
Hamiltonian group actions Monday, Jan.11 2010, 3–4 pm.

Today’s goals are

(1) to define isotropy representations and the adjoint and coadjoint actions. These are
relevant for the problem set.

(2) To being studying compact Lie groups, in preparation for “local normal forms”.

Isotropy representation. Let G act on a manifold N , and let x be a fixed point for the
action. For every a ∈ G, the map a : N → N takes x to itself, so its differential at x is a
linear operator a∗ : TxN → TxN . In this way we get a linear G action on TxN .

More generally, if G acts on N and x is an arbitrary point of N , we get a linear action of
H := Stab(x) on TxN . This action is called the isotropy representation at x.

Remark 0.1. Some people also call the stabilizer of x the “isotropy group” at x.

Adjoint and coadjoint representations. Let a Lie group G act on itself by conjugation:

a : g 7→ aga−1.

The point g = 1 is a fixed point for this action. The istropy action of G on T1G = g is called
the Adjoint action, or Adjoint representation. It is denoted Ad.

The coadjoint action, or coadjoint representation, is the dual representation of G on g∗ =
Hom(g,R): for a ∈ G and ϕ ∈ g∗,

(Ad∗(a)ϕ) (ξ) = ϕ
(
Ad∗(a−1)ξ

)
for all ξ ∈ g.

Example 0.2. Suppose G ⊂ GL(n), so g ⊂Mn,n. From

a(exp tξ)a−1 = a(I + tξ +O(t2))a−1 = I + t(aξa−1) +O(t2)

we deduce that the Adjoint action is conjugation:

Ad(a)(ξ) = aξa−1.

Invariant measures on compact Lie groups.

Theorem 0.3. Let G be a compact Lie group. Then there exists a probability measure on
G that is invariant under left and right translations and under inversion.

Remark 0.4. On a locally compact topological group, a Haar measure is a regular Borel
measure that is left-invariant. Fact: it exists and it is unique up to a positive scalar. But it
might not be right-invariant.

If the compact Lie group G is connected, to prove Theorem 0.3 we take a left-invariant
volume form and prove that it is also right-invariant and invariant under inversion. If G
is not connected, to overcome issues of orientation, we will work with densities instead of
volume forms.
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Remark on orientations. A Lie group is parallelizable:

TG ∼= G× g via left translation: a · ξ ←→ (a, ξ),

hence orientable.

- If G is connected, then for every a ∈ G the left and right translations La and Ra

can be deformed through diffeomorphisms of G to the identity map on G. So they
preserve orientation.

- A disconnected example:

G = Z2 nK

where K is a torus of odd dimension (e.g. S1) and where the non-trivial element
of Z2 acts on K by inversion g → g−1, which reverses orientation. (Inversion is an
automorphism of K because K is abelian.) I.E.,

(ε1, k1) · (ε2, k2) =

{
(ε1ε2, k1k2) if ε2 = 1

(ε1ε2, k
−1
1 k2) if ε2 = −1.

Because conjugation by the non-zero element ε of Z2 does not preserve orientation,
Lε and Rε cannot both preserve orientation.

A lemma about orientations.

Lemma 0.5. Let G be a Lie group. Pick an orientation on the Lie algebra g. Equip G with
the orientation induced from the left trivialization

TG ∼= G× g

a · ξ ←→ (a, ξ).

Fix b ∈ G. Then

Rb : G→ G

either preserves orientation everywhere or reverses orientation everywhere.

Proof. Because left and right translations commute, we have a commuting diagram

neighbourhood of g
Rb−−−→ neighbourhood of gb

Lg

x Lg

x
neighbourhood of 1

Rb−−−→ neighbourhood of b

Because left translations Lg preserve orientation, if Rb|1 preserves orientation then Rb|g
preserves orientation for all g, and if Rb|1 reverses orientation then Rb|g reverses orientation
for all g. �
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Volume forms and densities. Recall that a volume form is a non-vanishing section of∧top T ∗G, and that
∧top T ∗G is a rank one real line bundle. A volume form vol determines

an orientation. Integration with respect to this orientation gives a positive measure. Because
G is compact, its total measure is finite, so we can rescale to get a probability measure.

This measure can also be described as the integration of a density, which we denote | vol |.
A density is a section of the tensor of

∧top T ∗M ⊗L where L is the orientation line bundle.
(The orientation line bundle L is a real line bundle that can be constructed in the following

way. Take an atlas {ϕi : Ui → Ωi} for M . Define ψij : Ui ∩ Uj → {1,−1} by the signs of the
Jacobi determinants of the transition maps ϕj ◦ϕ−1

i . Obtain L by gluing the trivial bundles
Ui × R with the functions ψij.)

The bundle
∧top T ∗M ⊗L is trivializable, but there is no natural trivialization. A section

of this bundle over an open subset U of M can be viewed as an equivalence class of pairs
(α, o), where α is a top degree form on U and o is an orientation of o, under the equivalence
(α, o) ∼ (−α,−o). A compactly supported section of this bundle can be integrated: the
integral of (α, o) is the integral of the form α with respect to the orientation o. The answer
is independent of choices of orientations.

Finally – a density can be pulled back through a diffeomorphism (but not through an
arbitrary smooth map). Such a pullback does not effect its integral.

A density is a special case of a “differential form of odd type” as described in de Rham’s
1955 book “Differentiable Manifolds” (English translation: 1984, Springer-Verlag).

Proof of Theorem 0.3. Pick 0 6= v ∈
∧top

g∗. Define vol to be the left invariant volume
form on G with vol |1 = v. I.E., vol |a = (La−1)∗ v.

Claim: Let b ∈ G. Then R∗
b vol = ± vol.

Proof of the claim: Because dim
∧top

g∗ = 1, there exists a real number λ such that
(R∗

b vol) |1 = λ vol |1.
L∗

a(R
∗
b vol) = R∗

b(L
∗
a vol) = R∗

b vol

because La and Rb commute and because L∗
a vol = vol. So R∗

b vol is left invariant.
Because R∗

b vol and λ vol are left invariant and coincide at g = 1, they coincide everywhere:

R∗
b vol = λ vol .

We now integrate these forms with respect to the left invariant orientation induced from vol:∫
G

R∗
b vol = λ

∫
G

vol .

By the lemma on orientations, the diffeomorphism Rb either preserves orientation everywhere
or reverses orientation everywhere. The left hand side is equal to vol or − vol according to
these two cases. We deduce that λ = ±1. So R∗

b vol = ± vol, and R∗
b | vol | = |R∗

b vol | = | vol |.
Claim: | vol | is invariant under inversion

I : G → G

g 7→ g−1.
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Proof of the claim: Because | vol | is right invariant, I∗ vol is left invariant:

L∗
aI

∗| vol | = (ILa)
∗| vol | = (Ra−1I)∗| vol | = I∗(R∗

a−1| vol |) = I∗| vol |.

Let λ > 0 be such that I∗| vol |1 = λ| vol |1. Then I∗| vol | and λ| vol | are left invariant
densities that coincide at 1, so they are equal: I∗| vol | = λ| vol |. Integrating both sides over
G, we deduce that λ = 1.

*** Can we also prove Theorem 0.3 by taking an invariant volume form on the identity
component G0 of G and using the fact that G/G0 is a finite group? ***

Averaging. Until now, we integrated volume forms and densities over G. Now that we
have established the existence of an invariant probability measure on G, we can use it to
integrate functions over G. This enables us to apply averaging arguments. We give two
examples of averaging.

Invariant inner products.

Lemma 0.6. Let a compact Lie group G act linearly on a finite dimensional real vector
space V . Then there exists on V a G invariant inner product 〈·, ·〉.

Proof. Start with any inner product, 〈·, ·〉′. Then define, for u, v ∈ V ,

〈u, v〉 =

∫
G

〈a · u, a · v〉′ da

where da is an invariant probability measure on G. �

A (Hermitian) inner product on a complex vector space V is a function 〈·, ·〉 : V ×V → C
that is linear with respect to the second entry, satisfies 〈u, v〉 = 〈v, u〉, and is positive definite:
〈u, u〉 > 0 whenever u 6= 0. On a complex vector space V , a Hermitian inner product
always exists. (Compose a linear isomorphism V ∼= Cn with the standard Hermitian inner
product (z, w) 7→

∑
zjwj.) An averaging argument as above shows that, if G acts on V

through complex linear transformations, then there exists on V a G invariant Hermitian
inner product.

The complex of invariant forms. Let a Lie group G act on a manifold M . If a differential
form α is G-invariant, so is dα. Thus, the invariant differential forms define a subcomplex
of the complex of all differential forms. We denote these complexes by

(0.7)
(
Ω·(M)G, d

)
↪→ (Ω·(M), d) .

Recall that the de Rham cohomology H ·
dR(M) is defined to be the cohomology of the

complex (Ω·(M), d).
Suppose that G is connected. For every a ∈ G, because the transformation ρ(a) : M →M

is homotopic to the identity map (through the maps ρ(at), where t 7→ at is a path in G from
a to 1), it induces the identity map on cohomology.
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Lemma 0.8. Let a compact connected Lie group act on a manifold M . Then the inclusion
of complexes (0.7) induces an isomorphism in cohomology.

In class we didn’t get to the proof, but here it is:

Proof. Let α′ is a closed k-form on M . Let

α =

∫
g∈G

(g∗α′)dg.

Then α is closed and G invariant, and it is in the same cohomology class as α′. This shows
that (0.7) induces a surjection in cohomology.

Let α be an invariant k-form on M . Suppose that α is exact. Let β′ be a primitive:
α = dβ′. Let

β :=

∫
g∈G

(g∗β′)dg.

Then β is G invariant, and

dβ =

∫
g∈G

(d(g∗β′)) dg =

∫
g∈G

(g∗dβ′) =

∫
g∈G

αdg = α.

(“dg” refers to the invariant measure on G, whereas in d(g∗β′) the symbol “d” denotes the
exterior derivative.) This shows that (0.7) induces an injection in cohomology. �


