component G_0 of G and using the fact that G/G_0 is a finite group? ***

Averaging. Until now, we integrated volume forms and densities over G. Now that we have established the existence of an invariant probability measure on G, we can use it to integrate *functions* over G. This enables us to apply *averaging* arguments. We give two examples of averaging.

Invariant inner products.

Lemma 0.6. Let a compact Lie group G act linearly on a finite dimensional real vector space V. Then there exists on V a G invariant inner product $\langle \cdot, \cdot \rangle$.

Proof. Start with any inner product, $\langle \cdot, \cdot \rangle'$. Then define, for $u, v \in V$,

$$\langle u,v \rangle = \int_G \langle a \cdot u, a \cdot v \rangle' \, da$$

where da is an invariant probability measure on G.

A (Hermitian) inner product on a *complex* vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ that is linear with respect to the second entry, satisfies $\langle u, v \rangle = \overline{\langle v, u \rangle}$, and is positive definite: $\langle u, u \rangle > 0$ whenever $u \neq 0$. On a complex vector space V, a Hermitian inner product always exists. (Compose a linear isomorphism $V \cong \mathbb{C}^n$ with the standard Hermitian inner product $(z, w) \mapsto \sum \overline{z}_j w_j$.) An averaging argument as above shows that, if G acts on V through complex linear transformations, then there exists on V a G *invariant* Hermitian inner product.

The complex of invariant forms. Let a Lie group G act on a manifold M. If a differential form α is G-invariant, so is $d\alpha$. Thus, the invariant differential forms define a subcomplex of the complex of all differential forms. We denote these complexes by

$$(0.7) \qquad \qquad \left(\Omega^{\cdot}(M)^{G}, d\right) \hookrightarrow \left(\Omega^{\cdot}(M), d\right).$$

Recall that the de Rham cohomology $H^{\cdot}_{dR}(M)$ is defined to be the cohomology of the complex $(\Omega^{\cdot}(M), d)$.

Suppose that G is connected. For every $a \in G$, because the transformation $\rho(a) \colon M \to M$ is homotopic to the identity map (through the maps $\rho(a_t)$, where $t \mapsto a_t$ is a path in G from a to 1), it induces the identity map on cohomology.

Lemma 0.8. Let a compact connected Lie group act on a manifold M. Then the inclusion of complexes (0.7) induces an isomorphism in cohomology.

In class we didn't get to the proof, but here it is:

Proof. Let α' is a closed k-form on M. Let

$$\alpha = \int_{g \in G} (g^* \alpha') dg.$$

Then α is closed and G invariant, and it is in the same cohomology class as α' . This shows that (0.7) induces a *surjection* in cohomology.

Let α be an invariant k-form on M. Suppose that α is exact. Let β' be a primitive: $\alpha = d\beta'$. Let

$$\beta := \int_{g \in G} (g^* \beta') dg.$$

Then β is G invariant, and

$$d\beta = \int_{g \in G} \left(d(g^*\beta') \right) dg = \int_{g \in G} \left(g^* d\beta' \right) = \int_{g \in G} \alpha dg = \alpha$$

("dg" refers to the invariant measure on G, whereas in $d(g^*\beta')$ the symbol "d" denotes the exterior derivative.) This shows that (0.7) induces an *injection* in cohomology.