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Preface

The aim of this monograph is to give an overview of various classes of infinite-
dimensional Lie groups and their applications, mostly in Hamiltonian me-
chanics, fluid dynamics, integrable systems, and complex geometry. We have
chosen to present the unifying ideas of the theory by concentrating on specific
types and examples of infinite-dimensional Lie groups. Of course, the selection
of the topics is largely influenced by the taste of the authors, but we hope
that this selection is wide enough to describe various phenomena arising in the
geometry of infinite-dimensional Lie groups and to convince the reader that
they are appealing objects to study from both purely mathematical and more
applied points of view. This book can be thought of as complementary to the
existing more algebraic treatments, in particular, those covering the struc-
ture and representation theory of infinite-dimensional Lie algebras, as well as
to more analytic ones developing calculus on infinite-dimensional manifolds.

This monograph originated from advanced graduate courses and mini-
courses on infinite-dimensional groups and gauge theory given by the first
author at the University of Toronto, at the CIRM in Marseille, and at the
Ecole Polytechnique in Paris in 2001–2004. It is based on various classical and
recent results that have shaped this newly emerged part of infinite-dimensional
geometry and group theory.

Our intention was to make the book concise, relatively self-contained, and
useful in a graduate course. For this reason, throughout the text, we have
included a large number of problems, ranging from simple exercises to open
questions. At the end of each section we provide bibliographical notes, trying
to make the literature guide more comprehensive, in an attempt to bring the
interested reader in contact with some of the most recent developments in
this exciting subject, the geometry of infinite-dimensional groups. We hope
that this book will be useful to both students and researchers in Lie theory,
geometry, and Hamiltonian systems.

It is our pleasure to thank all those who helped us with the preparation of
this manuscript. We are deeply indebted to our teachers, collaborators, and
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friends, who influenced our view of the subject: V. Arnold, Ya. Brenier,
H. Bursztyn, Ya. Eliashberg, P. Etingof, V. Fock, I. Frenkel, D. Fuchs,
A. Kirillov, F.Malikov, G. Misio�lek, R. Moraru, N. Nekrasov, V. Ovsienko,
C. Roger, A. Rosly, V. Rubtsov, A. Schwarz, G. Segal, M. Semenov-
Tian-Shansky, A. Shnirelman, P. Slodowy, S. Tabachnikov, A. Todorov,
A. Veselov, F.Wagemann, J. Weitsman, I. Zakharevich, and many others.
We are particularly grateful to Alexei Rosly, the joint projects with whom
inspired a large part, in particular the “application chapter,” of this book,
and who made numerous invaluable remarks on the manuscript. We thank
the participants of the graduate courses for their stimulating questions and
remarks. Our special thanks go to M.Peters and the Springer team for their
invariable help and to D.Kramer for careful editing of the text.

We also acknowledge the support of the Max-Planck Institute in Bonn, the
Institut des Hautes Etudes Scientifiques in Bures-sur-Yvette, the Clay Math-
ematics Institute, as well as the NSERC research grants. The work on this
book was partially conducted during the period the first author was employed
by the Clay Mathematics Institute as a Clay Book Fellow.

Finally, we thank our families (kids included!) for their tireless moral
support and encouragement throughout the over-stretched work on the
manuscript.
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Introduction

What is a group? Algebraists teach that this is supposedly a set with
two operations that satisfy a load of easily-forgettable axioms. . .

V.I. Arnold “On teaching mathematics” [20]

Today one cannot imagine mathematics and physics without Lie groups, which
lie at the foundation of so many structures and theories. Many of these groups
are of infinite dimension and they arise naturally in problems related to dif-
ferential and algebraic geometry, knot theory, fluid dynamics, cosmology, and
string theory. Such groups often appear as symmetries of various evolution
equations, and their applications range from quantum mechanics to meteo-
rology. Although infinite-dimensional Lie groups have been investigated for
quite some time, the scope of applicability of a general theory of such groups
is still rather limited. The main reason for this is that infinite-dimensional Lie
groups exhibit very peculiar features.

Let us look at the relation between a Lie group and its Lie algebra as an
example. As is well known, in finite dimensions each Lie group is, at least
locally near the identity, completely described by its Lie algebra. This is
achieved with the help of the exponential map, which is a local diffeomor-
phism from the Lie algebra to the Lie group itself. In infinite dimensions, this
correspondence is no longer so straightforward. There may exist Lie groups
that do not admit an exponential map. Furthermore, even if the exponential
map exists for a given group, it may not be a local diffeomorphism. Another
pathology in infinite dimensions is the failure of Lie’s third theorem, stating
that every finite-dimensional Lie algebra is the Lie algebra attached to some
finite-dimensional Lie group. In contrast, there exist infinite-dimensional Lie
algebras that do not correspond to any Lie group at all.

In order to avoid such pathologies, any version of a general theory of
infinite-dimensional Lie groups would have to restrict its attention to certain
classes of such groups and study them separately. For example, one might con-
sider the class of Banach Lie groups, i.e., Lie groups that are locally modeled
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on Banach spaces and behave very much like finite-dimensional Lie groups.
For Banach Lie groups the exponential map always exists and is a local diffeo-
morphism. However, restricting to Banach Lie groups would already exclude
the important case of diffeomorphism groups, and so on. This is why the
attempts to develop a unified theory of infinite-dimensional differential geom-
etry, and hence, of infinite-dimensional Lie groups, are still far from reaching
greater generality.

In the present book, we choose a different approach. Instead of trying to
develop a general theory of such groups, we concentrate on various exam-
ples of infinite-dimensional Lie groups, which lead to a realm of important
applications.

The examples we treat here mainly belong to three general types of infinite-
dimensional Lie groups: groups of diffeomorphisms, gauge transformation
groups, and groups of pseudodifferential operators. There are numerous in-
terrelations between various groups appearing in this book. For example, the
group of diffeomorphisms of a compact manifold acts naturally on the group
of currents over this manifold. When this manifold is a circle, this action gives
rise to a deep connection between the representation theory of the Virasoro al-
gebra and the Kac–Moody algebras. In the geometric setting of this book, this
relation manifests itself in the correspondence between the coadjoint orbits of
these groups.

Another strand connecting various groups considered below is the theme of
the “ladder” of current groups. We regard the passage from finite-dimensional
Lie groups (i.e., “current groups at a point”) to loop groups (i.e., current
groups on the circle), and then to double loop groups (current groups on the
two-dimensional torus) as a “ladder of groups.” On the side of dynamical
systems this is revealed in the passage from rational to trigonometric and
to elliptic Calogero–Moser systems. The passage from ordinary loop groups
to double loop groups also serves as the starting point of a “real–complex
correspondence” discussed in the chapter on applications of groups. There we
study moduli spaces of flat or integrable connections on real and complex
surfaces using the geometry of coadjoint orbits of these two types of groups.

Most of main objects studied in the book can be summarized in the table
below.

In Chapter II, in a sense, we are moving horizontally, along the first row of
this table. We study affine and elliptic groups, their orbits and geometry, as
well as the related Calogero–Moser systems. We also describe in this chapter
many Lie groups and Lie algebras outside the scope of this table: groups of
diffeomorphisms, the Virasoro group, groups of pseudodifferential operators.
In the appendices one can find the Krichever–Novikov algebras, gl∞, and other
related objects.

In Chapter III we move vertically in this table and mostly focus on the
current groups and on their parallel description in topological and holomorphic
contexts. While affine and elliptic Lie groups correspond to the base dimension
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Base Real / topological Complex / holomorphic
dimension theory theory

affine (or, loop) groups elliptic (or, double loop) groups
1 (orbits ∼ monodromies (orbits ∼ holomorphic bundles

over a circle) over an elliptic curve)

flat connections holomorphic bundles
2 over a Riemann surface over a complex surface

(Poisson structures) (holomorphic Poisson structures)

connections over a threefold partial connections over a
3 (Chern–Simons functional, complex threefold (holomorphic

singular homology, Chern–Simons functional, polar
classical linking) homology, holomorphic linking)

1, either real or complex, in dimension 2 we describe the spaces of connections
on real or complex surfaces, as well as the symplectic and Poisson structures
on the corresponding moduli spaces. (In the table the main focus of study is
mentioned in the parentheses of the corresponding block.) In dimension 3 the
study of the Chern–Simons functional and its holomorphic version leads one
to the notions of classical and holomorphic linking, and to the corresponding
homology theories. (Although we confined ourselves to three dimensions, one
can continue this table to dimension 4 and higher, which brings in the Yang–
Mills and many other interesting functionals; see, e.g., [85].)

Note that the objects (groups, connections, etc.) in each row of this table
usually dictate the structure of objects in the row above it, although the
“interaction of the rows” is different in the real and complex cases. Namely,
in the real setting, the lower-dimensional manifolds appear as the boundary
of real manifolds of one dimension higher. For the complex case, the low-
dimensional complex varieties arise as divisors in higher-dimensional ones; see
details in Chapter III.

Overview of the content. Here are several details on the contents of
various chapters and sections.

In Chapter I, we recall some notions and facts from Lie theory and sym-
plectic geometry used throughout the book. Starting with the definition of a
Lie group, we review the main related concepts of its Lie algebra, the adjoint
and coadjoint representations, and introduce central extensions of Lie groups
and algebras. We then recall some notions from symplectic geometry, includ-
ing Arnold’s formulation of the Euler equations on a Lie group, which are the
equations for the geodesic flow with respect to a one-sided invariant metric on
the group. This setting allows one to describe on the same footing many
finite- and infinite-dimensional dynamical systems, including the classical
Euler equations for both a rigid body and an ideal fluid, the Korteweg–de Vries
equation, and the equations of magnetohydrodynamics. Finally, the prelimi-
naries cover the Marsden–Weinstein Hamiltonian reduction, a method often
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used to describe complicated Hamiltonian systems starting with a simple one
on a nonreduced space, by “dividing out” extra symmetries of the system.

Chapter II is the main part of this book, and can be viewed as a walk
through the zoo of the various types of infinite-dimensional Lie groups. We
tried to describe these groups by presenting their definitions, possible explicit
constructions, information on (or, in some cases, even the complete classifi-
cation of) their coadjoint orbits. We also discuss relations of these groups to
various Hamiltonian systems, elaborating, whenever possible, on important
constructions related to integrability of such systems. The table of contents is
rather self-explanatory.

We start this chapter by introducing the loop group of a compact
Lie group, one of the most studied types of infinite-dimensional groups. In
Section 1, we construct its universal central extension, the corresponding Lie
algebra (called the affine Kac–Moody Lie algebra), and classify the corre-
sponding coadjoint orbits. We also return to discuss the relation of this Lie
algebra to the Landau–Lifschitz equation and the Calogero–Moser integrable
system in the later sections.

In Section 2 we turn to the group of diffeomorphisms of the circle and its
Lie algebra of smooth vector fields. Both the group and the Lie algebra admit
universal central extensions, called the Virasoro–Bott group and the Virasoro
algebra respectively. It turns out that the coadjoint orbits of the Virasoro–
Bott group can be classified in a manner similar to that for the orbits of the
loop groups. The Euler equation for a natural right-invariant metric on the
Virasoro–Bott group is the famous Korteweg–de Vries (KdV) equation, which
describes waves in shallow water. Furthermore, the Euler nature of the KdV
helps one to show that this equation is completely integrable.

Section 3 is devoted to various diffeomorphism groups and, in particular,
to the group of volume-preserving diffeomorphisms of a compact Riemannian
manifold M . The Euler equations on this group are the Euler equations for an
ideal incompressible fluid filling M . Enlarging the group of volume-preserving
diffeomorphisms by either smooth functions or vector fields on M gives the
Euler equations of gas dynamics or of magnetohydrodynamics, respectively.
We also mention some results on the Riemannian geometry of diffeomorphism
groups and discuss the relation of the latter to the the Marsden–Weinstein
symplectic structure on the space of immersed curves in R

3.
Section 4 deals with the group of pseudodifferential symbols (or operators)

on the circle. It turns out that this group can be endowed with the structure of
a Poisson Lie group, where the corresponding Poisson structures are given by
the Adler–Gelfand–Dickey brackets. The dynamical systems naturally corre-
sponding to this group are the Kadomtsev–Petviashvili hierarchy, the higher
n-KdV equations, and the nonlinear Schrödinger equation.

Section 5 returns to the loop groups “at the next level”: here we deal with
their generalizations, elliptic Lie groups and the corresponding Lie algebras.
These groups are extensions of the groups of double loops, i.e., the groups of
smooth maps from a two-dimensional torus to a finite-dimensional complex
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Lie group. The central extension of such a group relies on the choice of complex
structure on this torus (i.e., on the choice of the underlying elliptic curve).
The coadjoint orbits of the elliptic Lie groups can be classified in terms of
holomorphic principal bundles over the elliptic curve.

This section also unifies several classes of the groups considered earlier in
the light of an application to the Calogero–Moser systems. It turns out that
the integrable types of potentials in these systems (rational, trigonometric,
and elliptic ones) can be obtained, respectively, from the finite-dimensional
semisimple Lie algebras, the affine algebras, and the elliptic Lie algebras by
Hamiltonian reductions.

Chapter III deals with far-reaching applications of the parallelism between
the affine and elliptic Lie algebras, which resembles the “real–complex” cor-
respondence. The infinite-dimensional Lie groups we are concerned with here
are groups of gauge transformations of principal bundles over real and com-
plex surfaces. We show how the classification of coadjoint orbits of loop groups
(respectively, double loop groups) can be used to study the Poisson structure
on the moduli space of flat connections (respectively, semistable holomorphic
bundles) over a Riemann surface (respectively, a complex surface).

The correspondence between the real and complex cases leads to some-
what surprising analogies between notions in differential topology (such as
orientation, boundary, and the Stokes theorem) and those in complex alge-
braic geometry (a meromorphic differential form, its divisor of poles, and
the Cauchy–Stokes formula). These analogies are formalized in the notion of
polar homology, and their applications include the construction of a holo-
morphic linking number for a pair of complex curves in a complex threefold.
The definition of the latter is closely related to a holomorphic version of the
Chern–Simons functional.

In the appendices we mention several topics serving either as an expla-
nation to some facts used in the main text, or as an indication of further
developments. In particular, we include reminders on root systems and some
important facts from the theory of compact Lie groups. Other appendices
provide brief introductions and guides to the literature on the algebra gl∞,
the Krichever–Novikov algebras (generalizing the Virasoro algebra and loop
algebras to higher-genus Riemann surfaces), integrable systems on the moduli
of flat connections, the Kähler structures on Virasoro orbits, a relation of dif-
feomorphism groups to optimal mass transport, the Hofer metric on the group
of Hamiltonian diffeomorphisms, the Drinfeld–Sokolov reduction, as well as
proofs of several statements from the main text.

Numeration system and shortcuts. We have employed a single numer-
ation of definitions, theorems, etc. The Roman numeral in the cross-references
addresses to the chapter number, while its absence indicates that the cross-
references are within the same chapter.

The different sections in Chapter II can be read to a large degree indepen-
dently. Furthermore, Chapter III is based on just two sections from Chapter
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II: those on the affine groups (Section 1) and on the elliptic Lie groups (Sec-
tions 5). The section on polar homology is also rather independent, although
motivated by the preceding exposition in Chapter III.

For a first reading we recommend the following “shortcut” through the
book: After Chapter I on preliminaries, one can proceed to Sections 1, 2,
and 5 of Chapter II and Sections 2 and 3 of Chapter III. The reader more
interested in applications to Hamiltonian systems will find them mostly in
Sections 2 through 5 of Chapter II, while for applications to moduli spaces of
flat connections one may choose to proceed to Chapter III after reading only
Sections 1 and 5 of Chapter II.



I

Preliminaries

In this chapter, we collect some key notions and facts from the theory of Lie
groups and Hamiltonian systems, as well as set up the notations.

1 Lie Groups and Lie Algebras

This section introduces the notions of a Lie group and the corresponding Lie
algebra. Many of the basic facts known for finite-dimensional Lie groups are
no longer true for infinite-dimensional ones, and below we illustrate some of
the pathologies one can encounter in the infinite-dimensional setting.

1.1 Lie Groups and an Infinite-Dimensional Setting

The most basic definition for us will be that of a (transformation) group.

Definition 1.1 A nonempty collection G of transformations of some set
is called a (transformation) group if along with every two transformations
g, h ∈ G belonging to the collection, the composition g ◦ h and the inverse
transformation g−1 belong to the same collection G.

It follows directly from this definition that every group contains the iden-
tity transformation e. Also, the composition of transformations is an associa-
tive operation. These properties, associativity and the existence of the unit
and an inverse of each element, are often taken as the definition of an abstract
group.1

The groups we are concerned with in this book are so-called Lie groups.
In addition to being a group, they carry the structure of a smooth manifold
such that both the multiplication and inversion respect this structure.
1 Here we employ the point of view of V.I. Arnold, that every group should be

viewed as the group of transformations of some set, and the “usual” axiomatic
definition of a group only obscures its true meaning (cf. [19], p. 58).
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Definition 1.2 A Lie group is a smooth manifold G with a group structure
such that the multiplication G×G → G and the inversion G → G are smooth
maps.

The Lie groups considered throughout this book will usually be infinite-
dimensional. So what do we mean by an infinite-dimensional manifold?
Roughly speaking, an infinite-dimensional manifold is a manifold modeled on
an infinite-dimensional locally convex vector space just as a finite-dimensional
manifold is modeled on R

n.

Definition 1.3 Let V, W be Fréchet spaces, i.e., complete locally convex
Hausdorff metrizable vector spaces, and let U be an open subset of V . A map
f : U ⊂ V → W is said to be differentiable at a point u ∈ U in a direction
v ∈ V if the limit

Df(u; v) = lim
t→0

f(u+ tv) − f(u)
t

(1.1)

exists. The function is said to be continuously differentiable on U if the limit
exists for all u ∈ U and all v ∈ V , and if the function Df : U × V → W is
continuous as a function on U × V . In the same way, we can build the second
derivative D2f , which (if it exists) will be a function D2f : U × V × V → W ,
and so on. A function f : U → W is called smooth or C∞ if all its derivatives
exist and are continuous.

Definition 1.4 A Fréchet manifold is a Hausdorff space with a coordinate
atlas taking values in a Fréchet space such that all transition functions are
smooth maps.

Remark 1.5 Now one can start defining vector fields, tangent spaces, differ-
ential forms, principal bundles, and the like on a Fréchet manifold exactly in
the same way as for finite-dimensional manifolds.

For example, for a manifold M , a tangent vector at some point m ∈ M
is defined as an equivalence class of smooth parametrized curves f : R → M
such that f(0) = m. The set of all such equivalence classes is the tangent
space TmM at m. The union of the tangent spaces TmM for all m ∈ M can
be given the structure of a Fréchet manifold TM , the tangent bundle of M .
Now a smooth vector field on the manifold M is a smooth map v : M → TM ,
and one defines in a similar vein the directional derivative of a function and
the Lie bracket of two vector fields.

Since the dual of a Fréchet space need not be Fréchet, we define differential
1-forms in the Fréchet setting directly, as smooth maps α : TM → R such
that for any m ∈ M , the restriction α|TmM : TmM → R is a linear map.
Differential forms of higher degree are defined analogously: say, a 2-form on
a Fréchet manifold M is a smooth map β : T⊗2M → R whose restriction
β|T⊗2

m M : T⊗2
m M → R for any m ∈ M is bilinear and antisymmetric. The

differential df of a smooth function f : M → R is defined via the directional
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derivative, and this construction generalizes to smooth n-forms on a Fréchet
manifold M to give the exterior derivative operator d, which maps n-forms
to (n+ 1)-forms on M ; see, for example, [231].

Remark 1.6 More facts on infinite-dimensional manifolds can be found in,
e.g., [265, 157]. From now on, whenever we speak of an infinite-dimensional
manifold, we implicitly mean a Fréchet manifold (unless we say explicitly
otherwise). In particular, our infinite-dimensional Lie groups are Fréchet Lie
groups.

Instead of Fréchet manifolds, one could consider manifolds modeled on Ba-
nach spaces. This would lead to the category of Banach manifolds. The main
advantage of Banach manifolds is that strong theorems from finite-dimensional
analysis, such as the inverse function theorem, hold in Banach spaces but not
necessarily in Fréchet spaces. However, some of the Lie groups we will be con-
sidering, such as the diffeomorphism groups, are not Banach manifolds. For
this reason we stay within the more general framework of Fréchet manifolds.
In fact, for most purposes, it is enough to consider groups modeled on locally
convex vector spaces. This is the setting considered by Milnor [265].

1.2 The Lie Algebra of a Lie Group

Definition 1.7 Let G be a Lie group with the identity element e ∈ G. The
tangent space to the group G at its identity element is (the vector space of)
the Lie algebra g of this group G. The group multiplication on a Lie group G
endows its Lie algebra g with the following bilinear operation [ , ] : g×g → g,
called the Lie bracket on g.

First note that the Lie algebra g can be identified with the set of left-
invariant vector fields on the group G. Namely, to a given vector X ∈ g

one can associate a vector field ˜X on G by left translation: ˜X(g) = lg∗X,
where lg : G → G denotes the multiplication by a group element g from the
left, h ∈ G �→ gh. Obviously, such a vector field ˜X is invariant under left
translations by elements of G. That is, lg∗ ˜X = ˜X for all g ∈ G. On the other
hand, any left-invariant vector field ˜X on the group G uniquely defines an
element ˜X(e) ∈ g.

The usual Lie bracket (or commutator) [ ˜X, ˜Y ] of two left-invariant vector
fields ˜X and ˜Y on the group is again a left-invariant vector field on G. Hence
we can write [ ˜X, ˜Y ] = ˜Z for some Z ∈ g. We define the Lie bracket [X,Y ] of
two elements X, Y of the Lie algebra g of the group G via [X,Y ] := Z. The
Lie bracket gives the space g the structure of a Lie algebra.

Examples 1.8 Here are several finite-dimensional Lie groups and their Lie
algebras:

• GL(n,R), the set of nondegenerate n × n matrices, is a Lie group with
respect to the matrix product: multiplication and taking the inverse are



10 I. Preliminaries

smooth operations. Its Lie algebra is gl(n,R) = Mat(n,R), the set of all
n× n matrices.

• SL(n,R) = {A ∈ GL(n,R) | detA = 1} is a Lie group and a closed
subgroup of GL(n,R). Its Lie algebra is the space of traceless matrices
sl(n,R) = {A ∈ gl(n,R) | trA = 0}. This follows from the relation

det(I + εA) = 1 + ε trA+ O(ε2) , as ε → 0 ,

where I is the identity matrix.
• SO(n,R) is a Lie group of transformations {A : R

n → R
n} preserving the

Euclidean inner product of vectors (and orientation) in R
n, i.e. (Au, Av) =

(u, v) for all vectors u, v ∈ R
n. Equivalently, one can define

SO(n,R) = {A ∈ GL(n,R) | AAt = I, detA > 0}.

The Lie algebra of SO(n) is the space of skew-symmetric matrices

so(n,R) = {A ∈ gl(n,R) | A+At = 0} ,

as the relation

(I + εA)(I + εAt) = I + ε(A+At) + O(ε2)

shows.
• Sp(2n,R) is the group of transformations of R

2n preserving the nondegen-
erate skew-product of vectors.

Exercise 1.9 Give an alternative definition of Sp(2n,R) with the help of
the equation satisfied by the corresponding matrices for the following skew-
product of vectors 〈u, v〉 :=

∑n
j=1(ujvj+n − vjuj+n). Find the corresponding

Lie algebra.

Exercise 1.10 Show that in all of Examples 1.8, the Lie bracket is given by
the usual commutator of matrices: [A,B] = AB −BA.

The following examples are the first infinite-dimensional Lie groups we
shall encounter.

Example 1.11 Let M be a compact n-dimensional manifold. Consider the
set Diff(M) of diffeomorphisms of M . It is an open subspace of (the Fréchet
manifold of) all smooth maps from M to M . One can check that the com-
position and inversion are smooth maps, so that the set Diff(M) is a Fréchet
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Lie group; see [157].2 Its Lie algebra is given by Vect(M), the Lie algebra of
smooth vector fields on M .

Given a volume form µ on M , one can define the group of volume-
preserving diffeomorphisms

SDiff(M) := {φ ∈ Diff(M) | φ∗µ = µ} .

It is a Lie group, since SDiff(M) is a closed subgroup of Diff(M). Its Lie
algebra SVect(M) := {v ∈ Vect(M) | div(v) = 0} consists of vector fields on
M that are divergence-free with respect to the volume form µ.

Example 1.12 Let M be a finite-dimensional compact manifold and let G
be a finite-dimensional Lie group. Set the group of currents on M to be
GM = C∞(M,G), the group of G-valued functions on M . We can define
a multiplication on GM pointwise, i.e., we set (ϕ · ψ)(g) = ϕ(g)ψ(g) for all
ϕ, ψ ∈ GM . This multiplication gives GM the structure of a (Fréchet) Lie
group, as we discuss below.

Example 1.13 A slight, but important, generalization of the example above
is the following: Let G be a finite-dimensional Lie group, and P a principal
G-bundle over a manifold M . Denote by π : P → M the natural projection to
the base. Define the Lie group Gau(P ) of gauge transformations (or, simply,
the gauge group) of P as the group of bundle (i.e., fiberwise) automorphisms:
Gau(P ) = {ϕ ∈ Aut(P ) | π ◦ϕ = π}. The group multiplication is the natural
composition of the bundle automorphisms. (Automorphisms of each fiber of P
form a copy of the group G, and all together they define the associated bundle
over M with the structure group G. The identity bundle automorphism gives
the trivial section of this associated G-bundle, and the gauge transformation
group consists of all smooth sections of it; see details in [265].) One can show
that this is a Lie group (cf. [157]), and we denote the corresponding Lie algebra
by gau(P ). For a topologically trivial G-bundle P , the group Gau(P ) coincides
with the current group GM .

Exercise 1.14 Describe the Lie brackets for the Lie algebras in the last three
examples.

Remark 1.15 For a Lie group G, the Lie bracket on the corresponding Lie
algebra g, which we defined via the usual Lie bracket of left-invariant vector
fields on the group, satisfies the following properties:
2 In many analysis questions it is convenient to work with the larger space of dif-

feomorphisms Diffs(M) of Sobolev class Hs. For s > n/2 + 1 these spaces are
smooth Hilbert manifolds. On the other hand, the spaces Diffs(M) are only topo-
logical (but not smooth) groups, since the composition of such diffeomorphisms
is not smooth. Indeed, while the right multiplication rφ : ψ �→ ψ ◦ φ is smooth,
the left multiplication lψ : φ �→ ψ ◦ φ is only continuous, but not even Lipschitz
continuous; see [95].
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(i) it is antisymmetric in X and Y , i.e., [X,Y ] = −[Y,X], and
(ii) it satisfies the Jacobi identity:

[[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z],X] = 0 .

The Jacobi identity can be thought of as an infinitesimal analogue of the
associativity of the group multiplication.

1.3 The Exponential Map

Definition 1.16 The exponential map from a Lie algebra to the correspond-
ing Lie group exp : g → G is defined as follows: Let us fix some X ∈ g and let
˜X denote the corresponding left-invariant vector field. The flow of the field
˜X is a map φX : G× R → G such that d

dtφX(g, t) = ˜X(φX(g, t)) for all t and
φX(g, 0) = g. The flow φX is the solution of an ordinary differential equation,
which, if it exists, is unique. In the case that the flow subgroup φX(e, .) exists
for all X ∈ g, we define the exponential map exp : g → G via the time-one
map X �→ φX(e, 1); see Figure 1.1.

G

g

ΦX(e, 1)

e

X

Fig. 1.1. The exponential map on the group G associates to a vector X the time-one
map for the trajectory of a left-invariant vector field defined by X at e ∈ G.

Example 1.17 For each of the finite-dimensional Lie groups considered in
Example 1.8, the exponential map is given by the usual exponential map for
matrices:

exp : A �→ exp(A) =
∞
∑

n=0

1
n!
An .

Remark 1.18 The definition of the exponential map relies on the existence
and uniqueness of solutions of certain first-order differential equations. In
general, solutions of differential equations in Fréchet spaces might not be
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unique.3 However, the differential equation in the definition of the exponential
map is of special type, which secures the solution’s uniqueness upon fixing its
initial condition. Namely, let φ : R → G be a smooth path in the Lie group
G. Its derivative φ′(t) := d

dtφ(t) is a tangent vector to the group G at the
point φ(t). Translate this vector back to the identity via left multiplication
by φ−1(t). The corresponding element of the Lie algebra g is denoted by
φ−1(t)φ′(t) and is called the left logarithmic derivative of the path φ.

Now consider a Lie algebra element X ∈ g. By definition of the exponential
map, the curve φ(t) = exp(tX) satisfies the differential equation φ′(t) = φ(t)X
with the initial condition φ(0) = e. So for all solutions of this differential equa-
tion, the left logarithmic derivative is given by the constant curve X ∈ g. Now
the uniqueness of the exponential map is implied by the following Exercise.

Exercise 1.19 Show that two smooth paths φ, ψ : R → G have the same left
logarithmic derivative for all t ∈ R if and only if they are translations of each
other by some constant element g ∈ G: φ(t) = g ψ(t) for all t ∈ R. (Hint: see,
e.g., [265].)

Remark 1.20 As far as the existence is concerned, the exponential map ex-
ists for all finite-dimensional Lie groups and more generally for Lie groups
modeled on Banach spaces, as follows from the general theory of differential
equations. However, there may exist infinite-dimensional Lie groups that do
not admit an exponential map. Moreover, even in the cases in which the ex-
ponential map of an infinite-dimensional group exists, it can exhibit rather
peculiar properties; see the examples below.

Example 1.21 For the diffeomorphism group Diff(M) the exponential map
exp : Vect(M) → Diff(M) has to assign to each vector field on M the time-one
map for its flow. However, for a noncompact M this map may not exist: the
corresponding vector field may not be complete. Indeed, for example, for the
vector field ξ = x2∂/∂x on the real line M = R, the time-one map of the flow
is not defined on the whole of R: the corresponding flow sends some points to
infinity for the time less than 1! Fortunately, for compact manifolds M and
smooth vector fields, the time-one maps of the corresponding flows, and hence
the exponential maps, are well defined.

Note that the group of diffeomorphisms of a noncompact manifold is not
complete, and hence it is not a Lie group in our sense. It is an important open
problem to find a Lie group that is modeled on a complete space and does
not admit an exponential map.
3 For instance, the initial value problem u(x, 0) = f(x) for the equation ut(x, t) =

ux(x, t) with x ∈ [0, 1] has wave-type solutions u(x, t) = f(x + t). For nonzero
t such a solution u(x, t) for x ∈ [0, 1] depends on the extension of f(x) to the
segment [−t, 1− t]. Due to arbitrariness in the choice of a smooth extension of f
from [0, 1] to R, the solution to this initial value problem is not unique.
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Let us return to the current group GM , where the exponential map exists
and can be used to give this group the structure of a Fréchet Lie group.
Namely, the space gM = C∞(M, g) endowed with the topology of uniform
convergence is a Fréchet space. Moreover, the map exp : g → G can be used to
define a map ẽxp : gM → GM pointwise. In a sufficiently small neighborhood
of 0 ∈ gM , the map ẽxp is bijective. Thus it can be used to define a local system
of open neighborhoods of the identity in GM . We can use left translation to
transfer this system to any point in GM and thus define a topology on the
group GM . Again using the exponential map, we can define coordinate charts
on GM . This definition implies that multiplication and inversion in GM are
smooth maps. So GM is an infinite-dimensional Lie groups (see, e.g., [157] for
more details).

From the construction of the Lie group structure on GM , it is clear that its
Lie algebra is the current algebra gM , and that the exponential map gM → GM

is the map ẽxp described above. Note, however, that ẽxp is not, in general,
surjective, even if exp : g → G is surjective. As an example, take the manifold
M to be the circle S1 and G to be the group SU(2).

Exercise 1.22 Show that the map

θ �→
(

eiθ 0
0 e−iθ

)

for θ ∈ S1 = R/2πZ defines an element in GS1
that does not belong to the

image of the exponential map ẽxp : gS1 → GS1
.

In contrast to the exponential map in the case of the current group GM ,
the exponential map exp : Vect(M) → Diff(M) for the diffeomorphism group
of a compact M is not, in general, even locally surjective already for the case
of a circle.

Proposition 1.23 (see, e.g., [265, 301, 322]) The exponential map exp :
Vect(S1) → Diff(S1) is not locally surjective.

Proof. First observe that any nowhere-vanishing vector field on S1 is conju-
gate under Diff(S1) to a constant vector field. Indeed, if ξ(θ) = v(θ) ∂

∂θ is such a
vector field, we can define a diffeomorphism ψ : S1 → S1 via ψ(θ) = a

∫ θ

0
dt

v(t) .
Here, a ∈ R is chosen such that ψ(2π) = 2π. Then ψ∗(ξ ◦ ψ−1) is a constant
vector field on S1.

From this observation, one can conclude that any diffeomorphism of S1

that lies in the image of the exponential map and that does not have any
fixed points is conjugate to a rigid rotation of S1. Hence in order to see that
the exponential map is not locally surjective, it is enough to construct diffeo-
morphisms arbitrarily close to the identity that do not have any fixed points
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and that are not conjugate to a rigid rotation. For this, one can take dif-
feomorphisms without fixed points, but which have isolated periodic points,
i.e., fixed points for a certain nth iteration of this diffeomorphism. Indeed, if
such a diffeomorphism ψ belonged to the image of the exponential map, so
would its nth power ψn. Then the corresponding vector field defining the ψn

as the time-one map would either have zeros or be nonvanishing everywhere.
In the former case, the n-periodic points of ψ must actually be its fixed points,
while in the latter case, the diffeomorphism ψn, as well as ψ, would be conju-
gate to a rigid rotation and hence all points of ψ would be n-periodic. Both
cases give us a contradiction.

Explicitly, a family of such diffeomorphisms can be constructed as follows:
Let us identify S1 with R/2πZ. Then consider the map ψn,ε : x �→ x +
2π
n + ε sin(nx). For ε small enough, this is indeed a diffeomorphism of S1.
Furthermore, by choosing n large and ε small, the diffeomorphisms ψn,ε can
be made arbitrarily close to the identity while having no fixed points. Finally,
for ε �= 0, ψn,ε cannot be conjugate to a rigid rotation. If it were conjugate
to a rotation, it would have to be the rotation ψn,0, since ψn

n,ε(0) = 0. But in
this case, we would have ψn

n,ε = id, which is not true for ε �= 0. �

1.4 Abstract Lie Algebras

As we have seen in the last section, the Lie bracket of two left-invariant vector
fields ˜X and ˜Y on a Lie group G defines a bilinear map [ . , . ] : g × g → g of
the Lie algebra of G that is antisymmetric in X and Y and satisfies the Jacobi
identity (1.2). These properties can be taken as the definition of an abstract
Lie algebra:

Definition 1.24 An (abstract) Lie algebra is a real or complex vector space
g together with a bilinear map [ . , . ] : g × g → g (the Lie bracket) that is
antisymmetric in X and Y and that satisfies the Jacobi identity

[[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z],X] = 0 . (1.2)

All the Lie algebras we have encountered so far as accompanying the cor-
responding Lie groups can also be regarded by themselves, i.e., as abstract Lie
algebras. A famous theorem of Sophus Lie states that every finite-dimensional
(abstract) Lie algebra g is the Lie algebra of some Lie group G. In infinite
dimensions this is no longer true in general.

Example 1.25 ([205, 207]) To illustrate the failure of Lie’s theorem in an
infinite-dimensional context, consider the Lie algebra of complex vector fields
on the circle VectC(S1) = Vect(S1) ⊗ C. Let us show that this Lie algebra
cannot be the Lie algebra of any Lie group. First note that VectC(S1) contains
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as a subalgebra the Lie algebra Vect(S1) of real vector fields on the circle,
which is the Lie algebra of the group Diff(S1).

Let G1 denote the group PSL(2,R) and let Gk denote the k-fold covering
of G1. The group G2 is isomorphic to SL(2,R), while for k > 2 it is known
that the groups Gk have no matrix realization. The group Diff(S1) contains
each Gk as a subgroup. Namely, Gk is the subgroup corresponding to the Lie
subalgebra gk spanned by the vector fields

∂

∂θ
, sin(kθ)

∂

∂θ
, cos(kθ)

∂

∂θ
.

(Note that each gk is isomorphic to sl(2,R).)
Now suppose that there exists a complexification of the group Diff(S1),

i.e., a Lie group G corresponding to the complex Lie algebra VectC(S1). Such
a group G would have to contain the complexifications of all the groups Gk.
However, for k > 2 the groups Gk do not admit complexifications: the only
complex groups corresponding to the Lie algebra sl(2,C) are SL(2,C) and
PSL(2,C).

More precisely, if the complex Lie group G existed, the real subgroups
Gk would belong to the complex subgroups of G corresponding to complex
subalgebras gC

k 
 sl(2,C). But these complex subgroups have to be isomorphic
either to SL(2,C), which contains only SL(2,R) = G2, or to PSL(2,C), which
contains only PSL(2,R) = G1. Thus the complex group G containing all Gk

cannot exist, and hence there is no Lie group for the Lie algebra VectC(S1).

Lie algebra homomorphisms are defined in the usual way: A map ρ : g → h

between two Lie algebras is a Lie algebra homomorphism if it satisfies
ρ([X,Y ]) = [ρ(X), ρ(Y )] for all X, Y ∈ g. We will also need another im-
portant class of maps between Lie algebras called derivations:

Definition 1.26 A linear map δ : g → g of a Lie algebra g to itself is called
a derivation if it satisfies

δ([X,Y ]) = [δ(X), Y ] + [X, δ(Y )]

for all X, Y ∈ g.

Exercise 1.27 Define the map adX : g → g associated to a fixed vector
X ∈ g via

adX(Y ) = [X,Y ] .

Show that this is a derivation for any choice of X. (Hint: use the Jacobi
identity.)

If a derivation of a Lie algebra g can be expressed in the form adX for some
X ∈ g, it is called an inner derivation; otherwise, it is called an outer deriva-
tion of g.
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Exercise 1.28 Let δ be a derivation of a Lie algebra g, and suppose that
exp(δ) =

∑∞
i=0

1
i!δ

i makes sense (for example, suppose, the map δ is nilpotent).
Show that the map exp(δ) is an automorphism of the Lie algebra g.

Definition 1.29 A subalgebra of a Lie algebra g is a subspace h ⊂ g invariant
under the Lie bracket in g. An ideal of a Lie algebra g is a subalgebra h ⊂ g

such that [X, h] ⊂ h for all X ∈ g.

The importance of ideals comes from the fact that if h ⊂ g is an ideal,
then the quotient space g/h is again a Lie algebra.

Exercise 1.30 (i) Show that for an ideal h ⊂ g the Lie bracket on g descends
to a Lie bracket on the quotient space g/h.

(ii) Show that if ρ : g → g̃ is a homomorphism of two Lie algebras, then
the kernel ker ρ of ρ is an ideal in g.

Definition 1.31 A Lie algebra is simple (respectively, semisimple) if it does
not contain nontrivial ideals (respectively, nontrivial abelian ideals).

Any finite-dimensional semisimple Lie algebra is a direct sum of nonabelian
simple Lie algebras.

A group analogue of an ideal is the notion of a normal subgroup. A sub-
group H ⊂ G of a group G is called normal if gHg−1 ⊂ H for all g ∈ G.
Exercise 1.30 translates directly to normal subgroups.

2 Adjoint and Coadjoint Orbits

Writing out a linear operator in a different basis or a vector field in a different
coordinate system has a far-reaching generalization as the adjoint represen-
tation for any Lie group. In this section we define the adjoint and coadjoint
representations and the corresponding orbits for an arbitrary Lie group.

2.1 The Adjoint Representation

A representation of a Lie group G on a vector space V is a linear action ϕ
of the group G on V that is smooth in the sense that the map G × V →
V , (g, v) �→ gv, is smooth. If V is a real vector space, (V, ϕ) is called a real
representation, and if V is complex, it is a complex representation. (Here V is
assumed to be a Fréchet space, and, often, a Hilbert space. In the latter case,
the representation is said to be unitary if the inner product on V is invariant
under the action of G.)
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Every Lie group has two distinguished representations: the adjoint and the
coadjoint representations. Since they will play a special role in this book, we
describe them in more detail.

Any element g ∈ G defines an automorphism cg of the group G by conju-
gation:

cg : h ∈ G �→ ghg−1.

The differential of cg at the identity e ∈ G maps the Lie algebra of G to itself
and thus defines an element Adg ∈ Aut(g), the group of all automorphisms of
the Lie algebra g.

Definition 2.1 The map Ad : G → Aut(g), g �→ Adg defines a representation
of the group G on the space g and is called the group adjoint representation;
see Figure 2.1. The orbits of the group G in its Lie algebra g are called the
adjoint orbits of G.

G

g

Adg

cg

e

Fig. 2.1. Conjugation cg on the group G generates the adjoint representation Adg

on the Lie algebra g.

The differential of Ad : G → Aut(g) at the group identity g = e defines a
map ad : g → End(g), the adjoint representation of the Lie algebra g.

One can show that the bracket [ , ] on the space g defined via

[X,Y ] := adX(Y )

coincides with the bracket (or commutator) of the corresponding two left-
invariant vector fields on the group G and hence with the Lie bracket on g

defined in Section 1.2.

Example 2.2

• Let g ∈ GL(n,R) and A ∈ gl(n,R). Then Adg A = gAg−1. Hence the ad-
joint orbits are given by sets of similar (i.e., conjugate) matrices in gl(n,R).
The adjoint representation of gl(n,R) is given by adA(B) = [A,B] =
AB −BA.
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• The adjoint orbits of SO(3,R) are spheres centered at the origin of R
3 


so(3,R) and the origin itself.
• The adjoint orbits of SL(2,R) are contained in the sets of similar matrices.

By writing A =
(

a b
c −a

)

∈ sl(2,R), one sees that the adjoint orbits lie in
the level sets of ∆ = −(a2 + bc) = const: matrices that are conjugate
to each other have the same determinant. Note, however, that not all
matrices in sl(2,R) that have the same determinant are conjugate. For
instance, the matrices with determinant ∆ = 0 constitute three different
orbits: the origin and two other orbits, cones, passing through the matrices
(

0 ±1
0 0

)

, respectively. For ∆ �= 0 the SL(2,R)-orbits are either one-sheet
hyperboloids or connected components of the two-sheet hyperboloids a2 +
bc = const, since the group SL(2,R) is connected.

• Let G be the set of orientation-preserving affine transformations of the
real line. That is, G = {(a, b) | a, b ∈ R , a > 0}, and (a, b) ∈ G acts on
x ∈ R via x �→ ax + b. The Lie algebra of G is R

2, and its adjoint orbits
are the affine lines

{(α, β) ∈ R
2 | α = const �= 0, β arbitrary} ,

the two rays

{(α, β) ∈ R
2, α = 0, β < 0} and {(α, β) ∈ R

2, α = 0, β > 0} ,

and the origin {(0, 0)}; see Figure 2.2.
• Let M be a compact manifold. The adjoint orbits of the current group

GL(n,C)M in its Lie algebra gl(n,C)M are given by fixing the (smoothly
dependent) Jordan normal form of the current at each point of the mani-
fold M .

• Let M be a compact manifold. The adjoint representation of Diff(M) on
Vect(M) is given by coordinate changes of the vector field: for a φ ∈
Diff(M) one has Adφ : v �→ φ∗v ◦ φ−1. The adjoint representation of
Vect(M) on itself is given by the negative of the usual Lie bracket of
vector fields: adv w = ∂v

∂xw(x) − ∂w
∂x v(x) in any local coordinate x.

Exercise 2.3 Verify the latter formula for the action of Diff(M) on Vect(M)
from the definition of the group adjoint action. (Hint: express the diffeomor-
phisms corresponding to the vector fields v(x) and w(x) in the form

g(t) : x �→ x+ tv(x) + o(t), h(s) : x �→ x+ sw(x) + o(s), t, s → 0,

and find the first several terms of g(t)h(s)g−1(t).)

2.2 The Coadjoint Representation

The dual object to the adjoint representation of a Lie group G on its
Lie algebra g is called the coadjoint representation of G on g∗, the dual
space to g.
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®®

¯¯

Fig. 2.2. Adjoint and coadjoint orbits of the group of affine transformations on the
line.

Definition 2.4 The coadjoint representation Ad∗ of the group G on the
space g∗ is the dual of the adjoint representation. Let 〈 , 〉 denote the pairing
between g and its dual g∗. Then the coadjoint action of the group G on the
dual space g∗ is given by the operators Ad∗

g : g∗ → g∗ for any g ∈ G that are
defined by the relation

〈Ad∗
g(ξ),X〉 := 〈ξ,Adg−1(X)〉 (2.3)

for all ξ in g∗ and X ∈ g. The orbits of the group G under this action on g∗

are called the coadjoint orbits of G.
The differential ad∗ : g → End(g∗) of the group representation Ad∗ : G →

Aut(g∗) at the group identity e ∈ G is called the coadjoint representation
of the Lie algebra g. Explicitly, at a given vector Z ∈ g it is defined by the
relation

〈ad∗
Z(ξ),X〉 = −〈ξ, adZ(X)〉.

Remark 2.5 The dual space of a Fréchet space is not necessarily again a
Fréchet space. In this case, instead of considering the full dual space to an
infinite-dimensional Lie algebra g, we will usually confine ourselves to con-
sidering only appropriate “smooth duals,” the functionals from a certain G-
invariant Fréchet subspace g∗s ⊂ g∗. Natural smooth duals will be different
according to the type of the infinite-dimensional groups considered, but they
all have a (weak) nondegenerate pairing with the corresponding Lie algebra g

in the following sense: for every nonzero element X ∈ g, there exists some ele-
ment ξ ∈ g∗s such that 〈ξ,X〉 �= 0, and the other way around. This ensures that
the coadjoint action is uniquely fixed by equation (2.3). The pair (g∗s,Ad∗ |g∗

s
)

is called the regular (or smooth) part of the coadjoint representation of G,
and, abusing notations, we will usually skip the index s.

Example 2.6

• In the first three cases of Example 2.2, there exists a G-invariant inner
product on g that induces an isomorphism between g and g∗ respecting
the group actions. Hence the adjoint and coadjoint representations of the
groups G are isomorphic, and the coadjoint orbits coincide with the adjoint
ones.
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• The group of affine transformations of the real line in Example 2.2 has two
2-dimensional coadjoint orbits, the upper and lower half-planes in R

2, and
a set of zero-dimensional orbits, namely, the points (α, 0) for each α ∈ R

(see Figure 2.2).
• For a compact manifold M with some fixed volume form dVol, we can

define a nondegenerate GM -invariant product on the current Lie algebra
gl(n,R)M by setting

〈X,Y 〉 =
∫

M

tr(X(x) · Y (x)) dVol(x)

for X,Y ∈ gl(n,R)M . This inner product can be used to identify the cur-
rent algebra gM with a subspace in its dual g∗s ⊂ g∗. The space g∗s is called
the smooth (or regular) part of g∗. Thanks to the nondegenerate pair-
ing, the smooth part of the coadjoint representation of GM is isomorphic
to the adjoint representation.

Note that each of the finite-dimensional coadjoint orbits above is even-
dimensional. This is a consequence of the general fact that coadjoint orbits
are symplectic manifolds, which we discuss later.

Remark 2.7 In what follows we pay particular attention to the structure
and description of coadjoint orbits of infinite-dimensional Lie groups. We are
interested in coadjoint orbits mostly because they appear as natural phase
spaces of dynamical systems. Another reason to study coadjoint orbits comes
from the orbit method. This is a general principle due to A. Kirillov, which
asserts that the information on the set of unitary representations of a Lie
group G is contained in the group coadjoint orbits. This method has become
a powerful tool in the study of Lie groups and it has been worked out in detail
for large classes of finite-dimensional Lie groups such as nilpotent and compact
Lie groups (see [206]). In infinite dimensions, the correspondence between
coadjoint orbits and unitary representations has been fully understood only
for certain types of groups, e.g., for affine Lie groups (cf. [132, 322, 385]),
although there are some indications that it works for other classes as well.

3 Central Extensions

In this section we collect several basic facts about central extensions of Lie
groups and Lie algebras. One can think of a central extension of a Lie group
G as a new bigger Lie group ˜G fibered over the initial group G in such a way
that the fiber over the identity e ∈ G lies in the center of ˜G.

Central extensions of Lie groups appear naturally in representation theory
and quantum mechanics when one lifts a group projective representation to
an ordinary one: one often needs to pass to a central extension of the group
to be able to do this. For us the main advantage of these extensions is that for
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many infinite-dimensional groups their central extensions have simpler and
“more regular” structure of the coadjoint orbits, as well as more interesting
dynamical systems related to them.

3.1 Lie Algebra Central Extensions

Definition 3.1 A central extension of a Lie algebra g by a vector space n is
a Lie algebra g̃ whose underlying vector space g̃ = g⊕ n is equipped with the
following Lie bracket:

[(X,u), (Y, v)]∼ = ([X,Y ], ω(X,Y ))

for some continuous bilinear map ω : g×g → n. (Note that ω depends only on
X and Y , but not on u and v, which means that the extension is central: the
space n belongs to the center of the new Lie algebra, i.e., it commutes with
all of g̃: [(0, u), (Y, v)] = 0 for all Y ∈ g and u, v ∈ n.) The skew symmetry
and the Jacobi identity for the new Lie bracket on g̃ are equivalent to the
following conditions on the map ω. Such a map ω : g × g → n has to be a
2-cocycle on the Lie algebra g, i.e., ω has to be bilinear and antisymmetric,
and it has to satisfy the cocycle identity

ω([X,Y ], Z) + ω([Z,X], Y ) + ω([Y,Z],X) = 0

for any triple of elements X,Y,Z ∈ g. (Here and below we always require Lie
algebra cocycles to be continuous maps.)

A 2-cocycle ω on g with values in n is called a 2-coboundary if there exists
a linear map α : g → n such that ω(X,Y ) = α([X,Y ]) for all X,Y ∈ g. One
can easily see that the central extension defined by such a 2-coboundary be-
comes the trivial extension by the zero cocycle after the change of coordinates
(X,u) �→ (X,u− α(X)).

Hence in describing different central extensions we are interested only in
the 2-cocycles modulo 2-coboundaries, i.e., in the second cohomology H2(g; n)
of the Lie algebra g with values in n: H2(g; n) = Z(g; n)/B(g; n), where Z(g; n)
is the vector space of all 2-cocycles on g with values in n, and B(g; n) is the
subspace of 2-coboundaries.

Remark 3.2 A central extension of a Lie algebra g by an abelian Lie algebra
n can be defined by the exact sequence

{0} −→ n−→g̃−→g −→ {0}

of Lie algebras such that n lies in the center of g̃. A morphism of two central
extensions is a pair (ν, µ) of Lie algebra homomorphisms ν : n → n′ and
µ : g̃ → g̃′ such that the following diagram is commutative:

0 −→ n −→ g̃
π−→ g −→ 0

⏐

⏐

�

ν

⏐

⏐

�

µ

⏐

⏐

�
id

0 −→ n′ −→ g̃′
π′
−→ g −→ 0.

(3.4)
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Two extensions are said to be equivalent if the map µ is an isomorphism and
ν = id.

Exercise 3.3 Prove the following equivalence:

Proposition 3.4 There is a one-to-one correspondence between the equiva-
lence classes of central extensions of g by n and the elements of H2(g; n).

Example 3.5 Consider the abelian Lie algebra g = R
2, and let ω ∈ Λ2(R2)

be an arbitrary skew-symmetric bilinear form on R
2. Then ω defines a 2-

cocycle on R
2 with values in R (in this case, the cocycle condition is triv-

ial, since g is abelian). The resulting central extension is g̃ = R
2 ⊕ R with

Lie bracket [(v1, h1), (v2, h2)] = (0, ω(v1, v2)). Moreover, since g is abelian,
B(g; R) = {0} whence H2(g; R) = Λ2(R2) ∼= R. Note that all ω �= 0 ∈ Λ2(R2)
lead to isomorphic Lie algebras. The algebra g̃ with a nonzero ω, i.e., a repre-
sentative of this isomorphism class, is called the three-dimensional Heisenberg
algebra.

By taking a nondegenerate skew-symmetric form ω in R
2n, we can define

in the same way the (2n+ 1)-dimensional Heisenberg algebra.
An infinite-dimensional analogue of the Heisenberg algebra is as follows.

Consider the space g = {f ∈ C∞(S1) |
∫

S1 f dθ = 0} of smooth functions on
the circle with zero mean and regard it as an abelian Lie algebra. Define the
2-cocycle by ω(f, g) =

∫

S1 f ′g dθ. (One can view this algebra and the corre-
sponding cocycle as the “limit” n → ∞ of the example above by considering
the functions in Fourier components.)

Exercise 3.6 Check the skew-symmetry and the cocycle identity for ω(f, g).

Definition 3.7 A central extension g̃ of g is called universal if for any other
central extension g̃′, there is a unique morphism g̃ → g̃′ of the central exten-
sions. If it exists, the universal central extension of a Lie algebra g is unique
up to isomorphism.

Remark 3.8 A sufficient condition for a Lie algebra g to have a universal
central extension is that g be perfect, i.e., that it coincide with its own de-
rived algebra: g = [g, g] (see, e.g., [276]). Any finite-dimensional semisimple
Lie algebra is perfect. The universal central extension of a semisimple Lie al-
gebra g coincides with g itself: such algebras do not admit nontrivial central
extensions.

No abelian Lie algebra is perfect. Nevertheless, abelian Lie algebras can
still have universal central extensions: for instance, the three-dimensional
Heisenberg algebra is the universal central extension of the abelian
algebra R

2.
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Example 3.9 Let M be a finite-dimensional manifold. One can show that
the Lie algebra Vect(M) of vector fields on M is perfect. The universal central
extension of Vect(M) for the case M = S1 is called the Virasoro algebra, and
we describe it in detail in Section 2 of Chapter II.

Example 3.10 For a simple Lie algebra g and any n-dimensional compact
manifold M , the current Lie algebra gM is perfect. (More generally, for any
perfect finite-dimensional Lie algebra g the Lie algebra gM is perfect.) Its
universal central extension g̃M can be constructed as follows. Let 〈 , 〉 be a
nondegenerate symmetric invariant bilinear form on g, where the invariance
means that 〈[A,B], C〉 = 〈A, [B,C]〉 for all A, B, C ∈ g. Denote by Ω1(M)
the set of 1-forms on M and let dΩ0(M) be the subset of exact 1-forms. Now
we define the 2-cocycle ω on gM with values in Ω1(M)/dΩ0(M) via

ω(X,Y ) := 〈X, dY 〉 ,

where X, Y ∈ gM . The antisymmetry of ω is immediate, while the cocycle
identity follows from the Jacobi identity in gM and the invariance of the
bilinear form. So ω defines a central extension of gM . For a proof of universality
of this central extension see, e.g., [322, 247].

In the case of M = S1 the corresponding space Ω1(S1)/dΩ0(S1) is one-
dimensional. The current algebra on S1 is called the loop algebra associated to
g, and it has the universal central extension by the R- (or C)-valued 2-cocycle

ω(X,Y ) :=
∫

S1
〈X, dY 〉 .

We discuss loop algebras and their generalizations in detail in Sections 1 and
5 of Chapter II.

3.2 Central Extensions of Lie Groups

Central extensions of Lie groups can be defined similarly to those of Lie al-
gebras. However, unlike the case of Lie algebras, not all group extensions can
be described explicitly by cocycles. This is why we start with the alternative
definition of the extensions via exact sequences.

Definition 3.11 A central extension ˜G of a Lie group G by an abelian Lie
group H is an exact sequence of Lie groups

{e} → H → ˜G → G → {e}

such that the image of H lies in the center of ˜G. (Here {e} is the trivial
group containing only the identity element.) Morphisms and equivalence of
two central extensions are defined analogously to the case of Lie algebras.
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If the central extension ˜G is topologically a direct product of G and H,
˜G = G × H (or, equivalently, if there is a smooth section in the principal
H-bundle ˜G → G),4 one can define the multiplication in ˜G as follows:

(g1, h1) · (g2, h2) = (g1g2, γ(g1, g2)h1h2)

for a smooth map γ : G×G → H, which is similar to the case of Lie algebra
central extensions. The associativity of this multiplication corresponds to the
so-called group cocycle identity on the map γ.

Definition 3.12 Let G and H be Lie groups and suppose H is abelian. A
smooth map γ : G×G → H that satisfies

γ(g1g2, g3)γ(g1, g2) = γ(g1, g2g3)γ(g2, g3)

is called a smooth group 2-cocycle on G with values in H.
A smooth 2-cocycle on G with values in H is called a 2-coboundary if there

exists a smooth map λ : G → H such that γ(g1, g2) = λ(g1)λ(g2)λ(g1g2)−1. As
before, the group 2-coboundaries correspond to the trivial group extensions,
after a possible change of coordinates (more precisely, of the trivializing section
for ˜G → G). Similarly, two group 2-cocycles define isomorphic extensions if
they differ by a 2-coboundary. This explains the following fact.

Proposition 3.13 There is a one-to-one correspondence between the set of
central extensions of G by H that admit a smooth section and the ele-
ments in the second cohomology group H2(G,H) := Z(G,H)/B(G,H). Here
Z(G,H) and B(G,H) denote respectively the sets of smooth 2-cocycles and
2-coboundaries on G, with the natural abelian group structure.

However, in contrast to the case of Lie algebras, there exist central exten-
sions of Lie groups that do not admit a smooth section, and hence cannot be
defined by smooth 2-cocycles. We will encounter examples for such groups in
Chapter II.

A central extension of a Lie group G always defines a central extension of
the corresponding Lie algebra. The converse need not be true: the existence
of a Lie group for a given Lie algebra is not guaranteed in infinite dimensions.
Instead, one says that a central extension g̃ of a Lie algebra g lifts to the
group level if there exists a central extension ˜G of the group G whose Lie
algebra is given by g̃. If the group central extension ˜G by H is defined by
a group 2-cocycle γ, one can recover the Lie algebra 2-cocycle defining the
corresponding central extension g̃ of the Lie algebra g directly from the group
cocycle γ by appropriate differentiation.
4 We always require central extensions of Lie groups to have smooth local sections,

in order to secure the existence of a continuous linear section for the corresponding
Lie algebra extensions.
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Proposition 3.14 Let H be an abelian Lie group with a Lie algebra h, and
let γ be an H-valued 2-cocycle on G defining a central extension ˜G. Then the
h-valued 2-cocycle ω defining the corresponding central extension g̃ of the Lie
algebra g is given by

ω(X,Y ) =
d2

dt ds

∣

∣

∣

t=0,s=0
γ(gt, hs) −

d2

dt ds

∣

∣

∣

t=0,s=0
γ(hs, gt) ,

where gt is a smooth curve in G such that d
dt |t=0gt = X, and hs is a smooth

curve in G such that d
ds |s=0hs = Y .

Exercise 3.15 Prove the above proposition.

Example 3.16 Let G be R
2 = {(a, b)} with the natural abelian group struc-

ture. The three-dimensional Heisenberg group ˜G can be defined as the follow-
ing matrix group:

˜G =

⎧

⎨

⎩

⎛

⎝

1 a c
0 1 b
0 0 1

⎞

⎠ | a, b, c ∈ R

⎫

⎬

⎭

,

and it is a central extension of the group G. One verifies directly that the
central extension is defined via the R-valued group 2-cocycle γ given by
γ((a, b), (a′, b′)) = ab′. Using Proposition 3.14, we see that the infinitesimal
form of the cocycle γ is given by

ω((A,B), (A′, B′)) = AB′ −A′B,

so that the Lie algebra of ˜G is the three-dimensional Heisenberg algebra dis-
cussed in Example 3.5.

4 The Euler Equations for Lie Groups

The Euler equations form a class of dynamical systems closely related to Lie
groups and to the geometry of their coadjoint orbits. To describe them we
start with generalities on Poisson structures and Hamiltonian systems, before
bridging them to Lie groups. Although the manifolds considered in this section
are finite-dimensional, we will see later in the book that most of the notions
and formulas discussed here are applicable in the infinite-dimensional context
(where the dual g∗ of a Lie algebra g stands for its smooth dual).

4.1 Poisson Structures on Manifolds

Definition 4.1 A Poisson structure on a manifold M is a bilinear operation
on functions

{ , } : C∞(M) × C∞(M) → C∞(M)
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satisfying the following properties:
(i) antisymmetry:

{f, g} = −{g, f},
(ii) the Jacobi identity:

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0, and

(iii) the Leibniz identity:

{f, gh} = {f, g}h+ {f, h}g

for any functions f, g, h ∈ C∞(M).

The first two properties mean that a Poisson structure defines a Lie algebra
structure { , } on the space C∞(M) of smooth functions on M , while the
third property implies that {f, ·} : C∞(M) → C∞(M) is a derivation for
any function f ∈ C∞(M). Since each derivation on the space of functions is
the Lie derivative along an appropriate vector field, the Poisson structure can
be thought of as a map from functions to the corresponding vector fields on
the manifold:

Definition 4.2 Let H : M → R be any smooth function on a Poisson mani-
fold M . Such a function H defines a vector field ξH on M by LξH

g = {H, g}
for any test function g ∈ C∞(M). The vector field ξH is called the Hamil-
tonian field corresponding to the Hamiltonian function H with respect to the
Poisson bracket { , }.

We call a function F : M → R a Casimir function on a Poisson manifold
M if it generates the zero Hamiltonian field, i.e., if the Poisson bracket of the
function F with any other function vanishes everywhere on M .

Remark 4.3 Let M be a manifold with a Poisson structure { , }, and we
fix some point m ∈ M . All Hamiltonian vector fields on M evaluated at
the point m ∈ M span a subspace of the tangent space TmM . Thus, the
Poisson structure defines a distribution of such subspaces on the manifold M
(i.e., a subbundle of the tangent bundle TM) by varying the point m.5 Note
that the dimension of this distribution can differ from one point to another.
This distribution is integrable, according to the Frobenius theorem, since the
commutator of two Hamiltonian vector fields is again Hamiltonian. Therefore,
it gives rise to a (possibly singular) foliation of the Poisson manifold M [384].

5 Alternatively, a Poisson structure can be defined by specifying a bivector field Π
on the manifold M , i.e., a section of TM∧2:

{f, g} = Π(df, dg).

Such a bivector field defines a distribution on M as the images of the map Π :
T ∗M → TM .



28 I. Preliminaries

The leaves of this foliation are called symplectic leaves. (In short, two points
belong to the same symplectic leaf if they can be joined by a path whose
velocity at any point is a Hamiltonian vector.)

Definition 4.4 A pair (N,ω) consisting of a manifold N and a 2-form ω on
N is called a symplectic manifold if ω is closed (dω = 0) and nondegenerate.
(In the case of infinite dimensions, the form ω is required to be nondegenerate
in the sense that for each point p ∈ N and any nonzero vector X ∈ TpN ,
there exists another vector Y ∈ TpM such that ωp(X,Y ) �= 0.) The 2-form ω
is called the symplectic form on the manifold N .

The reason for the name “symplectic leaves” in Remark 4.3 is that one
can define a symplectic 2-form ω on each leaf. It suffices to fix its values on
Hamiltonian vector fields ξf and ξg at any point:

ω(ξf , ξg) := {f, g} ,

since the tangent space of each leaf is generated by Hamiltonian fields.

Exercise 4.5 Show that the 2-form ω defined on the leaf through a point
m ∈ M is closed and nondegenerate.

Note that Casimir functions, by definition, are constant on the leaves of the
above foliation, and the codimension of generic symplectic leaves on a Pois-
son manifold M is equal to the number of (locally functionally) independent
Casimir functions on M .

Example 4.6 For the Poisson structure

{f, g} :=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

in R
3 = {(x, y, z)}, its symplectic leaves are the planes z = const. The coor-

dinate function z, or any function F = F (z), is a Casimir function for this
Poisson manifold.

Remark 4.7 Locally, a Poisson manifold near any point p splits into the
product of a symplectic space and a Poisson manifold whose rank at p is zero
[384]. The symplectic space is a neighborhood of the symplectic leaf passing
through p, while the Poisson manifold of zero rank represents the transverse
Poisson structure at the point p.

Below we will see that this splitting works in many (but not all!) infinite-
dimensional examples: Poisson structures can have infinite-dimensional sym-
plectic leaves and finite-dimensional Poisson transversals.
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4.2 Hamiltonian Equations on the Dual of a Lie Algebra

Let G be a Lie group (finite- or infinite-dimensional) with Lie algebra g, and
let g∗ denote (the smooth part of) its dual.

Definition 4.8 The natural Lie–Poisson (or Kirillov–Kostant Poisson)
structure { , }LP on the dual Lie algebra g∗,

{ , }LP : C∞(g∗) × C∞(g∗) → C∞(g∗) ,

is defined via
{f, g}LP(m) := 〈[dfm, dgm], m〉

for any m ∈ g∗ and any two smooth functions f, g on g∗; see Figure 4.1.
(Here dfm is the differential of the smooth function f taken at the point m,
understood as an element of the space g itself, and 〈 , 〉 is the natural pairing
between the dual spaces g and g∗.)

g∗

T ∗
m(g∗) ∼= g

dgm

0 m

dfm

Fig. 4.1. Defining the Lie–Poisson structure: dfm, dgm ∈ g, while m ∈ g
∗.

Proposition 4.9 The Hamiltonian equation corresponding to a function H
and the natural Lie–Poisson structure { , }LP on g∗ is given by

d

dt
m(t) = − ad∗

dHm(t)
m(t).

This equation is called the Euler–Poisson equation on g∗.

Proof. Let f ∈ C∞(g∗) be an arbitrary function. Then

LξH
f(m) ={H, f}(m) = 〈[dHm, dfm],m〉

=〈addHm
(dfm),m〉 = −〈dfm, ad∗

dHm
(m)〉.
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Since the Lie derivative of a function f along a vector field is the evaluation
of the function’s differential df on this vector field, this implies that ξH(m) =
− ad∗

dHm
(m), which is the assertion. �

Corollary 4.10 The symplectic leaves of { , }LP on g∗ are the coadjoint
orbits of G. In particular, all (finite-dimensional) coadjoint orbits have even
dimension.

Proof. Denote by Om the coadjoint orbit through a point m ∈ g∗ in the
dual space. Let H ∈ C∞(g∗) be a function on the dual. For any vector v ∈ g

of the Lie algebra, one can represent it as v = dHm by taking an appropriate
function H. Therefore, one can obtain as Hamiltonian vectors ad∗

dHm
(m) at

the point m all vectors in the image of ad∗
g(m), i.e., all vectors in the tangent

space to the orbit TmOm := Tm(Ad∗
G(m)). By definition, all Hamiltonian

vectors span the tangent space to any symplectic leaf at each point m, which
proves that coadjoint orbits are exactly the symplectic leaves of the Lie–
Poisson bracket. �

Corollary 4.11 Let A : g → g∗ be an invertible self-adjoint operator.6

For the quadratic Hamiltonian function H : g∗ → R defined by H(m) :=
1
2 〈m,A−1m〉 the corresponding Hamiltonian equation is

d

dt
m(t) = − ad∗

A−1m(t) m(t) . (4.5)

Indeed, dHm(m) = A−1m for any m ∈ g∗.

Definition 4.12 An invertible self-adjoint operator A : g → g∗ defining the
quadratic Hamiltonian H is called an inertia operator on g.

4.3 A Riemannian Approach to the Euler Equations

It turns out that the Euler–Poisson equations with quadratic Hamiltonians
have a beautiful Riemannian reformulation.

V. Arnold suggested in [12] the following general setup for the Euler equa-
tion describing a geodesic flow on an arbitrary Lie group. Consider a (possibly
infinite-dimensional) Lie group G, which can be thought of as the configura-
tion space of some physical system. (Examples from [12, 18]: SO(3) for a rigid

6 Note that one can define the “self-adjointness property” for an operator from a
space to its dual, similarly to a self-adjoint operator acting on a given space with
respect to a fixed pairing.
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body or the group SDiff(M) of volume-preserving diffeomorphisms for an ideal
fluid filling a domain M .) The tangent space at the identity of the Lie group
G is the corresponding Lie algebra g. Fix some (positive definite) quadratic
form, the energy, on g. We consider left (or right) translations of this quadratic
form to the tangent space at any point of the group (the “translational sym-
metry” of the energy). In this way, the energy defines a left- (respectively,
right-) invariant Riemannian metric on the group G. The geodesic flow on
G with respect to this energy metric represents extremals of the least-action
principle, i.e., possible motions of our physical system.7 To describe a geodesic
on the Lie group G with an initial velocity v(0), we transport its velocity vec-
tor at any moment t to the identity of the group using the left (respectively,
right) translation. This way we obtain the evolution law for v(t) on the Lie
algebra g.

To fix the notation, let ( , ) be some left-invariant metric on the group G.
The geodesic flow with respect to this metric is a dynamical system on the
tangent bundle TG of the group G. We can pull back this system to the Lie
algebra g of the group G by left translation. That is, if g(t) is a geodesic in
the group G with tangent vector g′(t), then the pullback v(t) = l∗g(t)−1g′(t)
is an element of the Lie algebra g. (In the case of a right-invariant metric,
we set v(t) = r∗g(t)−1g′(t).) Hence, the geodesic equations for g(t) give us a
dynamical system

d

dt
v(t) = B(v(t)) (4.6)

on the Lie algebra g of the group G, where B : g → g is a (nonlinear) operator.

Definition 4.13 The dynamical system (4.6) on the Lie algebra g describing
the evolution of the velocity vector of a geodesic in a left-invariant metric
on the Lie group G is called the Euler (or Euler–Arnold) equation correspon-
ding to this metric on G.

It turns out that the Euler equation for a Lie group G can be viewed as
a Hamiltonian equation on the dual of the Lie algebra g in the following way.
Observe that the metric ( , )e at the identity e ∈ G defines a nondegenerate
bilinear form on the Lie algebra g, and therefore, it also determines an inertia
operator A : g → g∗ such that (v, w)e = 〈A(v), w〉 for all v, w ∈ g. This
identification A : g → g∗ allows one to rewrite the Euler equation on the dual
space g∗; see Figure 4.2. Now, setting m = A(v), one can relate the geodesic
equation (4.6) on the Lie algebra g to the Hamiltonian equation on the dual
g∗ with respect to the Hamiltonian function H(m) = 1

2 〈m,A−1m〉:

7 Usually, the finite-dimensional examples below are related to the left invariance,
while the infinite-dimensional ones with the right invariance of the metric. In
particular, for a rigid body one has to consider left translations on SO(3), while
for fluids, one must consider the right ones on SDiff(M).
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G

e
g(t)

g

g
∗

v

A

m

Fig. 4.2. The vector v in the Lie algebra g traces the evolution of the velocity vector
of a geodesic g(t) on the group. The inertia operator A sends v to a vector m in the
dual space g

∗.

Theorem 4.14 (Arnold [12, 13, 18]) For the left-invariant metric on a
group generated by an inertia operator A : g → g∗, the Euler (or the geo-
desic) equation (4.6) assumes the form

d

dt
m(t) = − ad∗

A−1m(t) m(t)

on the dual space g∗.8

We postpone the proof of this theorem until the end of this section.

Remark 4.15 The underlying reason for the Riemannian reformulation is
the fact that any geodesic problem in Riemannian geometry can be described
in terms of symplectic geometry. Geodesics on M are extremals of a quadratic
Lagrangian on TM (coming from the metric on M). They can also be de-
scribed by the Hamiltonian flow on T ∗M for the quadratic Hamiltonian func-
tion obtained from the Lagrangian via the Legendre transform.

If the manifold is a group G with a left-invariant metric, then there exists
the group action on the tangent bundle TG, as well as on the cotangent bundle
T ∗G. The left translations on the group trivialize the cotangent bundle T ∗G ∼=
G× g∗ and identify any cotangent space of G with g∗. By taking the quotient
with respect to the group action, from the (symplectic) cotangent bundle
T ∗G we obtain the dual Lie algebra g∗ = T ∗G|e equipped with the negative

8 Note that these signs are different from the conventions in the book [24], since we
have used a different definition of Ad∗ here (see equation (2.3)) in order to have
the group coadjoint representation, rather than the antirepresentation.
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of the Lie–Poisson structure (cf. Section 5 below, on symplectic reduction).
The Hamiltonian function on T ∗G is dual to the Riemannian metric (viewed
as a form on TG), and its restriction to g∗ is the quadratic form H(m) =
1
2 〈m,A−1m〉, where m ∈ g∗.

The geodesics of a left-invariant metric on G correspond to the Hamil-
tonian function H(m) with respect to the standard Lie–Poisson structure.

Remark 4.16 Instead of using a left-invariant metric on G, we could have
used a right-invariant one. This changes the signs in the Euler equation, so
that one obtains

d

dt
m = ad∗A−1m(m) .

Now the geodesics in a right-invariant metric correspond to the Hamiltonian
−H(m).

Example 4.17 Let us consider the group SO(3). The Lie algebra so(3) of
SO(3) can be identified with R

3 such that the Lie bracket on g is the cross
product on R

3: [u, v] = v × u. Let A be a symmetric nondegenerate 3 × 3
matrix, which we view as an inertia operator for a left-invariant metric on
SO(3). Then by Arnold’s theorem, the Euler equation on so(3)∗ is given by

d

dt
m = m×A−1m.

For A = diag(I1, I2, I3) one obtains the classical Euler equations for a rigid
body in R

3:
d

dt
mi = (I−1

k − I−1
j )mjmk

for (i, j, k) being a cyclic permutation of (1, 2, 3). Similarly, for G = SO(n), one
obtains the Euler equation for a higher-dimensional rigid body (see Remark
4.28 below).

Example 4.18 Many other conservative dynamical systems in mathematical
physics also describe geodesic flows on appropriate Lie groups. In Table 4.1 we
list several examples of such systems to emphasize the range of applications
of this approach. The choice of a group G (column 1) and an energy metric
E (column 2) defines the corresponding Euler equations (column 3).

We discuss many of these examples later in the book. There are plenty
of other interesting systems that fit into this framework, such as, e.g., the
super-KdV equation or gas dynamics. This list is by no means complete, and
we refer to [24, 252] for more details.
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Group Metric Equation

SO(3) 〈ω, Aω〉 Euler top
SO(3) � R

3 quadratic forms Kirchhoff equation for a body in a fluid
SO(n) Manakov′s metrics n-dimensional top

Diff(S1) L2 Hopf (or, inviscid Burgers) equation
Virasoro L2 KdV equation
Virasoro H1 Camassa–Holm equation

Virasoro Ḣ1 Hunter–Saxton (or Dym) equation
SDiff(M) L2 Euler ideal fluid
SDiff(M) H1 averaged Euler flow

SDiff(M) � SVect(M) L2 + L2 Magnetohydrodynamics
Maps(S1, SO(3)) H−1 Heisenberg magnetic chain

Table 4.1: Euler equations related to various Lie groups.

Now we return to the proof of Arnold’s theorem.

Proof of Theorem 4.14. Consider the energy function (or Lagrangian)
L : TG → R defined by the left-invariant metric ( , ) on the group G:

L(g, v) =
1
2
(v, v)g ,

where ( , )g is the metric at the point g ∈ G. Then by definition, a geodesic
path g(t) on G satisfies the variational principle

δ

∫

L(g(t), g′(t))dt = 0 (4.7)

with fixed endpoints. (Here and later, δ denotes the variational derivative,
and the prime ′ stands for the time derivative d/dt.)

To simplify the notation, we write g−1(t)g′(t) for l∗g−1(t)g
′(t). (If G is a

matrix group, this notation agrees with the usual meaning of the expression
g−1(t)g′(t) as a matrix product.) Since the metric ( , ) on the group G is
left-invariant, we can write

(g′(t), g′(t))g(t) = (g−1(t)g′(t), g−1(t)g′(t))e .

Then we can calculate

δ

∫

1
2
(g−1g′, g−1g′)edt =

∫

(δ(g−1g′), g−1g′)edt . (4.8)

Note that we have

δ(g−1g′) = g−1δg′ − g−1δgg−1g′ = (g−1δg)′ + [g−1g′, g−1δg] ,

since
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(g−1δg)′ = g−1δg′ − g−1g′g−1δg .

Thus, the left-hand-side in equation (4.8) becomes
∫

(δ(g−1g′), g−1g′)edt =
∫

((g−1δg)′, g−1g′)edt+
∫

([g−1g′, g−1δg], g−1g′)edt

= −
∫

(g−1δg, (g−1g′)′)edt+
∫

([g−1g′, g−1δg], g−1g′)edt ,

where we have used integration by parts in the last step. (Since we confined
ourselves to variations of the path g with fixed endpoints, we do not pick up
any boundary terms in the integration by parts.)

Now set v(t) := g−1(t)g′(t), and let A : g → g∗ be the inertia operator
defined by the metric ( , )e: (u,w)e = 〈u,Aw〉. Then the right-hand side in
the latter equation becomes

−
∫

(g−1δg, (g−1g′)′)edt+
∫

([g−1g′, g−1δg], g−1g′)edt

= −
∫

〈g−1δg, (Av)′〉dt+
∫

〈adv(g−1δg), Av〉dt

= −
∫

〈g−1δg, (Av)′〉dt−
∫

〈g−1δg, ad∗
v(Av)〉dt = 0 .

This implies
(Av)′ = − ad∗

v(Av) .

Rewriting this equation in terms of m = Av finishes the proof of
Theorem 4.14. �

4.4 Poisson Pairs and Bi-Hamiltonian Structures

A first integral (or a conservation law) for a vector field ξ on a manifold M
is a function on M invariant under the flow of this field. In this section we
will show that if the vector field ξ is a Hamiltonian vector field with respect
to two different Poisson structures on the manifold M that are compatible in
a certain sense, there is a way of constructing first integrals for such a field.

Definition 4.19 Two Poisson structures { , }0 and { , }1 on a manifold M
are said to be compatible (or form a Poisson pair) if for every λ ∈ R the linear
combination { , }0 + λ{ , }1 is again a Poisson bracket on M .

A dynamical system d
dtm = ξ(m) on M is called bi-Hamiltonian if the

vector field ξ is Hamiltonian with respect to both structures { , }0 and { , }1.

Our main example of a manifold that admits a Poisson pair is the dual
space g∗ of a Lie algebra g. One Poisson structure on the space g∗ is given
by the usual Lie–Poisson bracket { , }LP. We can define a second Poisson
structure on g∗ by “freezing” the Lie–Poisson bracket at any point m0 ∈ g∗:
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Definition 4.20 The constant Poisson bracket on g∗ associated to a point
m0 ∈ g∗ is the bracket { , }0 defined on two smooth functions f, g on g∗ by

{f, g}0(m) := 〈[dfm, dgm],m0〉 .

The Poisson bracket { , }0 depends on the freezing point m0 ∈ g∗. Note
that at the point m0 itself the two Poisson brackets { , }LP and { , }0

coincide. While the symplectic leaves of the Lie–Poisson bracket { , }LP are the
coadjoint orbits Om of the Lie group G, the symplectic leaves of the constant
bracket { , }0 are given by all translations of the tangent space Tm0Om0 to
the coadjoint orbit Om0 through the point m0 (see Figure 4.3).

Om0

Tm0Om0

0

m0

Fig. 4.3. Coadjoint orbit Om0 through m0 and leaves of the Poisson bracket frozen
at m0.

Lemma 4.21 The Poisson brackets { , }LP and { , }0 are compatible for
every “freezing point” m0 ∈ g∗.

Proof. We have to check that { , }λ = { , }LP+λ{ , }0 is a Poisson bracket
on g∗ for all λ ∈ R. The latter is true since { , }λ is simply the bracket { , }LP

shifted by −λm0. �

Remark 4.22 Explicitly, the Hamiltonian equation on g∗ with the Hamil-
tonian function F and computed with respect to the constant Poisson struc-
ture frozen at a point m0 ∈ g∗ has the following form:

dm

dt
= −ad∗

dFm
m0 , (4.9)

as a modification of Proposition 4.9 shows.
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Going back to the general situation, let { , }0 and { , }1 be a Poisson pair
on a manifold M . In this case one can generate a bi-Hamiltonian dynamical
system by producing a sequence of Hamiltonians in involution, according to
the following Lenard–Magri scheme [246, 321]. Consider the Poisson bracket
{ , }λ = { , }0 + λ{ , }1 for any λ. Let hλ be a Casimir function on M
for this bracket, i.e., a function on the manifold M that is parametrized by λ
and satisfies {hλ, f}λ = 0 for all smooth functions f ∈ C∞(M) and λ ∈ R.
Furthermore, suppose that the function hλ can be expanded into a power
series in λ, i.e., that we can write

hλ =
∞
∑

i=0

λi hi , (4.10)

where each coefficient hi is a smooth function on M . Any function hi defines
a Hamiltonian vector field ξi on M with respect to the Poisson bracket { , }1

by setting {hi, f}1 = Lξi
f for all f ∈ C∞(M).

Theorem 4.23 The functions hi, i = 0, 1, . . . are Hamiltonians of a hierar-
chy of bi-Hamiltonian systems. In other words, each function hi generates the
Hamiltonian vector field ξi on M with respect to the Poisson bracket { , }1,
which is also Hamiltonian for the other bracket { , }0 with the Hamiltonian
function −hi+1:

{hi, f}1 = Lξi
f = −{hi+1, f}0

for any f . Other functions hj , j �= i, are first integrals of the corresponding
dynamical systems ξi.

In other words, the functions hi, i = 0, 1, . . . are in involution with respect
to each of the two Poisson brackets { , }0 and { , }1:

{hi, hj}k = 0

for all i �= j and for k = 0, 1.

Proof. Since hλ is a Casimir function for the Poisson bracket { , }λ, we
have {hλ, f}λ = 0 for all smooth functions f on M . Substituting for hλ its
power series expansion (4.10), we get

0 = {hλ, f}λ =

{ ∞
∑

i=0

λihi , f

}

λ

=

{ ∞
∑

i=0

λihi , f

}

0

+ λ

{ ∞
∑

i=0

λihi , f

}

1

.

Collecting the coefficients at the powers of λ we find that {h0, f}0 = 0 and

{hi, f}0 = −{hi−1, f}1 .

The first identity expresses the fact that h0 is a Casimir function for the
bracket { , }0. The next one says that the Hamiltonian field for h1 with
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respect to { , }0 coincides with the Hamiltonian field for −h0 and the bracket
{ , }1, and so on.

To see that every function hi is a first integral for the equation generated
by hj with respect to each bracket, we have to show that {hi, hj}k = 0 for
i �= j and k = 0, 1. Indeed, for instance, for i < j and k = 1 we have

{hi, hj}1 = −{hi, hj+1}0 = {hi−1, hj+1}1 = · · · = −{h0, hi+j+1}0 = 0,

since h0 is a Casimir for the bracket {., .}0, i.e., in involution with any function,
and in particular, with hi+j+1. �

Remark 4.24 The fact that {hi, hj}k = 0 for k = 0, 1 means that the func-
tions hj are first integrals of the Hamiltonian vector fields ξi. So if the functions
hj are independent, Theorem 4.23 provides us with an infinite list of first in-
tegrals for each of the fields ξi. In this case one says that the hi are the
Hamiltonians of a hierarchy of bi-Hamiltonian systems. We will treat the KdV
equation as a bi-Hamiltonian system from this viewpoint in Section II.2.4.

Exercise 4.25 Suppose that a manifold M admits two compatible Poisson
structures { , }0 and { , }1. Show that if symplectic leaves of { , }λ = { , }0+
λ{ , }1 are of codimension greater than 1, and if there are several independent
Casimirs h(1)

λ , h
(2)
λ , . . . , then all the coefficients of their expansions in λ are in

mutual involution with respect to both brackets, e.g., {h(1)
i , h

(2)
j }k = 0.

4.5 Integrable Systems and the Liouville–Arnold Theorem

The more first integrals a dynamical system has, the less chaotically it behaves.
For a Hamiltonian system the notion of complete integrability corresponds to
the “least chaotic” and “most ordered” structure of its trajectories.

Definition 4.26 A Hamiltonian system on a symplectic 2n-dimensional man-
ifold M is called (completely) integrable if it has n integrals in involution that
are functionally independent almost everywhere on M . The Hamiltonian func-
tion is one of the above first integrals. (Alternatively, one can avoid specifying
which of them is a Hamiltonian and describe an integrable system as a set of
n functions f1, . . . , fn that are functionally independent almost everywhere
and commute pairwise,

{fi, fj} = 0 for all 1 ≤ i, j ≤ n ,

with respect to the natural Poisson bracket defined by the symplectic structure
on M .)
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Example 4.27 Every Hamiltonian system with one degree of freedom is com-
pletely integrable, since it always possesses one first integral, the Hamiltonian
function itself. This purely dimensional argument implies, for example, that
the Euler equation of a three-dimensional rigid body is a completely integrable
Hamiltonian system on the coadjoint orbits of SO(3).

Indeed, the configuration space of the Euler top, a three-dimensional rigid
body with a fixed point, is the set of all rotations of the Euclidean space,
i.e., the Lie group SO(3). The motion of the body is described by the Euler
equation on the body angular momentum m in the corresponding phase space,
so(3)∗; see Example 4.17. Note that the conservation of the total momentum
|m|2 corresponds to the restriction of the angular momentum evolution to a
particular coadjoint orbit, a two-dimensional sphere centered at the origin of
so(3)∗ ∼= R

3. Hence the Euler equation for the rigid body is a Hamiltonian sys-
tem on a two-dimensional symplectic sphere, while the Hamiltonian function
is given by the kinetic energy of the body.

Remark 4.28 A more complicated example is a rotation of an n-dimensional
rigid body, where the dimensional consideration is not sufficient. Free motions
of a body with a fixed point at its mass center are described by the geodesic
flow on the group SO(n) of all rotations of Euclidean space R

n. The group
SO(n) can be regarded as the configuration space of this system. The left-
invariant metric on SO(n) is defined by the quadratic form − tr(ωDω), where
ω ∈ so(n) is the body’s angular velocity and D = diag(d1, . . . , dn) defines the
inertia ellipsoid. The corresponding inertia operator A : so(n) → so(n)∗ has
a very special form: A(ω) = Dω + ωD.

Now the evolution of the angular momentum is in the space so(n)∗, the
phase space of the n-dimensional top. The dimension of generic coadjoint
orbits in so(n)∗ is equal to the integer part of (n − 1)2/2. Therefore the en-
ergy invariance alone is insufficient to guarantee the integrability of the Euler
equation for an n-dimensional rigid body. The existence of sufficiently many
first integrals and complete integrability in the general n-dimensional case
were established by Manakov in [249]. In this paper the argument translation
(or freezing) method was discovered and applied to find first integrals in this
problem.

We note that the above inertia operators (or equivalently, the correspond-
ing left-invariant metrics) form a variety of dimension n in the n(n − 1)/2-
dimensional space of equivalence classes of symmetric matrices on the Lie
algebra so(n). For n > 3 such quadratic forms are indeed very special in
the space of all quadratic forms on this space. The geodesic flow on the group
SO(n) equipped with an arbitrary left-invariant Riemannian metric is, in gen-
eral, nonintegrable.

Other examples of integrable systems include, for instance, the geodesics
on an ellipsoid [281] and the Calogero–Moser systems [280, 66, 67].
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The following Liouville–Arnold theorem explains how the sufficient number
of first integrals simplifies the Hamiltonian system. Consider a common level
set of the first integrals

Mc = {m ∈ M | fi(m) = ci, i = 1, . . . , n} .

Theorem 4.29 (Liouville–Arnold [11, 18]) For a compact manifold M ,
connected components of noncritical common level sets Mc of the n first inte-
grals are n-dimensional tori, while the Hamiltonian system defines a (quasi-)
periodic motion on each of them. In a neighborhood of such a component in M
there are coordinates (ϕ1, . . . , ϕn, I1, . . . , In), where ϕi are angular coordinates
along the tori and Ii are first integrals, such that the dynamical system assumes
the form ϕ̇i = Ωi(I1, . . . , In) and the symplectic form is ω =

∑n
i=1 dIi ∧ dϕi .

The coordinates ϕi and Ii are called the angle and action coordinates, re-
spectively. For the case of a noncompact M , one has a natural R

n-action on
the levels Mc, coming from the commuting Hamiltonian vector fields corre-
sponding to the Hamiltonian functions fi, i = 1, . . . , n.

Note that the symplectic form ω vanishes identically on any level set Mc,
so that each regular level set is a Lagrangian submanifold of the symplectic
manifold M . (By definition, a Lagrangian submanifold L ⊂ M of a sym-
plectic manifold M is an isotropic submanifold of maximal dimension: for a
2n-dimensional M , a Lagrangian submanifold L is n-dimensional and satisfies
ω|L ≡ 0.)

Remark 4.30 While in finite dimensions there are many definitions of com-
plete integrability of a Hamiltonian system and they are all more or less
equivalent, this question is more subtle in infinite dimensions. One can start
defining such systems based on the existence of action-angle coordinates, or on
bi-Hamiltonian structures, or on the existence of an infinite number of “suffi-
ciently independent” first integrals, or, even by requiring an explicit solvabil-
ity. These definitions lead, generally speaking, to inequivalent notions, and
precise relations between these definitions in infinite dimensions are yet to be
better understood.

There are, however, examples of infinite-dimensional systems in which
most, if not all, of these definitions work. This is the case, for example,
for the celebrated Korteweg–de Vries equation. Other systems for which sev-
eral approaches are also known are the Kadomtsev–Petviashvili equation, the
Camassa–Holm equation, and many others, some of which we will encounter
later in the book.

5 Symplectic Reduction

The Noether theorem in classical mechanics states that a Lagrangian system
with extra symmetries has an invariant of motion. Hence in describing such



5. Symplectic Reduction 41

a system one can reduce the dimensionality of the problem by “sacrificing
this invariance.” The notion of symplectic reduction can be thought of as
a Hamiltonian analogue of the latter: If a symplectic manifold admits an
appropriate group action, then this action can be “factored out.” The quotient
is a new symplectic manifold of lower dimension.

This construction can be used in both ways. On the one hand, one can
reduce the dimensionality of certain systems that admit extra symmetries. On
the other hand, certain complicated physical systems can be better understood
by realizing them as the result of symplectic reduction from much simpler
systems in higher dimensions.

5.1 Hamiltonian Group Actions

Consider a finite-dimensional symplectic manifold (M,ω), i.e., a manifold M
equipped with a nondegenerate closed 2-form ω. Let G be a connected Lie
group with Lie algebra g and suppose that the exponential map exists. If the
group G acts smoothly on M , each element X of the Lie algebra g defines a
vector field ξX on the manifold M as an infinitesimal action of the group:

ξX(m) :=
d

dt
|t=0 exp(tX)m.

The action of the group G on the manifold M is called symplectic if it leaves
the symplectic form ω invariant, i.e., if g∗ω = ω for all g ∈ G.

Exercise 5.1 Show that for the symplectic group action, the vector field ξX

for any X ∈ g is symplectic, i.e., the 1-form ιξX
ω is closed. (Hint: use the

Cartan homotopy formula on differential forms, Lξ = ιξ d + d ιξ, where Lξ

means the Lie derivative along ξ and the operators ιξ and d stand for the
inner and outer derivatives of forms.)

The closedness of the 1-form means that it is locally exact, and hence
the field ξX is locally Hamiltonian: in a neighborhood of each point of the
manifold M , there exists a function HX such that ιξX

ω = dHX . In general,
this field is not necessarily defined by a univalued Hamiltonian function on
the whole of M . Even if we suppose that such a Hamiltonian function exists,
it is defined only up to an additive constant.

Definition 5.2 The action of a Lie group G on M is called Hamiltonian if
for every X ∈ g there exists a globally defined Hamiltonian function HX that
can be chosen in such a way that the map g → C

∞(M), associating to X the
corresponding Hamiltonian HX , is a Lie algebra homomorphism of the Lie
algebra g to the Poisson algebra of functions on M :

H[X,Y ] = {HX ,HY } .
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Exercise 5.3 Prove that for a Hamiltonian G-action on M the Lie algebra
isomorphism is equivariant, i.e.,

HAdgX(m) = HX(g(m))

for all g ∈ G, X ∈ g, and m ∈ M .

Definition 5.4 Assume that the action of a group G on M is Hamiltonian.
Then the moment map is the map Φ : M → g∗ defined by

HX(m) = 〈Φ(m),X〉 ,

where 〈 , 〉 denotes the pairing between g and g∗.
In other words, given a vector X from the Lie algebra g, the moment map

sends points of the manifold to the values of the Hamiltonian function HX at
those points.

Summarizing the above definitions, a symplectic G-action on a symplectic
manifold M is called Hamiltonian if there exists a G-equivariant smooth map
Φ : M → g∗ (the moment map) such that for all X ∈ g, we have d〈Φ,X〉 =
ιξX

ω . Any vector field ξX on M that comes from an element X ∈ g for such
a group action has the Hamiltonian function HX = 〈Φ,X〉.

Exercise 5.5 Consider M = R
2 with the standard symplectic form ω =

dp ∧ dq and the group U(1) acting on R
2 by rotations. Show that this action

is Hamiltonian with the moment map Φ(p, q) = 1
2 (p2 + q2).

Exercise 5.6 Consider the coadjoint action of a Lie group G on the dual of
its Lie algebra. Show that this action restricted to any coadjoint orbit O ⊂ g∗

is Hamiltonian with the moment map being the inclusion ι : O ↪→ g∗.

Exercise 5.7 Generalize the definition of Hamiltonian group actions to Pois-
son manifolds and show that the coadjoint action of a Lie group G on the dual
g∗ of its Lie algebra is Hamiltonian with the moment map given by the identity
map id : g∗ → g∗.

5.2 Symplectic Quotients

Let (M,ω) be a symplectic manifold with a Hamiltonian action of the group
G. The equivariance of the moment map Φ : M → g∗ implies that the inverse
image Φ−1(λ) of a point λ ∈ g∗ is a union of Gλ-orbits, where Gλ := {g ∈
G | Ad∗

g(λ) = λ} is the stabilizer of λ. The symplectic reduction theorem
below states that if λ is a regular value of the moment map, and if the set
Φ−1(λ)/Gλ of Gλ-orbits in Φ−1(λ) is a manifold, then it acquires a natural
symplectic structure from the one on M .
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Exercise 5.8 Suppose that G is a finite-dimensional Lie group acting on
the symplectic manifold M in a Hamiltonian way with a moment map Φ.
For m ∈ M , let G.m denote the G-orbit through m and let Gm denote the
stabilizer of m with the Lie algebra gm. Show that the kernel of the differential
dΦm of the moment map Φ at any point m ∈ M is given by

ker(dΦm) = (Tm(G.m))ω := {ξ ∈ Tm(M) | ω(ξ, χ) = 0 for all χ ∈ Tm(G.m)} .

(Here (Tm(G.m))ω is the symplectic orthogonal complement to the tangent
space Tm(G.m) in Tm(M).)

Show that the image of the differential dΦm is

im(dΦm) = ann(gm) := {λ ∈ g∗ | λ(X) = 0 for all X ∈ gm} .

Conclude that an element λ ∈ g∗ is a regular value of the moment map, i.e.,
dΦm is surjective for all m ∈ Φ−1(λ), if and only if for all m ∈ Φ−1(λ) the
stabilizer Gm is discrete.

The restriction of the symplectic form ω to the level set Φ−1(λ) of the
moment map is not necessarily symplectic, since it might acquire a kernel.

Exercise 5.9 Show that the foliation of Φ−1(λ) by the kernels of ω is the
foliation into (connected components of) Gλ-orbits. (Hint: for a regular value
λ the preimage Φ−1(λ) is a smooth submanifold of M , and the exercise above
gives

kerω|Φ−1(λ) = TmΦ
−1(λ) ∩ (TmΦ

−1(λ))ω

= TmΦ
−1(λ) ∩ (ker dΦm)ω

= TmΦ
−1(λ) ∩ Tm(G.m) = Tm(Gλ.m) .)

Hence, if the quotient space of the level Φ−1(λ) over the Gλ-action is
reasonably nice, the 2-form ω descends to a symplectic form on this quotient;
see Figure 5.1. This is made precise in the following reduction theorem.

Theorem 5.10 (Marsden–Weinstein [254], Meyer [261]) Suppose that
λ is a regular value of the moment map and suppose that Φ−1(λ)/Gλ is a
manifold (this condition is satisfied if, for example, Gλ is compact and acts
freely on Φ−1(λ)). Then there exists a unique symplectic structure ωλ on the
reduced space Φ−1(λ)/Gλ such that

ι∗ω = π∗ωλ.

(Here, ι denotes the embedding Φ−1(λ) ↪→ M and π stands for the projection
Φ−1(λ) → Φ−1(λ)/Gλ.)
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M

Φ−1(λ)/Gλ

m
Φ−1(λ)

Gλ.m

Fig. 5.1. The orbits of the stabilizer group Gλ in the preimage Φ−1(λ).

The resulting manifold Φ−1(λ)/Gλ of the above symplectic reduction (also
known as Hamiltonian or Marsden–Weinstein reduction) is called the symplec-
tic quotient.

Finally, if H : M → R is a Hamiltonian function invariant under the
G-action, it descends to a function Hλ on the quotient space Φ−1(λ)/Gλ.
Furthermore, if two G-invariant functions F and H on M Poisson commute
with respect to the Poisson structure on M defined by the symplectic form ω,
the corresponding functions on the quotient Φ−1(λ)/Gλ still Poisson commute
with respect to the quotient Poisson structure.

Example 5.11 Consider the manifold M = C
n+1 with its standard symplec-

tic structure ω = i
2

∑

dzi ∧dz̄i. The group U(1) = R/Z acts on C
n+1 by rota-

tion: z �→ e2πitz. The moment map for this action is given by Φ(z) = π‖z‖2.
The reduced space Φ−1(1)/U(1) is the complex projective space CP

n with the
symplectic form being (a multiple of) the Fubini–Study form.

Let fi : C
n+1 → R denote the function fi(z) = ‖zi‖2. The functions fi

are invariant under the U(1)-action on C
n+1, and the corresponding Hamil-

tonian functions on the symplectic quotient generate the rotations in the C-
hyperplanes {zi = const} in CP

n.

6 Bibliographical Notes

There are many books on Lie groups and Lie algebras covering the material
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the R-matrix method, see, e.g., [348, 330]; integrability of geodesic flows on
quadrics and related systems, see [281, 23]; as well as discrete analogues of
the Euler equation on Lie groups [282, 373, 45].
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crete constructions in various infinite-dimensional situations. In particular,
Hamiltonian actions of loop groups and, more generally, Hamiltonian actions
of gauge transformation groups on Riemann surfaces, which we are going to
deal with further in this book, have been considered, for example, in the
papers [28, 260].





II

Infinite-Dimensional Lie Groups: Their
Geometry, Orbits, and Dynamical Systems

1 Loop Groups and Affine Lie Algebras

For any finite-dimensional Lie group G one can define the corresponding loop
group LG as the set of smooth maps from a circle to the group G endowed
with pointwise multiplication.

We are interested in the coadjoint representation of the group LG or,
rather, of a central extension ̂LG of the group LG. While the loop group itself
turns out to be “too simple” to give rise to a rich theory, its central extension,
called the affine (Kac–Moody) group corresponding to G, possesses a beautiful
geometry and is related to many other fields in mathematics and mathemat-
ical physics. It turns out that the coadjoint orbits of the affine groups have
finite codimension and are closely related to their finite-dimensional counter-
parts. This makes such groups attractive for representation theory: a complete
classification of their coadjoint orbits indicates existence of rich representation
theory for them, according to Kirillov’s orbit method.

Here we describe the geometric features of loop groups and their exten-
sions. We also comment on more general current groups GM of smooth maps
from a manifold M to a finite-dimensional Lie group G and consider certain
classes of such groups in subsequent sections. Throughout this section, G de-
notes a finite-dimensional connected and simply connected Lie group, and g

stands for its Lie algebra.

1.1 The Central Extension of the Loop Lie algebra

Definition 1.1 The loop algebra Lg is the Lie algebra of smooth maps from
the circle S1 to a finite-dimensional Lie algebra g with the pointwise Lie
bracket.

In this section we are mostly interested in a nontrivial central extension of
the loop algebra Lg, which is essentially unique if the finite-dimensional Lie
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algebra g is simple. First we recall the definition of an invariant bilinear form
on a Lie algebra g.

Definition 1.2 A bilinear form 〈 , 〉 : g× g → R is invariant if 〈A, [B,C]〉 =
〈[A,B], C〉 for all A,B,C ∈ g.

For instance, for matrix Lie algebras g the pairing 〈A,B〉 := tr(AB) is in-
variant.

Any invariant bilinear form on a Lie algebra g gives rise to a Lie algebra
2-cocycle and hence to a central extension of the corresponding loop algebra
Lg in the following way:

Definition / Proposition 1.3 Let 〈 , 〉 be an invariant bilinear form on g.
The map ω : Lg × Lg → R defined by

ω(X,Y ) :=
1
2π

∫

S1
〈X, dY 〉 =

1
2π

∫ 2π

0

〈X(θ),
d

dθ
Y (θ)〉dθ

is a 2-cocycle on the loop algebra Lg. The corresponding one-dimensional cen-
tral extension of Lg, given by the commutator

[(X(θ), α), (Y (θ), β)] = ([X,Y ](θ), ω(X,Y )) ,

is denoted by ̂Lg and is called the affine Lie algebra corresponding to the
algebra g and the form 〈 , 〉.

Proof. The antisymmetry of the map ω follows from integration by parts.
The cocycle identity for ω is verified by a direct calculation also using inte-
gration by parts and the invariance of the inner product on g. �

Exercise 1.4 Verify the cocycle identity for ω.

Remark 1.5 In the algebraic literature, one is usually interested in the alge-
bra Lgpol of polynomial loops in g (i.e., trigonometric polynomials with values
in g). Obviously, the construction of the cocycle ω on Lg restricts to Lgpol,
and we shall denote the corresponding central extension by L̂gpol. If g is a
simple Lie algebra, there exists a unique (up to a scalar factor) invariant bi-
linear form on g, and the corresponding affine Lie algebra is called the affine
Kac–Moody algebra corresponding to g.

The (complexified) algebra Lgpol can be thought of as the space of g-valued
Laurent polynomials

Lgpol := g ⊗ C[z, z−1] ,

while in the cocycle formula the integral over the circle is replaced by taking
the residue at z = 0:
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ω(X,Y ) := res |z=0

〈

X(z), dY (z)
〉

.

The equivalence of polynomial loops with the latter description is delivered
by the change of variable θ → z = eiθ, which sends Fourier polynomials in θ
to Laurent polynomials in z and identifies d/dθ with iz · d/dz.

It turns out that if the Lie algebra g is semisimple, the affine Lie algebras
corresponding to g for different invariant forms exhaust all nontrivial central
extensions of the loop algebra Lg:

Proposition 1.6 For the Lie algebra g of a semisimple compact Lie group
G, any continuous 2-cocycle ω on the loop algebra Lg is cohomologous to a
cocycle of the form

1
2π

∫ 2π

0

〈

X(θ),
d

dθ
Y (θ)

〉

dθ

for some bilinear invariant form 〈 , 〉 on g.

Proof. (See [322]): We first note that it suffices to consider cocycles ω
invariant under conjugation by constant loops g ∈ G. Indeed, if ω is not
invariant under conjugation, the cocycle

ω̃ =
∫

G

g∗ω dVol

is invariant and belongs to the same cohomology class as ω. (Here dVol denotes
the normalized Haar measure on G, i.e., the left-invariant volume form such
that

∫

G
dVol = 1.)

Let us consider the complexification LgC = Lg⊗C of the loop algebra Lg.
An element X ∈ LgC can be expanded into a Fourier series X =

∑

Xrz
r,

where z denotes the function eiθ, and the Xr are elements of the finite-
dimensional Lie algebra g. Any 2-cocycle ω on Lg can be extended to a bilinear
map LgC × LgC → C. By continuity, this cocycle ω is completely determined
by its values on Laurent polynomials in z (i.e., on Fourier polynomials in θ).
Let us define maps ωp,q : gC × gC → C by

ωp,q(A,B) := ω(Azp, Bzq).

Each of these maps is G-invariant and hence symmetric. (This follows from
the general fact that for a semisimple Lie algebra g, any G-invariant bilinear
map gC × gC → C has to be symmetric. The latter is an easy consequence of
the Schur lemma.) Using the antisymmetry of the cocycle ω and the symmetry
for ωp,q we obtain

ωp,q(A,B) = −ωq,p(B,A) = −ωq,p(A,B) ,

i.e., ωp,q = −ωq,p. Moreover, the cocycle identity for ω implies
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ω([Azp, Bzq], Czr) + ω([Czr, Azp], Bzq) + ω([Bzq, Czr], Azp) = 0.

Rewriting this in terms of the maps ωp,q, we get

ωp+q,r([A,B], C) + ωr+p,q([C,A], B) + ωq+r,p([B,C], A) = 0 .

Using the G-invariance and symmetry of ωp,q we can rewrite the second term
on the left-hand side of the equation above as

ωr+p,q([C,A], B) = ωr+p,q([A,B], C)

and similarly for the third term. Finally, using the fact that g = [g, g] for
semisimple g, we obtain

ωp+q,r + ωr+p,q + ωq+r,p = 0 . (1.1)

From now on, we have only to exploit the latter relation. Setting p = q = 0
in this relation yields

ω0,r = 0.

On the other hand, setting r = −p− q gives

ωp+q,−p−q + ω−p,p + ω−q,q = 0 ;

hence by induction we get

ωn,−n = nω1,−1 .

Finally, putting r = n− p− q in (1.1), we obtain

ωp+q,n−p−q + ωn−q,q + ωn−p,p = 0 ,

which implies ωn−k,k = kωn−1,1 for all n and k. Hence

0 = kω0,n = kωn−n,n = nkωn−1,1 = nωn−k,k ,

from which we deduce that ωp,q = 0 for all p, q with p+ q �= 0.
Returning to the cocycle ω, we obtain for X, Y ∈ Lg,

ω(X,Y ) =ω

(

∑

p

Xpz
p,
∑

q

Yqz
q

)

=
∑

p,q

ωp,q(Xp, Yq)

=
∑

p

pω1,−1(Xp, Y−p) =
i

2π

∫ 2π

0

∑

p

ω1,−1

(

Xpe
ipθ,

d

dθ
Y−pe

−ipθ

)

dθ

=
i

2π

∫ 2π

0

ω1,−1(X(θ), Y ′(θ))dθ ,

which is of the required form, since ω1,−1 is an invariant bilinear form on the
Lie algebra g (recall that here z = eiθ). �
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Remark 1.7 Let g be a simple finite-dimensional Lie algebra and M a
compact oriented connected manifold. Consider the current algebra gM =
C∞(M, g), the Lie algebra of smooth maps from M to g with the pointwise
bracket. Denote by 〈 , 〉 the nondegenerate bilinear form on g, which is unique
up to a multiple. One can show that the universal central extension of gM is
given by the 2-cocycle

ω(X,Y ) = 〈X, dY 〉
with values in the quotient space Ω1(M)/dΩ0(M) of all 1-forms in M modulo
all exact 1-forms; see [322].

Note that if the dimension of the manifold M is at least 2, then the
space Ω1(M)/dΩ0(M) is already infinite-dimensional. However, if M is one-
dimensional, i.e., a circle M = S1, any 1-form on M is closed. Hence
Ω1(M)/dΩ0(M) is exactly the first de Rham cohomology group of M , which
is one-dimensional. Thus in the latter case, the universal central extension of
gM = Lg is exactly the central extension from Proposition 1.6.

To visualize the Ω1(M)/dΩ0(M)-valued central extension of the current
algebra gM for higher-dimensional M , we fix an element in the dual space
to Ω1(M)/dΩ0(M) and associate to it an R-valued central extension. First
note that the (smooth) dual to the quotient space V = Ω1(M)/dΩ0(M) is
the space V ∗ = Zn−1(M) of all closed (n− 1)-forms on M . Indeed, there is a
natural pairing between any 1-form u ∈ Ω1(M) and an (n− 1)-form γ on the
compact manifold: 〈u, γ〉 :=

∫

M
u ∧ γ. For a closed form γ ∈ Zn−1(M) this

pairing gives zero if and only if the form u is exact: u = df , i.e., if u ∈ dΩ0(M).
Now the real-valued 2-cocycle ωγ associated to the form γ ∈ Zn−1(M) is

ωγ(X,Y ) =
∫

M

〈X, dY 〉 ∧ γ.

Note that if the closed (n−1)-form γ is not smooth, but a singular δ-type form
(i.e., a de Rham current) supported on a closed curve Γ ⊂ M , then the cocycle
ωγ(X,Y ) degenerates exactly to the 2-cocycle of the affine algebra situated
on the curve Γ :

∫

M
〈X, dY 〉 ∧ γ =

∫

Γ
〈X, dY 〉. In a sense, the 2-cocycle ωγ on

the current algebra gM for a smooth (n−1)-form γ on M is a diffused version
of the 2-cocycle for the affine algebra on the curve Γ .

Example 1.8 Current Lie algebras and their extensions have the following
natural generalization. Consider the gauge transformation Lie algebra gau(P )
associated with a principal G-bundle P → M on a compact manifold M ,
where G is a compact simple Lie group. Fix some connection dA in the bun-
dle P . Then ωA(X,Y ) := 〈X, dAY 〉 defines a Lie algebra 2-cocycle (with
values in Ω1(M)/dΩ0(M)) on the gauge algebra gau(P ) of the bundle P . The
corresponding central extension does not depend on the connection dA.
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1.2 Coadjoint Orbits of Affine Lie Groups

In the last section, we constructed the affine Lie algebra ̂Lg corresponding
to a finite-dimensional Lie algebra g. Now we are interested in the adjoint
and coadjoint representations of the corresponding affine Lie group ̂LG. This
group itself will be explicitly constructed in the next section.

Note that in order to understand the adjoint and coadjoint orbits of the
group ̂LG we do not have to know what the extended group looks like, but
we need just its nonextended version! (Indeed, the would-be group ̂LG should
be a central extension of the loop group LG for the Lie group G. On the
other hand, one can immediately see that for any Lie group, its center acts
trivially in the adjoint representation of the group. In particular, the center
of the centrally extended group ̂LG acts trivially, and in order to study the
adjoint action of this large group, we have only to understand the action of
the nonextended group LG on the Lie algebra ̂Lg. The same consideration is
valid for the coadjoint action.) Here is the explicit description of the group
adjoint action.

Proposition 1.9 In the adjoint representation of the affine group ̂LG, an
element g ∈ LG acts on (X, c) ∈ ̂Lg = Lg ⊕ R via

Adg(X, c) =
(

Adg(X), c− 1
2π

∫ 2π

0

〈

g−1(θ)
d

dθ
g(θ),X(θ)

〉

dθ

)

.

Proof. First, one has to check that the map above defines a group rep-
resentation of the loop group LG on ̂Lg = Lg ⊕ R, i.e., Adgh(X, c) =
Adg(Adh(X, c)) for all g, h ∈ LG and (X, c) ∈ ̂Lg = Lg ⊕ R. The loops
g and h act on the first factor by the pointwise adjoint action, so there is
nothing to check. For the second factor we calculate

c− 1
2π

∫

〈(gh)−1(gh)′,X〉dθ = c− 1
2π

∫

〈g−1g′,Adh(X)〉dθ

− 1
2π

∫

〈h−1h′,X〉dθ ,

as required. (Here and below the prime ′ stands for d/dθ.)
In order to see that the action defined above is indeed the adjoint represen-

tation of the group ̂LG, we have to check that the corresponding infinitesimal
action coincides with the adjoint action of the centrally extended loop algebra
̂Lg on itself. To this end, let gs be a path in LG with a tangent vector Y ∈ Lg,
i.e., gs is a family of loops in G depending smoothly on a parameter s ∈ R

such that g0 = e, the constant loop, and d
ds |s=0gs = Y . Then we have

d

ds

∣

∣

∣

s=0

1
2π

∫ 2π

0

〈g−1
s (θ)g′s(θ),X(θ)〉dθ =

1
2π

∫ 2π

0

〈Y ′(θ),X(θ)〉dθ .
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So we obtain

d

ds

∣

∣

∣

s=0

(

Adgs
(X), c− 1

2π

∫ 2π

0

〈g−1
s (θ)g′s(θ),X(θ)〉dθ

)

=
(

[Y,X],− 1
2π

∫ 2π

0

〈Y ′(θ),X(θ)〉dθ
)

= ([Y,X], ω(Y,X)) =: adY (X, c),

where we have used integration by parts in the last step. This implies that we
differentiated the group action Adgs

(X, c) with respect to s. �

Let us turn to the coadjoint representation of the affine group ̂LG on its
dual Lie algebra ̂Lg

∗
. The smooth dual ̂Lg

∗
s for this algebra ̂Lg can be thought

of as the space of the following pairs:

̂Lg
∗
s = {(A, a) | A ∈ Lg, a ∈ R} .

It possesses a nondegenerate pairing with ̂Lg via

〈(X, c), (A, a)〉 =
1
2π

∫ 2π

0

〈X(θ), A(θ)〉dθ + ca .

Abusing notation, we are going to drop the index s in the sequel, although in
addition to ̂Lg

∗
s, the whole dual space ̂Lg

∗
includes also “singular function-

als.”9 As in the case of the adjoint representation, to describe the coadjoint
representation of the group ̂LG it is enough to consider the action of the loop
group LG on ̂Lg

∗
, since the former factors through the map ̂LG → LG (i.e.,

the center of ̂LG acts trivially in the coadjoint representation as well).

Proposition 1.10 In the coadjoint representation of ̂LG on ̂Lg
∗
s, an element

g ∈ LG acts via

Ad∗
g(A, a) =

(

Adg(A) + a

(

d

dθ
g

)

g−1, a

)

.

Proof. Recall that the coadjoint action of LG on ̂Lg
∗
s is defined via

〈Ad∗
g(A, a), (X, c)〉 = 〈(A, a),Adg−1(X, c)〉 .

Now the required statement follows from the above formula for Adg by a
direct calculation. �

9 Formally, elements of the dual space ̂Lg
∗

are pairs (A, a), where A(θ) dθ is a g-
valued de Rham current, not necessarily represented by a smooth 1-form; cf. the
discussion of currents in Section II.3.5.
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Corollary 1.11 In the coadjoint representation of the algebra ̂Lg on its dual
̂Lg

∗
, an element X ∈ Lg acts via

ad∗
X(A, a) = ([X,A] + aX ′, 0) .

Exercise 1.12 (i) Verify this formula for ad∗
X(A, a) by differentiating the

group coadjoint action above, as in the proof of Proposition 1.9.
(ii) Verify the same formula directly from the definition of the Lie bracket

in the affine algebra.
(iii) Check that the formula for Ad∗

g(A, a) indeed defines a representation
of the corresponding group, i.e., that Ad∗

g Ad∗
h = Ad∗

gh.

This exercise gives an alternative way of verifying the formula for the loop
group coadjoint action on ̂Lg

∗
without calculating the corresponding group

adjoint action.

Remark 1.13 Let g be the Lie algebra gl(n,R). The above proposition and
corollary show that the dual space ̂Lg

∗
= {(A, a)} can be identified with the

space of matrix-valued first-order linear differential operators on the circle:

̂Lg
∗

=
{

− a
d

dθ
+A | A ∈ Lg, a ∈ R

}

.

This identification is natural in the sense that the group coadjoint action Ad∗
g

on the dual space ̂Lg
∗

coincides with the gauge action on differential operators:

g : − a
d

dθ
+A �→ −a d

dθ
+ gAg−1 + a

(

d

dθ
g

)

g−1 .

(Note that in terms of the connection ∇ = −a d
dθ + A, the gauge action of a

loop g can be written is the usual conjugation: ∇ �→ g ◦∇◦g−1.) Accordingly,
the algebra coadjoint action ad∗

X on ̂Lg
∗

can be written in the form of a
commutator:

[

X,−a d

dθ
+A

]

= a
dX

dθ
+ [X,A] = ad∗

X(A, a) .

(Here we used the Leibniz rule for the operators of multiplication by X and
differentiation in θ: d

dθ ◦X −X ◦ d
dθ = X ′.) The cocentral direction a d

dθ in ̂Lg
∗

is dual to the central direction in the affine Lie algebra ̂Lg.
A similar consideration holds for any Lie algebra g, where instead of matrix

differential operators one has the identification of the dual space with the space
of connections in the (topologically trivial) G-bundle over S1.
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Remark 1.14 Sometimes it is convenient to combine the affine algebra with
its dual by adding the “cocentral direction” a d

dθ to ̂Lg. Namely, the map

X �→ d

dθ
X

is a derivation of the Lie algebra Lg. It extends to a derivation of the centrally
extended algebra ̂Lg by the trivial action on the center. Thus one can define
the semidirect product ˜Lg = ̂Lg � Rd, which is also sometimes called the
affine Lie algebra or doubly extended loop algebra corresponding to g. The
advantage of the doubly extended loop algebra ˜Lg is that unlike ̂Lg, it admits
a nondegenerate invariant bilinear form given by

〈

(

X + a
d

dθ
, c

)

,

(

Y + b
d

dθ
, d

)

〉

=
1
2π

∫ 2π

0

〈X(θ), Y (θ)〉dθ + ad+ bc .

This invariant bilinear form allows one to identify the adjoint and coadjoint
actions on the doubly extended affine Lie algebra ˜Lg.

Now we would like to study the orbits in the coadjoint representation of
the group ̂LG. Since for an element (A, a) ∈ ̂Lg

∗
, the value a is invariant under

the action of LG, we can study the orbits in a fixed hyperplane a = const. To
simplify the notation, let us fix a = 1. Other hyperplanes with a �= 0 differ
from this one by an overall rescaling. We will comment on the case a = 0 later
(see Remark 1.20).

Theorem 1.15 ([329]) Let G be a compact, connected, and simply connected
Lie group. There is a one-to-one correspondence between the set of LG-orbits
in the (a = 1)-hyperplane in ̂Lg

∗
and the set of conjugacy classes in the group

G. Moreover, the stabilizer of an element (A, 1) ∈ ̂Lg
∗

is isomorphic to the
centralizer of the corresponding conjugacy class in G.

Corollary 1.16 Every coadjoint orbit in the (a = 1)-hyperplane in ̂Lg
∗

is
isomorphic to LG/H for some subgroup H ⊂ G. In particular, the codimen-
sion of such orbits in the hyperplane is always finite and not greater than
dimG.

Proof of Theorem 1.15. Let us associate to each (A, 1) ∈ ̂Lg
∗
s the

differential equation
d

dθ
ψ −Aψ = 0 , (1.2)

and let ψ be a solution of this differential equation. Since A assumes values
in the Lie algebra g, any solution ψ(θ) of equation (1.2) with ψ(0) ∈ G stays
in the group G and hence defines a path ψ : R → G. (We can think of G as a
matrix group to invoke the intuition from the theory of differential equations,
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although all the steps can be translated to purely group-theoretical language;
see, e.g., [322].)

First we note that the gauge action on differential operators becomes
rather simple in terms of the action on the solutions. Namely, suppose that
the solution ψ of equation ψ′ = Aψ is multiplied on the left by a function
g : R → G. Then the G-valued function φ(θ) = g(θ)ψ(θ) is a solution to the
new differential equation φ′ = Ãφ, where

Ã := gAg−1 + g′g−1 ,

i.e., Ã is gauge equivalent to A. Thus, the gauge action by g on the differential
operator −d/dθ+A corresponds to the multiplication of solutions by g on the
left.

Now recall that A is a loop in g, i.e., A(θ) is periodic in θ. This implies that
the map ψ(θ+ 2π) is also a solution of equation (1.2). Note that all solutions
of the linear differential equation ψ′ = Aψ have the form ψ(θ) · h, where h is
a constant matrix h ∈ G. In particular, the ratio of two solutions

Mψ := ψ(θ + 2π)−1ψ(θ),

the monodromy of ψ, is a constant matrix from the same group: Mψ ∈ G. The
monodromy matrices Mψ corresponding to different solutions or to different
initial conditions ψ(0) can differ by conjugation. In this way, we assign to each
element (A, 1) the corresponding conjugacy class of the monodromy Mψ in
the group G.

One can see that this construction assigns the same conjugacy class of
the group G to each element in the coadjoint orbit of ̂LG containing (A, 1).
Indeed, different elements of the same coadjoint orbit correspond to gauge-
equivalent differential operators. Hence their solutions differ by multiplication:
φ(θ) = g(θ)ψ(θ) with a periodic g(θ) = g(θ + 2π). Then

Mφ = φ(θ + 2π)−1φ(θ) = ψ(θ + 2π)−1g(θ + 2π)−1g(θ)ψ(θ)

= ψ(θ + 2π)−1ψ(θ) = Mψ ,

i.e., the monodromy matrix (defined modulo conjugation in G) is the same.
Therefore, the conjugacy class of G corresponding to Ad∗

g(A, 1) is the same
as the conjugacy class corresponding to (A, 1).

Conversely, two differential operators with the same (or conjugate) mon-
odromy matrix belong to the same coadjoint orbit in ̂Lg

∗
. Indeed, choose the

solutions φ(θ) and ψ(θ) so that their monodromy matrices would be the same.
Then define g(θ) := φ(θ)ψ(θ)−1. Due to the equality of monodromies, g(θ) is
periodic: g(θ) = g(θ+2π). Thus we have defined an element of the loop group
g ∈ LG that sends one of the solutions to the other g : ψ �→ gψ = φ, and
hence makes the corresponding differential operators gauge-equivalent.

Finally, we have to check that the map from the LG-orbits in the (a = 1)-
hyperplane to the conjugacy classes in G is surjective. This is a consequence
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of the surjectivity of the exponential map of the finite-dimensional compact
connected Lie group G (see Appendix A.2). Indeed, fix some g ∈ G, and let
H ∈ g be an element of the inverse image of g under the exponential map.
Then we can view (H, 1) as an element of the (a = 1)-hyperplane in ̂Lg

∗
, and

the conjugacy class of G corresponding to the coadjoint orbit through (H, 1)
contains g. �

Remark 1.17 The above proof shows, in particular, that every coadjoint
orbit of ̂LG in the (a = 1)-hyperplane contains a constant element.

It also shows that the stabilizer of an element (A, 1) ∈ ̂Lg
∗

in the coad-
joint representation of LG is conjugated to the stabilizer of the corresponding
conjugacy class in G. The stabilizer of (0, 1) ∈ ̂Lg

∗
is the whole group G, so

that the coadjoint orbit through (0, 1) is isomorphic to LG/G.
To give a more precise description of the stabilizers, let T ⊂ G be a

maximal torus in the compact group G. Then every element of G is conjugate
to some element of the torus T . (For G = SU(n), this is the classical fact
that every unitary matrix is diagonalizable.) Furthermore, two elements of
the maximal torus T are conjugate in the group G if and only if they are
conjugate under the group W = NG(T )/T , where NG(T ) is the normalizer of
T in G. The group W is a finite group, the so-called Weyl group of G. It follows
from the discussion above that the set of conjugacy classes in G, and hence
the set of coadjoint orbits in the (a = 1)-hyperplane in ̂Lg

∗
, can be identified

with the quotient T/W of the maximal torus over the Weyl group. This set,
in turn, is a convex polytope, the fundamental alcove of G (see Appendix
A.2). The codimension of a conjugacy class in G is determined by its position
in this polytope. For example, the stabilizer of every conjugacy class in the
interior of the fundamental alcove is the maximal torus T itself. Hence the
corresponding coadjoint orbits of LG are isomorphic to LG/T .

Corollary 1.18 The conjugacy class of the monodromy is the only invariant
of the coadjoint action of the affine group. The group invariants of G define
Casimir functions on the dual space ̂Lg

∗
with respect to the coadjoint action

of the group ̂LG.

Indeed, the one-to-one correspondence in Theorem 1.15 between the coad-
joint LG-orbits and conjugacy classes in G is furnished by monodromies of
the corresponding differential operators.

Example 1.19 Consider the affine algebra for g = sl(2,R) and the hyper-
plane a = 1 in its dual. The corresponding monodromies belong to the group
G = SL(2,R), and the trace of the monodromy matrices is a Casimir function
on the dual space to the affine algebra ̂Lg

∗
.



58 II. Infinite-Dimensional Lie Groups

The codimension of the orbits is equal to 1 or 3. The only orbits of codi-
mension 3 are those corresponding to the monodromy M = id or − id. If M is
a Jordan 2 × 2 block or M has distinct eigenvalues, the codimension is equal
to 1.10 We are going to study the adjacency of the orbits in this case in more
detail when we discuss the Virasoro coadjoint orbits in the next section.

Remark 1.20 It is curious to compare the orbit classification for affine (i.e.,
extended loop) groups with that for the nonextended loop groups LG. The
smooth dual Lg∗ of the corresponding loop algebra is isomorphic to Lg. The
corresponding LG-action on this dual is given by the pointwise conjugation
action of LG. (In the absence of the cocycle, the actions at different points
of the circle are not related!) By definition, smooth currents A(θ) and B(θ)
belong to the same coadjoint orbit if and only if A(θ) and B(θ) are conjugate in
g for each θ ∈ S1 and the conjugating map is a smooth loop in G. (For a simply
connected group G there are no topological obstructions for the existence of
such a loop for smooth and pointwise conjugate A and B, since the stabilizer
of any element in G is connected.) Hence the classification of coadjoint orbits
for the loop group reduces to the classification of families of matrices up to
conjugation; cf. [15, 17]. Every function f : S1 → R that depends only on the
eigenvalues of the family A(θ) is invariant under the coadjoint action of the
group LG, i.e. it defines a Casimir for Lg∗. This shows that every coadjoint
orbit of the nonextended loop group has infinite codimension! This differs
drastically from the extended case, i.e., orbits of the affine groups ̂LG.

Note that one can view the corresponding dual space Lg∗ of the nonex-
tended loop algebra as the (a = 0)-hyperplane in the extended dual, ̂Lg

∗
. The

corresponding affine group action in this hyperplane is exactly the loop group
action, i.e., it is given by the pointwise conjugation action of LG. Thus, the
affine coadjoint orbits for a = 0 are all of infinite codimension, while the orbits
of the same group ̂LG in other hyperplanes a �= 0 are all of finite codimension.

1.3 Construction of the Central Extension of the Loop Group

As we learned in Section 1.1, for a finite-dimensional semisimple Lie algebra g

every central extension of the loop algebra Lg is given by means of the cocycle

ω(X,Y ) =
1
2π

∫ 2π

0

〈X(θ), Y ′(θ)〉dθ , (1.3)

where 〈 , 〉 : g × g → R is some invariant bilinear form on g.

10 Note that the group SL(2, R) is not simply connected, and hence the loop group

of SL(2, R) is not connected. Different differential operators from ̂Lg
∗

with the
same monodromy can be conjugated by an SL(2, R)-loop that does not belong
to the identity component of LG. Nevertheless, the same correspondence of the
coadjoint LG-orbits and G-conjugacy classes still holds.
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Suppose that the Lie algebra g is simple. Then up to a multiple, there
exists a unique invariant bilinear form on g, the Killing form. Throughout
this section, we shall normalize the Killing form in such a way that the long
roots in g have the square length 2 (see Appendix A.1 for some facts about
root systems). Abusing notation slightly, we will often write tr(XY ) = 〈X,Y 〉
for the normalized Killing form.

The choice of the bilinear form 〈 , 〉 fixes the 2-cocycle ω and hence the
central extension ̂Lg of the loop algebra Lg. The goal of this section is to
show that this central extension lifts to the group level. In other words, we
are looking for a central extension

{e} → S1 →̂LG → LG → {e}

of the loop group LG whose Lie algebra is given by ̂Lg. If such a central
extension ̂LG of LG exists, it defines an S1-bundle ̂LG → LG. The problem in
constructing the central extension ̂LG comes from the fact that this S1-bundle
̂LG → LG turns out to be topologically nontrivial. This is why it is impossible
to write down a continuous group 2-cocycle that defines the corresponding
group extension. Indeed, otherwise this would imply the existence of a global
section and hence the triviality of the bundle.

Theorem 1.21 ([322]) Let G be a simple compact simply connected Lie
group and let ω be the 2-cocycle on Lg defined by formula (1.3), where the
bilinear form 〈 , 〉 on g is the (normalized) Killing form. Then the Lie al-
gebra central extension of Lg defined by the cocycle ω lifts to a group central
extension ̂LG of LG.

This centrally extended group ̂LG is called the affine Lie group. The rest of
this section is devoted to the proof of this theorem by explicitly constructing
the extended loop group as a certain quotient group (cf. [262]). In fact, the
construction below shows that the central extension of the loop algebra Lg

defined by a multiple kω of the cocycle ω lifts to a central extension of the
loop group LG whenever k is an integer.

Step 1. Before we start constructing the extended loop group ̂LG, let us
give an alternative construction of the centrally extended loop algebra ̂Lg.

Let D be a closed two-dimensional disk whose boundary is the circle S1 =
∂D. The loop algebra Lg can be regarded as a quotient Lg = gD/gD

S1 , where
gD := C∞(D, g) is the Lie algebra of smooth maps from the disk D to g, and

gD
S1 = {X ∈ C∞(D, g) | X|S1 = 0}

denotes the subalgebra of maps that vanish on ∂D = S1, the boundary of D.
Define a bilinear map ωD : gD × gD → R by

ωD(X,Y ) =
1
2π

∫

D

tr(dX ∧ dY ) .



60 II. Infinite-Dimensional Lie Groups

Here dX and dY are g-valued 1-forms on the disk, and in order to obtain the
2-form on D we consider their wedge product as 1-forms on the disk and the
Killing pairing of their values in the target space, in g. (It helps, however,
to think of G as a matrix group, so that the standard matrix calculus is
applicable. Then dX and dY should be viewed as matrix-valued 1-forms on
the disk D, while dX ∧ dY is the usual matrix product combined with the
wedge product. So tr(dX ∧ dY ) is a 2-form on D, which can be integrated
over the disk D.) One can easily see that ωD is a 2-cocycle on the current Lie
algebra gD. Hence it defines a central extension ̂gD of the current Lie algebra
gD. Furthermore, by the Stokes formula, we have

1
2π

∫

D

tr(dX ∧ dY ) =
1
2π

∫

D

d tr(XdY ) =
1
2π

∫

∂D=S1
tr(XdY ) .

This shows that the 2-cocycle ωD depends only on the boundary values of X
and Y (and it coincides with the cocycle of the affine algebra on the boundary
∂D = S1). In particular, it vanishes on the subalgebra gD

S1 ⊂ gD, so that gD
S1

is an ideal in the Lie algebra ĝD. This implies that the quotient ĝD/gD
S1 with

respect to this ideal is isomorphic to the affine algebra ̂Lg.

Step 2. Our goal is to construct the group extension ̂LG as a quotient,
similar to the construction of the Lie algebra extension ̂Lg above. First note
that one can easily present the nonextended group LG as a quotient: LG =
GD/GD

S1 , where GD = C∞(D,G) is the current group on the disk and

GD
S1 = {g ∈ C∞(D,G) | g|S1 = e ∈ G}

is the subgroup of currents based on the boundary ∂D = S1.
Now we are looking for a central extension ̂GD of the Lie group GD whose

Lie algebra is given by ĝD. After that, we are going to embed GD
S1 as a normal

subgroup in ̂GD such that the Lie algebra of GD
S1 will be isomorphic to gD

S1 .
In this way, we construct the Lie group ̂LG = ̂GD/GD

S1 , which is a central
extension of LG and whose Lie algebra is ̂Lg = ĝD/gD

S1 .

Lemma 1.22 There exists a one-dimensional central extension ̂GD of the
group GD by S1 ≈ U(1) that is topologically trivial ( ̂GD = GD × U(1)) and
whose Lie algebra is ĝD.

Proof. Let g ∈ GD be a map from the disk D to G. Then g−1dg and
(dg)g−1 are g-valued 1-forms on D. Let us define a map

γ : GD ×GD → R

by the formula

γ(g1, g2) =
1
4π

∫

D

tr(g−1
1 dg1 ∧ dg2g

−1
2 ) .
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Exercise 1.23 Verify the group 2-cocycle identity

γ(g1g2, g3) + γ(g1, g2) = γ(g1, g2g3) + γ(g2, g3) ,

which shows that γ is a 2-cocycle on GD with values in the additive group R.
(Hint: it follows from

(g1g2)−1d(g1g2) = g−1
2 g−1

1 dg1g2 + g−1
2 dg2

and
d(g1g2)(g1g2)−1 = dg1g

−1
1 + g1dg2g

−1
2 g−1

1 .)

By exponentiating the cocycle γ we obtain the U(1)-valued map eiγ , which
is a group 2-cocycle on the current group GD with values in the multiplicative
group U(1). It defines the desired central extension ̂GD of GD by U(1) with
the multiplication in ̂GD given by

(g1, a1)(g2, a2) = (g1g2(x, y), a1a2e
iγ(g1,g2)) .

Finally, we have to check that the Lie algebra of ̂GD is given by ĝD. To
do this, we calculate the infinitesimal version of the cocycle eiγ : Let gs and
ht be two smooth curves in GD such that d

dt |t=0gt = X and d
ds |s=0hs = Y .

According to Proposition 3.14 of Chapter I, the infinitesimal version of the
group 2-cocycle eiγ is given by

d2

dt ds

∣

∣

∣

t=0,s=0
exp(iγ(gt, hs)) −

d2

dt ds

∣

∣

∣

t=0,s=0
exp(iγ(hs, gt))

= − 1
2π

∫

D

tr(dX ∧ dY ) = −ωD(X,Y ) .

�

Step 3. Our final goal is to embed GD
S1 as a normal subgroup into ̂GD.

Let B be a three-dimensional ball bounded by the two-sphere S2. In turn,
this sphere is represented as the union of two disks D and D′ glued together
along the common boundary. Given a G-valued map g ∈ GD

S1 on the disk
D that is based on S1 = ∂D, one can extend it trivially to the other disk
D′: g|D′ ≡ e ∈ G, and hence to the whole of S2. Now choose an arbitrary
extension g̃ of the group current g from S2 to the three-dimensional ball B
(see Figure 1.1). This is possible due to the following topological fact.

Fact 1 (see, e.g., [60]): Let G be a finite-dimensional Lie group. Then
π2(G) = {e}, that is any continuous map f : S2 → G can be extended to
a continuous map f̃ : B → G.
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g̃

e

B

g

GD

D′

Fig. 1.1. Extension of the map g : D → G to a map g̃ : B → G such that g̃(D′) = e.

This allows us to define the number

λ(g̃) =
1

12π

∫

B

tr(g̃−1dg̃)∧3 .

The origin of the above expression for λ(g̃) is as follows.

Fact 2 (see, e.g., [60]): Let G be a compact simple and simply connected Lie
group. Then the third cohomology group H3(G,Z), with values in Z, is gen-
erated by a single element, a closed differential left-invariant 3-form η on G.
For a smooth map g̃ : B → G from a three-dimensional manifold B to the
group G, the pullback of the form η for the map g̃ is given by the following
3-form on B:

g̃∗η =
1

24π2
tr(g̃−1dg̃)∧3 .

Note that this form η can be defined as the left-invariant differential
3-form on the group G whose value at the identity of the group, evaluated on
three tangent vectors A,B,C ∈ TeG = g, is given by 1

8π2 〈A, [B,C]〉.

Remark 1.24 Both of the above facts follow from the Hopf theorem
on compact simple Lie groups; see Appendix A.2 and, in particular,
Proposition A.2.16 for the discussion, references, and more details on com-
pact Lie groups.

Summarizing the above, we see that the image g(S2) is a spheroid in
the group G, while the extension g̃ defines a topological 3-dimensional ball
g̃(B) filling this spheroid. The value λ(g̃) is the (normalized) integral of the
form η over this topological ball. Although the number λ(g̃) depends on the
extension g̃ from the sphere S2 to the ball B, the following lemma shows that
this dependence is easily controlled.

Lemma 1.25 Consider extensions g̃, h̃ : B → G of two group currents g, h :
S2 → G from the sphere S2 to the ball B. Then
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λ(g̃h̃) = λ(g̃) + λ(h̃) + γ(g, h) . (1.4)

Moreover, for any current g : S2 → G the number eiλ(g̃) does not depend on
the choice of the extension g̃ of the current g from S2 to B.

Proof. Let g̃ and h̃ be extensions of g and h to the ball B. Then

λ(g̃h̃) =
1

12π

∫

B

tr
(

(g̃h̃)−1d(g̃h̃)
)∧3

=
1

12π

∫

B

tr
(

h̃−1g̃−1dg̃h̃+ h̃−1dh̃
)∧3

= λ(g̃) + λ(h̃) +
1
4π

∫

B

tr
(

g̃−1dg̃ ∧ g̃−1dg̃ ∧ dh̃h̃−1

+ g̃−1dg̃ ∧ dh̃h̃−1 ∧ dh̃h̃−1
)

= λ(g̃) + λ(h̃) +
1
4π

∫

B

d
(

tr
(

g̃−1dg̃ ∧ dh̃h̃−1
))

= λ(g̃) + λ(h̃) + γ(g, h),

where we have used the Stokes formula in the last step.
Next, we show that the value λ(g̃) (modulo 2π) depends only on the current

g on the sphere, but not on its extension g̃ to the ball. Indeed, any two
extensions g̃ and g̃′ of the group current g from S2 to B differ by a map
h̃ : B → G such that g̃ = g̃′h̃ on the ball B, while on the boundary h̃|∂B ≡ e.

This means that h̃ defines a map from the ball B to the group G, which
sends the whole boundary sphere S2 = ∂B into the unit element e ∈ G. In
other words, the image h̃(B) is a closed 3-cycle (a topological three-sphere) in
G. Then by definition of the integral 3-form η, its integral

∫

η over any closed
3-cycle in G, and in particular, over the image h̃(B), is an integer. This gives
that

λ(h̃) = 2π
∫

B

h̃∗η = 2π
∫

h̃(B)

η ∈ 2πZ .

Finally, since h̃|∂B ≡ e, we have γ(g, h̃|∂B) = 0 by the definition of γ.
Hence by the first part of the lemma, we have the following additivity: λ(g̃h̃) =
λ(g̃) + λ(h̃). The latter means that λ(g̃′) = λ(g̃) (modulo 2π), i.e., the value
eiλ(g̃) indeed does not depend on the choice of extension g̃, but it depends on
g only. �

In particular, we can use the notation eiλ(g) with g instead of g̃.

Now we can define the embedding ψ : GD
S1 → ̂GD of the group of based

currents GD
S1 into the centrally extended group currents ̂GD via

g �→ (g, eiλ(g)) .

Lemma 1.26 The map ψ : GD
S1 → ̂GD defines an embedding of GG

S1 as a
normal subgroup in ̂GD.
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Proof. The preceding lemma implies that the map ψ is well defined and
the injectivity of ψ is obvious. Furthermore, the established relation (1.4)
between λ and γ exactly means that ψ(GD

S1) is indeed a subgroup of ̂GD. The
normality of GD

S1 follows from the identity

λ(g̃h̃g̃−1) = λ(h̃) + γ(gh, g−1) + γ(h, g−1),

which can be deduced directly from relation (1.4). �

Now the construction of the required group extension is completed with
the following observation.

Lemma 1.27 Under the embedding GD
S1 ↪→ ̂GD, the Lie algebra of GD

S1 gets
identified with the Lie subalgebra gD

S1 ⊂ ĝD.

Proof. The form tr(g̃−1dg̃)∧3 is a homogeneous polynomial of degree 3 in
the derivatives of g̃. Hence all its derivatives at g̃ ≡ e vanish (see Figure 1.2).
Therefore the tangent space to this subgroup GD

S1 in the group ̂GD coincides
with the “horizontal” embedding gD

S1 ↪→ ĝD, X �→ (X, 0). �

gD

gD
S1

GD
S1

c

̂GD

Fig. 1.2. GD
S1 as a subset of ̂GD in a neighborhood of the identity of the group ̂GD.

Here c denotes the central direction of the Lie algebra ĝ
D.

Remark 1.28 Let us briefly remark on other central extensions of the loop
group LG. Each multiple kωD of the cocycle ωD defines a central extension of
the Lie algebra gD and hence gives rise to an extension of the Lie algebra Lg.
Obviously, each of these extensions of gD lifts to a central extension ( ̂GD)k

of the group GD. The problem, however, is that there exists a topological
obstruction to the existence of an embedding of the group GD

S1 into the corre-
sponding extension of GD. Indeed, in order to embed GD

S1 into ( ̂GD)k, we have
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to use the map g �→ (g, eikλ(g̃)). However, Lemma 1.25 shows that the number
eikλ(g̃) depends on the choice of g̃ unless k is an integer. Hence, we can lift
the central extension of the loop algebra Lg with the cocycle kω to the group
level whenever k ∈ Z. It can be shown [322] that these exhaust all possible
central extensions of the loop group LG. Moreover, the group extension ̂LG
with k = 1 considered above is singled out among other extensions of the loop
group ̂LG by the fact that it is simply connected.

1.4 Bibliographical Notes

The standard reference for the material of this section is the by now classical
monograph by Pressley and Segal [322]. The book [178] describes the theory
of Kac–Moody Lie algebras, while the corresponding groups are treated from
an algebraic point of view in [225].

The central extension of the loop algebra goes back to Kac [177] and
Moody [275]. The classification of coadjoint orbits of the affine groups was
given by Reyman and Semenov-Tian-Shansky [329], Segal [342], and Frenkel
[132].

Normal forms of families of matrices up to conjugation are described in
[15, 17]. They are related to the description of the coadjoint orbits of nonex-
tended loop groups in the GL(n) case. Such families also provide versal defor-
mations of the orbits of GL(n)-affine groups in terms of deformations of the
corresponding monodromy operators.

For a finite-dimensional group G that admits an outer automorphism σ of
finite order one can define the twisted loop group LGσ = {g : R → G | g(θ +
2π) = σ(g(θ)) for all θ ∈ R}. Central extensions of the twisted loop groups are
constructed in a similar fashion as for the untwisted ones. The corresponding
Lie algebras are called the twisted affine Lie algebras. The classification of the
coadjoint orbits of the latter algebras is similar to that of the untwisted ones,
except that one has to use conjugacy classes of nonconnected compact Lie
groups [385].

Irreducible highest-weight representations of affine Lie algebras in both the
twisted and nontwisted cases naturally correspond to, respectively, twisted
and standard conjugacy classes in the corresponding compact Lie group [270].
In [132] it is shown how the orbit classification for affine groups gives an ana-
logue of Kirillov’s character formula for compact Lie groups in the loop group
setting and relates it to the Wiener integration on the space of continuous
paths in the compact group.

An important class of algebras, related to the affine ones, is given by the
Krichever–Novikov-type algebras [219, 220, 336, 353], which we discuss in
Appendix A.3. Loop algebras along with their central extensions can be re-
garded as subalgebras of the gl∞ algebra (see Appendix A.9), which relates
them to infinite-dimensional Grassmannians and provides a universal treat-
ment of the corresponding soliton equations [75, 176, 372].
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The quotient construction of the central extension of the loop group,
as described in Section 1.3, has appeared in the physics literature on the
Wess–Zumino–Witten (or Wess–Zumino–Novikov–Witten) model [263]. Sim-
ilar constructions of this group cocycle, its variations, and generalizations
can be found in the papers by Faddeev and Shatashvili [109], Polyakov and
Wiegmann [319], Witten [387], Mickelsson [262], Pressley and Segal [322],
Losev, Moore, Nekrasov, and Shatashvili [241], and others.

Hamiltonian systems related to loop groups and the description of some
integrability mechanisms can be found in [4, 110, 119, 328, 330, 365]; see also
[2, 308]. We will touch on certain dynamical systems related to loop groups
in Sections 3 and 5.

Note that systems on loop groups help explain integrability of finite-
dimensional discrete systems [77]. The study of Poisson structures of
differential-geometric type on loop spaces and the corresponding integrable
systems, initiated by Dubrovin and Novikov in [91, 92], is another direction
of active current research; see [272]. It also prompted the theory of Frobenius
manifolds [89, 251]. Finally, we mention the construction of a universal sym-
plectic form for a large class of soliton equations in [221, 218], and the relation
between integrable Hamiltonian systems and the Riemann–Hilbert problem
[76].

For manifolds M of higher dimensions the corresponding current groups,
i.e., the spaces of maps from M to a finite-dimensional Lie group G, along
with their central extensions, are studied in more detail, for example, in [264,
322, 248]. We discuss some of these groups in more detail in Section 5, where
we deal with the case of a two-dimensional manifold M . The case of current
groups on noncompact manifolds is treated in [288].
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2 Diffeomorphisms of the Circle and the Virasoro–Bott
Group

This section deals with the Lie group Diff(S1) of orientation-preserving diffeo-
morphisms of the circle and its Lie algebra Vect(S1) of smooth vector fields on
the circle, as well as with their central extensions. We start by showing that
the Lie algebra of vector fields on the circle admits a unique nontrivial central
extension, the so-called Virasoro algebra. This central extension gives rise to a
central extension of the Lie group of circle diffeomorphisms, which is called the
Virasoro–Bott group. Similar to the case of loop groups, the Virasoro–Bott
group has a “nicer” coadjoint representation than the nonextended group of
circle diffeomorphisms. Its coadjoint orbits can be classified in terms of con-
jugacy classes of the finite-dimensional group SL(2,R). Finally, we describe
the Euler equations corresponding to right-invariant metrics on the Virasoro–
Bott group and encounter the KdV and related partial differential equations
among them.

2.1 Central Extensions

Let us consider the Lie algebra Vect(S1) of smooth vector fields on the circle.
After fixing a coordinate θ on the circle, any vector field can be written as
f(θ)∂θ, where f is a smooth function on S1 and ∂θ stands for ∂

∂θ . Under this
identification, the commutator of two elements in Vect(S1) is given by

[f(θ)∂θ, g(θ)∂θ] = (f ′(θ)g(θ) − g′(θ)f(θ))∂θ ,

where f ′ denotes the derivative in θ of the function f .11

Definition / Proposition 2.1 The map ω : Vect(S1)×Vect(S1) → R given
by

ω(f(θ)∂θ, g(θ)∂θ) =
∫

S1
f ′(θ)g′′(θ)dθ (2.5)

is a nontrivial 2-cocycle on Vect(S1), called the Gelfand–Fuchs cocycle. The
corresponding central extension of Vect(S1) is called the Virasoro algebra and
is denoted by vir.

Exercise 2.2 Prove the cocycle identity for ω.

The following proposition shows that the Virasoro algebra is the unique
(up to isomorphism) nontrivial central extension of the Lie algebra Vect(S1).

Proposition 2.3 The second continuous cohomology group H2(Vect(S1),R)
is one-dimensional and is generated by the Gelfand–Fuchs cocycle ω.
11 Note that this Lie bracket is the negative of the commonly assumed commutator

of vector fields, as the calculations in Exercise 2.3 of Chapter I shows; see [24].
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Proof. The proof of this proposition (see [322]) is similar to that of
Proposition 1.6. Our goal is to show that, up to a coboundary, any continuous
2-cocycle ω on the Lie algebra Vect(S1) is a multiple of the Gelfand–Fuchs
cocycle. First, let us extend the cocycle ω from Vect(S1) to a complex bilin-
ear form on the complexification Vect(S1)C = Vect(S1)⊗C of the Lie algebra
Vect(S1). An element f(θ)∂θ ∈ Vect(S1)C can be expanded into a Fourier
series

f(θ) =
∑

fne
inθ .

By continuity, the cocycle ω is completely determined by its values on the
basis fields Ln = ieinθ∂θ. Note that the commutator of the fields Ln and Lm

is given by
[Ln, Lm] = (m− n)Ln+m .

The cocycle identity for ω and the triple L0, Lm, Ln gives

ω([L0, Lm], Ln) + ω(Lm, [L0, Ln]) = ω(L0, [Lm, Ln]) ,

which implies that the cohomology class of the cocycle ω is unchanged under
rotations of S1 that are generated by the vector field L0. Indeed, the right-
hand side of the equation above is an exact cocycle (i.e., coboundary) dα,
where α is the linear functional on Vect(S1) defined by α(Lm) := ω(L0, Lm).
(Here by definition dα(Ln, Lm) := α([Ln, Lm]).) In particular, the cocycle
obtained from ω by averaging over S1 belongs to the same cohomology class
as ω. Therefore, we can assume ω to be rotation invariant, i.e.,

ω([L0, Lm], Ln) + ω(Lm, [L0, Ln]) = 0 . (2.6)

Set ωn,m := ω(Ln, Lm). Then the commutator relation of the fields Ln

and Lm and equation (2.6) imply

mωm,n + nωm,n = 0 .

This implies that ωm,n = 0 for m + n �= 0. Antisymmetry of the cocycle ω
implies ωn,−n = ω−n,n, so that it is enough to determine ωn,−n for n ∈ N.

The cocycle identity for ω evaluated on the triple Lm, Ln, L−m−n implies

(m− n)ωm+n,−n−m + (2m+ n)ωn,−n − (2n+m)ωm,−m = 0 .

In particular, for m = 1 the equation above reads as follows:

(−n+ 1)ωn+1,−n−1 + (n+ 2)ωn,−n − (2n+ 1)ω1,−1 = 0 .

Hence ωn,−n is defined recursively once ω1,−1 and ω2,−2 are fixed. This shows
that the space of the bilinear forms ω that satisfy the 2-cocycle condition is
at most two-dimensional. Two linear independent elements of this space are
given by ωn,−n = n3 and ωn,−n = n. But the 2-cocycle defined by ωn,−n = n
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is exact, since it coincides with dα̃, where α̃ is the linear functional defined
by α̃(Ln) = − 1

2δn,0.
So up to a 2-coboundary, any 2-cocycle ω has the “cubic” form

ω(Ln, Lm) = cδn,−mn
3

for some c ∈ C.
It remains to show that the “cubic” cocycle ω is nontrivial. Suppose

that ω = dβ for some 1-cocycle β. This means that β is a linear map and
ω(Ln, Lm) = β([Ln, Lm]). In particular, we have β([Ln, L−n]) = 2niβ(L0),
which shows that in this case ω(Ln, L−n) would have to depend linearly on n.
This contradiction completes the proof. �

Our next goal is to show that the central extension of the Lie algebra of
vector fields Vect(S1) defined by the Gelfand–Fuchs cocycle ω can be lifted to
a central extension of the group of circle diffeomorphisms Diff(S1). It turns
out that the situation here is much simpler than that in the case of the loop
groups. The central extension of the group Diff(S1) corresponding to the Lie
algebra vir is topologically trivial and hence can be defined by a continuous
group 2-cocycle.

Let ϕ : θ �→ ϕ(θ) be a diffeomorphism of the circle, and ϕ′ stands for its
derivative in θ.

Definition / Proposition 2.4 The map B : Diff(S1)×Diff(S1) → S1 given
by

(ϕ,ψ) �→ 1
2

∫

S1
log(ϕ ◦ ψ)′d logψ′

is a continuous 2-cocycle on the group Diff(S1). The Lie algebra of the corre-
sponding central extension ̂Diff(S1) is the Virasoro algebra vir. The 2-cocycle
B is called the Bott cocycle, and the corresponding central extension of the
group Diff(S1) is called the Virasoro–Bott group.

Proof. To show that the map B defines a group 2-cocycle, we have to check
the identity

B(ϕ ◦ ψ, η) +B(ϕ,ψ) = B(ϕ,ψ ◦ η) +B(ψ, η) .

It is provided by the chain rule, which immediately gives

B(ϕ◦ψ, η) =
1
2

∫

S1
log(ϕ◦ψ◦η)′ d log η′ =

1
2

∫

S1
log(ϕ′◦ψ◦η) d log η′+B(ψ, η)

and
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B(ϕ,ψ ◦ η) =
1
2

∫

S1
log(ϕ ◦ ψ ◦ η)′ d log(ψ ◦ η)′

= B(ϕ,ψ) +
1
2

∫

S1
log(ϕ′ ◦ ψ ◦ η) d log η′ .

Now we verify that the infinitesimal version of the Bott group cocycle B
coincides with the Gelfand–Fuchs Lie algebra 2-cocycle ω. Let f∂θ and g∂θ be
two smooth vector fields on S1 and consider the corresponding flows ϕs and
ψt on S1, starting at the identity diffeomorphism: ϕ0 = ψ0 = id.

We have to check that

ω(f∂θ, g∂θ) =
d2

dt ds

∣

∣

∣

t=0,s=0
B(ϕt, ψs) −

d2

dt ds

∣

∣

∣

t=0,s=0
B(ψs, ϕt)

(see Proposition 3.14 of Chapter I). The latter holds, since

d

dt

∣

∣

∣

t=0
B(ϕt, ψs) =

1
2

∫

S1

(

log′(ϕ0 ◦ ψs)′
)

(f ◦ ψs)′d logψ′
s

=
1
2

∫

S1
(f ′ ◦ ψs) d logψ′

s

and
d

ds

∣

∣

∣

s=0

1
2

∫

S1
(f ′ ◦ ψs) d logψ′

s =
1
2

∫

S1
f ′dg′ .

Similarly, we obtain

d2

dt ds

∣

∣

∣

t=0,s=0
B(ψs, ϕt) =

1
2

∫

S1
g′df ′ = −1

2

∫

S1
f ′dg′ ,

which, combined with the equation above, yields the assertion. �

2.2 Coadjoint Orbits of the Group of Circle Diffeomorphisms

Before we start classifying the coadjoint orbits of the Virasoro group, let
us take a look at the coadjoint representation of the nonextended group of
orientation-preserving diffeomorphisms of the circle. Observe that the dual
spaces to the infinite-dimensional Lie algebras considered below are always
understood as smooth duals, i.e., they are identified with appropriate spaces
of smooth functions.

Let Diff(S1) be the group of all orientation-preserving diffeomorphisms of
S1 and let Vect(S1) be its Lie algebra.

Proposition 2.5 ([202]) The (smooth) dual space Vect(S1)∗ is naturally
identified with the space of quadratic differentials Ω⊗2(S1) = {u(θ)(dθ)2} on
the circle. The pairing is given by the formula
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〈u(θ)(dθ)2, v(θ)∂θ)〉 =
∫

S1
u(θ)v(θ) dθ

for any vector field v(θ)∂θ ∈ Vect(S1). The coadjoint action coincides with the
action of a diffeomorphism on the quadratic differential: for a diffeomorphism
ϕ ∈ Diff(S1) the action is

Ad∗
ϕ−1 : u (dθ)2 �→ u(ϕ) · (ϕ′)2 (dθ)2 = u(ϕ) · (dϕ)2.

It follows from this proposition that the square root
√

u(θ)(dθ)2 (when
it makes sense) transforms under a diffeomorphism as a differential 1-form.
In particular, if the function u(θ) does not have any zeros on the circle (say,
u(θ) > 0), then Φ(u(θ)(dθ)2) :=

∫

S1

√

u(θ) dθ is a Casimir function, i.e., an
invariant of the coadjoint action. One can see that there is only one Casimir
function in this case, since the corresponding orbit has codimension 1 in the
dual space Vect(S1)∗. Indeed, there exists a diffeomorphism that sends the
quadratic differential u(θ)(dθ)2 without zeros to the constant quadratic dif-
ferential u0(dθ)2, where the constant u0 is such that

√
u0 is the average value

of the 1-form
√

u(θ) dθ on the circle:

2π
√
u0 =

∫

S1

√

u(θ) dθ .

The value u0 parametrizes the orbits close to u(θ)(dθ)2, and hence all these or-
bits have codimension 1 in Ω⊗2(S1). The stabilizer of a constant quadratic dif-
ferential is the group S1 of rigid rotations, so that the orbit through u(θ)(dθ)2

is diffeomorphic to Diff(S1)/S1.
On the other hand, if a differential u(θ)(dθ)2 changes sign on the circle,

then the integrals
∫ b

a

√

|u(θ)| dθ ,

evaluated between any two consecutive zeros a and b of the function u(θ), are
invariant. In particular, since u(θ) has at least two zeros, the coadjoint orbit
of such a differential u(θ)(dθ)2 necessarily has codimension higher than 1,
and there exist coadjoint orbits of the group Diff(S1) of arbitrarily high
codimension. The classification of orbits in Vect(S1)∗ was described in
[201, 203].

Remark 2.6 One can show that if the function u(θ) has two simple zeros,
changing sign exactly twice on the circle, then the corresponding coadjoint
orbit of the group Diff(S1) has codimension 2; see [203]. (The correspond-
ing two Casimirs are the integrals of

√

|u(θ)| dθ over two different parts of
the circle between these two zeros, while there are no extra local invariants
at zeros themselves: quadratic differentials with simple zeros are all locally
diffeomorphic to ±θ (dθ)2.)
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In other words, in a family of quadratic differentials ūε := uε(θ) (dθ)2,
where the function uε is everywhere positive for ε > 0, has a double zero
for ε = 0, and has two simple zeros for ε < 0 (e.g., uε = cos θ + 1 + ε) the
codimension of the coadjoint orbit of ūε = uε(dθ)2 changes from 1 for ε > 0
to 2 for ε ≤ 0, since the number of Casimirs jumps from 1 to 2. (Note that
for ε = 0 the orbit codimension of ū0 is also 2, since the existence of a double
zero imposes an extra constraint on a quadratic differential.)

This change of “codimension parity” of the (infinite-dimensional) coad-
joint orbits is rather surprising, since in finite dimensions the existence of a
symplectic structure on each coadjoint orbit forces all of them to be even-
dimensional, and hence codimensions of coadjoint orbits for a given (finite-
dimensional) group are always of the same parity: either all even or all odd.
However, for Vect(S1)∗ = Ω⊗2(S1) we observe that there exist orbits of both
codimensions 1 and 2!

In particular, this shows that the Weinstein theorem [384] on the exis-
tence of the transverse Poisson structure to symplectic leaves does not hold
for infinite-dimensional Poisson manifolds; cf. Remark I.4.7. Indeed, on a two-
dimensional transversal to ū0 in Vect(S1)∗, neighboring coadjoint orbits of ūε

have traces of both codimensions 1 and 2. One can consider the following ex-
ample, clarifying how the change of parity can occur for infinite-dimensional
symplectic leaves. Define the Poisson structure in an infinite-dimensional vec-
tor space {(x0, x1, x2, . . . )} by the bivector field

Π = x0 ∂x1 ∧ ∂x2 + ∂x2 ∧ ∂x3 + ∂x3 ∧ ∂x4 + . . . .

Its symplectic leaves are hyperplanes {x0 = const �= 0}, while for x0 = 0 the
symplectic leaves are planes {x0 = 0, x1 = const} of codimension 2.

In the next section, however, we shall see that coadjoint orbits of the
Virasoro group, the central extension of the diffeomorphism group Diff(S1), do
respect the codimension parity and behave much more like finite-dimensional
coadjoint orbits.

2.3 The Virasoro Coadjoint Action and Hill’s Operators

Let vir be the Virasoro algebra, whose elements are pairs (f(θ)∂θ, c), where
f(θ)∂θ is a vector field and c is a real number. We can think of its (smooth)
dual space as the space of pairs vir

∗ = {(u(θ)(dθ)2, a)} consisting of a
quadratic differential and a real number (the cocentral term). The pairing
between vir and vir

∗ is given by

〈(f(θ)∂θ, c), (u(θ)(dθ)2, a)〉 =
∫

S1
f(θ)u(θ)dθ + c · a .

Our goal in this section is to derive a classification of the coadjoint orbits
of the Virasoro–Bott group ̂Diff(S1). This classification turns out to be similar



2. Diffeomorphisms of the Circle and the Virasoro–Bott Group 73

to that of the coadjoint orbits of the centrally extended loop groups in
Section 1.2.

We begin by noticing that the center of the group ̂Diff(S1) acts trivially
on the dual space vir

∗. This is why to describe the coadjoint representation of
the Virasoro–Bott group we need the action of (nonextended) diffeomorphisms
only.

Definition / Proposition 2.7 The coadjoint action of a diffeomorphism
ϕ ∈ Diff(S1) on the dual vir

∗ of the Virasoro algebra is given by the following
formula:

Ad∗
ϕ−1 : (u (dθ)2, a) �→

(

u(ϕ) · (ϕ′)2 (dθ)2 + aS(ϕ) (dθ)2, a
)

, (2.7)

where

S(ϕ) =
ϕ′ϕ′′′ − 3

2 (ϕ′′)2

(ϕ′)2

is the Schwarzian derivative of the diffeomorphism ϕ.

The same formula can be used to define the Schwarzian derivative S(φ)
for a smooth map φ : R → R or R → RP 1 
 S1.

Proof. The coadjoint action of the Virasoro algebra is defined by the
identity

〈ad∗
(v∂θ,b)(u(dθ)2, a), (w∂θ, c)〉 = −〈(u(dθ)2, a), [(v∂θ, b), (w∂θ, c)]〉.

Using the definition of the Virasoro commutator and integrating by parts we
obtain that the right-hand side is equal to

∫

S1
−w(2uv′ + u′v + av′′′) dθ .

Thus the coadjoint operator is

ad∗
(v∂θ,b)(u(dθ)2, a) = −((2uv′ + u′v + av′′′)(dθ)2, 0). (2.8)

It remains to check that equation (2.7) indeed defines a representation of
the group Diff(S1) on the space vir

∗ and that the infinitesimal version of this
action is given by equation (2.8). Both assertions can be checked by direct
calculations, which we leave to the reader. �

Exercise 2.8 Prove the following transformation law for the Schwarzian
derivative:

S(ϕ ◦ ψ) = (S(ϕ) ◦ ψ) · (ψ′)2 + S(ψ) . (2.9)

Check that the formula (2.7) defines a group representation by using this law.
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It turns out to be more convenient to regard the dual Virasoro space vir
∗

not as the space of pairs {(u(θ)(dθ)2, a)}, but as the space of Hill’s operators,
i.e., differential operators a∂2

θ +u(θ), where ∂2
θ stands for the second derivative

d2/dθ2. Indeed, the group action on Hill’s operators

Ad∗
ϕ−1 : a∂2

θ + u(θ) �→ a∂2
θ + u(ϕ) · (ϕ′)2 + aS(ϕ) (2.10)

has the following nice geometric interpretation (see, e.g., [342, 202, 205, 304]).
Look at a hyperplane a = const corresponding to nonzero a in the dual

space vir
∗. For instance, we fix a = 1 and consider Hill’s operators of the form

∂2
θ + u(θ), where θ is a coordinate on S1. Let f and g be two independent

solutions of the corresponding Hill differential equation

(∂2
θ + u(θ))y = 0 (2.11)

for an unknown function y. Although this equation has periodic coefficients,
the solutions need not necessarily be periodic, but instead are defined over R.
Consider the ratio η := f/g : R → RP 1. (Below we use the same notation θ
for the coordinate on the circle S1 = R/2πZ and on its cover R.)

Proposition 2.9 The potential u is (one-half) the Schwarzian derivative of
the ratio η:

u =
S(η)

2
.

Proof. First we note that the Wronskian

W (f, g) := det
(

f g
f ′ g′

)

= fg′ − f ′g

is constant, since it satisfies W ′ = 0. For two independent solutions the
Wronskian does not vanish, and we normalize W by setting W = −1.

This additional condition allows one to find the potential u from the
ratio η. Indeed, first one reconstructs the solutions f and g from the ratio
η by differentiating:

η′ =
f ′g − fg′

g2
=

−W
g2

=
1
g2

.

Therefore,

g =
1√
η′
, f = g · η =

η√
η′
.

Given two solutions f and g, one immediately finds the corresponding differ-
ential equation they satisfy by writing out the following 3 × 3 determinant:

det

⎡

⎣

y f g
y′ f ′ g′

y′′ f ′′ g′′

⎤

⎦ = 0 .
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Since f and g satisfy the equation y′′ + u · y = 0, one obtains from the
determinant above that

u = −det
[

f ′ g′

f ′′ g′′

]

.

The explicit formula for u expressed in terms of η turns out to be one-half the
Schwarzian derivative of η. �

Corollary 2.10 The Schwarzian derivative S(η) is invariant with respect to
a Möbius transformation η �→ (aη+b)/(cη+d), where a, b, c, d are real numbers
such that ad− bc = 1.

In particular, if η itself is a Möbius transformation η : θ �→ (aθ+b)/(cθ+d),
then S(η) = S(id) = 0, where id : θ �→ θ.

Proof. Indeed, for a given potential u the solutions f and g of the corre-
sponding differential equation are not defined uniquely, but up to a transfor-
mation of the pair (f, g) by a matrix from SL(2,R). Then the ratio η changes
by a Möbius transformation. Thus Möbius equivalent ratios η correspond to
the same potential u = S(η)/2. For the identity diffeomorphism id : θ �→ θ,
the explicit formula for the Schwarzian derivative gives S(id) = 0. �

Proposition 2.11 The Virasoro coadjoint action of a diffeomorphism ϕ on
the potential u(θ) gives rise to a diffeomorphism change of coordinate in the
ratio η:

ϕ : η(θ) → η(ϕ(θ)) .

Proof. We look at the corresponding infinitesimal action on the solutions
of the differential equation (∂2

θ + u(θ))y = 0. For a diffeomorphism ϕ−1(θ) =
θ + εv(θ) close to the identity, consider the infinitesimal Virasoro action of
ϕ−1 on the potential u(θ):

u �→ u+ ε · δu, where δu = 2uv′ + u′v +
1
2
v′′′

(cf. formula (2.8) for a = 1
2 and note that we are considering the action of

ϕ−1). It is consistent with the following action on a solution y of the above
differential equation:

y �→ y + ε · δy, where δy = −1
2
yv′ + y′v.

The consistency means that (∂2
θ + u+ ε · δu)(y + ε · δy) = 0 + O(ε2).
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Note that the action ε · δy = ε · (− 1
2yv

′ + y′v) is an infinitesimal version of
the following action of the diffeomorphism ϕ−1(θ) = θ + εv(θ) on y:

ϕ−1 : y(θ) �→ y(ϕ(θ))(ϕ′(θ))−1/2.

Thus solutions to Hill’s equation transform as densities of degree −1/2. There-
fore the ratio η of two solutions transforms as a function under a diffeomor-
phism action. �

In short, to calculate the coadjoint action on the potential u one can first
pass from this potential to the ratio of two solutions of the corresponding Hill
equation, then change the variable in the ratio, and finally take the Schwarzian
derivative of the new ratio to reconstruct the new potential Ad∗

ϕ−1u (see
Figure 2.1).

˜f

g̃

( ˜f, g̃)

(f, g)

(i) Two solutions of ∂2y + uy = 0 (ii) η = f/g

(iii) η̃ = ˜f/g̃

f
g

(iv) Two solutions of ∂2y + ũy = 0

Fig. 2.1. Schematic picture of the action of a diffeomorphism of S1 on Hill’s opera-
tors and their solutions: To two solutions of the equation (∂2+u)y = 0, one associates
their ratio η : R → RP 1. A diffeomorphism ϕ acts on the ratio η by reparametriza-
tion, and one reconstructs the corresponding solutions and Hill’s operator ∂2 + ũ
from the new ratio η̃.

Now we return to our goal, the classification of the Virasoro coadjoint
orbits. Any (a = const)-hyperplane in the Virasoro dual vir

∗ is invariant
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under the coadjoint action (see equation (2.10)), and identified with Hill’s
operators for a �= 0. While all of the above considerations of Hill’s operators
were of local nature (local in θ), now we will make use of the fact that Hill’s
operators are periodic: u(θ) is defined on a circle.

Consider the universal covering ˜SL(2,R) of the group SL(2,R). The group
˜SL(2,R) admits an outer automorphism of order 2, taking the inverse of a
matrix. One can see that the identity is its only fixed point on the universal
covering group. Consider the set (˜SL(2,R) \ {id})/Z2, where we first dropped
the identity element from ˜SL(2,R) before taking the quotient. The main result
of this section is the following theorem.

Theorem 2.12 ([342, 202]) Given a �= 0, there is a one-to-one correspon-
dence between the set of coadjoint orbits of the Virasoro–Bott group in the
hyperplane {a∂2

θ + u(θ)} ⊂ vir
∗ and the set of conjugacy classes in the quo-

tient (˜SL(2,R) \ {id})/Z2

Proof. Consider a pair (f, g) of linearly independent solutions of the Hill
equation (a∂2

θ + u(θ))y = 0. For a periodic potential u(θ) these solutions are
quasiperiodic, i.e., the values (f(θ), g(θ)) and (f(θ+2π), g(θ+2π)) are related
by a monodromy matrix M ∈ SL(2,R):

(f(θ + 2π), g(θ + 2π)) = (f(θ), g(θ))M . (2.12)

Recall that we use the same notation θ for the coordinate on the circle S1 =
R/2πZ and on its cover R. Note that the monodromy matrix M can be viewed
as an element in the universal cover ˜SL(2,R), where the lift to the cover is
provided by the fundamental solution (f(θ), g(θ)), starting at the identity:
(

f g
f ′ g′

)

|θ=0 = id.
Similarly, the values of the “projective solution,” the ratios η(θ) :=

f(θ)/g(θ) and η(θ + 2π) := f(θ + 2π)/g(θ + 2π), are related by a Möbius
transformation M ∈ PSL(2,R) = SL(2,R)/{± id}. The monodromy matrix
M (respectively M) changes to a conjugate matrix if we pick a different pair
of solutions (f, g) for the same differential equation.

Now regard the ratio η = f/g for θ ∈ [0, 2π] as a map η : [0, 2π] → RP 1

describing a motion (“rotation”) along the circle RP 1 
 S1. One can see
that the condition W �= 0 on the Wronskian is equivalent to the condition
η′ = −W/g2 �= 0, i.e., that the rotation “does not stop.” Choosing the positive
sign of the Wronskian, W > 0, we can assume that the rotation always goes
in the negative direction: η′ < 0.

Recall that the Virasoro action on η is, in fact, a circle reparametrization
for the coordinate θ. By a diffeomorphism change of the coordinate θ �→ ϕ(θ),
one can always turn the map η : [0, 2π] → RP 1 into a uniform rotation
along RP 1, while keeping the boundary values of η(θ) on the segment [0, 2π]
satisfying the monodromy relation η(θ + 2π) = η(θ)M. Furthermore, the
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number of rotations (the “winding number”) for the map η : [0, 2π] → RP 1

does not change under a reparametrization by a circle diffeomorphism ϕ.
In other words, the orbits of the maps η (or, equivalently, of the potentials
{u(x)}) are described by one continuous parameter (the conjugacy class of
M) and one discrete parameter (the winding number). One can see that these
two parameters together encode nothing else but the conjugacy class of the
monodromy matrices M in the universal covering of SL(2,R).

Note that the choice in the sign of the Wronskian reflects the Z2-action
on the universal covering ˜SL(2,R). Indeed, with this choice (W > 0) the path
η always goes in the negative direction (η′ < 0), so one can reach only the
“negative half” of the conjugacy classes in the universal cover ˜SL(2,R).

Finally, note that the identity matrix in the universal covering ˜SL(2,R)
(or in its projectivization ˜SL(2,R)/Z2) cannot be obtained as a monodromy
matrix for the maps η : [0, 2π] → RP 1. Indeed, any map η starting at the
identity has to move out from it, since η′(0) �= 0. �

Corollary 2.13 The Virasoro orbits in the hyperplane {a∂2
θ + u(θ) | a =

a0} ⊂ vir
∗ with fixed a0 �= 0 are classified by the Jordan normal form of

matrices in SL(2,R) and by a positive integer parameter, the winding num-
ber. In this hyperplane {a = a0} of the dual vir

∗ the orbit containing Hill’s
operator a∂2

θ + u(θ) has codimension equal to the codimension in SL(2,R) of
the conjugacy class of the monodromy matrix M corresponding to this Hill’s
operator.

Matrices in the group SL(2,R) split into three classes, whose normal forms
are the exponentials of the following three classes in the Lie algebra sl(2,C),
the complexification of sl(2,R):

(i)
(

µ 0
0 −µ

)

, (ii)
(

0 ±1
0 0

)

, and (iii)
(

0 0
0 0

)

; (2.13)

see Figure 2.2. The codimensions of the corresponding conjugacy classes in
SL(2,R) are 1 in cases (i) and (ii), and 3 in case (iii). Note that the set of real
matrices that are exponentials of (i)-type matrices consists of the elliptic and
hyperbolic parts: rotation matrices (for µ ∈ iR) and hyperbolic rotations (for
µ ∈ R). Furthermore, hyperbolic rotations correspond to one-sheeted hyper-
boloids. Rotations in the clockwise and counterclockwise directions correspond
to different sheets of two-sheeted hyperboloids, and they belong to different
conjugacy classes in SL(2,R). (The rotation by 180◦ has a three-dimensional
stabilizer and corresponds to a one-point conjugacy class.) The group SL(2,R)
is topologically a solid torus, and the adjacency of conjugacy classes described
in Figure 2.2 is observed near both id and − id in this group.

The equality of the codimensions of the Virasoro coadjoint orbits in
vir

∗ and the codimensions of (the conjugacy classes of) the corresponding
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0

M1
M2

Fig. 2.2. The points M1, M2, and 0 in sl(2, R) (which is a local picture of the group
SL(2, R)) correspond to Virasoro orbits of types (i), (ii), and (iii) respectively.

monodromy matrices in SL(2,R) follows from the smooth dependence on a
parameter in the above classification. (The versal deformations of the Vira-
soro orbits can be defined in terms of the Jordan–Arnold normal forms of the
monodromy matrices depending on a parameter; cf. [15, 233, 306].) Alterna-
tively, one can describe the dimensions of the corresponding stabilizers; see
[202, 342]. To visualize (the three-dimensional transversal to) the set of the
Virasoro orbits, one can imagine the universal covering of SL(2,R) as a cylin-
der filled with an infinite number of copies of Figure 2.2, stacked one on top
of another, while the Z2-quotient keeps only “half” of this infinite cylinder.

Remark 2.14 Regarded as homogeneous spaces, the orbits of type (i) are
often denoted by Diff(S1)/S1, the notation Diff(S1)/R1 stands for (ii) (and
sometimes for the case µ ∈ R in (i)), and Diff(S1)/SL(2,R) corresponds to
(iii).

To see the reasoning for this, we describe the stabilizers for coadjoint or-
bits containing constant elements, i.e., Hill’s operators ∂2

θ +u(θ) with constant
potentials u(θ) ≡ p = const. For such an operator, the corresponding mon-
odromy matrix Mp ∈ SL(2,R) is given explicitly:

Mp =
(

cos(2π
√
p) 1√

p sin(2π
√
p)

−√
p sin(2π

√
p) cos(2π

√
p) ,

)

for p > 0 ,

Mp =
(

cosh(2π
√−p) 1√−p

sinh(2π
√−p)√−p sinh(2π

√−p) cosh(2π
√−p)

)

for p < 0 ,

and

M0 =
(

1 2π
0 1

)

for p = 0 .

One can see that for Hill’s differential operators with potentials p < 0 or p = 0
the stabilizer is R. In the case p > 0 it is the group S1 of rigid rotations, pro-
vided that Mp �= ± id ∈ SL(2,R). Finally, the stabilizer is three-dimensional,
once the monodromy Mp is plus or minus the identity matrix, i.e., the expo-
nential of type (iii) in the list (2.13). This can be the case only if p = m2/4
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for some m ∈ N. In the latter case, the stabilizer of the corresponding Hill’s
equation is the m-fold covering of PSL(2,R) in Diff(S1).

Finally, we note that the trace function tr : SL(2,R) → R is invariant on
conjugacy classes in SL(2,R) and it gives rise to a Casimir function on the
hyperplane {a = a0} ⊂ vir

∗ for the Lie–Poisson bracket: tr{a0∂
2
θ + u(θ)} :=

tr(M), where M is a monodromy matrix of the given Hill operator. Along
with the value of a, this is the only Casimir for generic Virasoro orbits, since
their codimension in the hyperplane {a = a0} is equal to 1.

2.4 The Virasoro–Bott Group and the Korteweg–de Vries
Equation

The Korteweg–de Vries (or KdV) equation is the nonlinear evolution equation

ut = −3uu′ − au′′′ , (2.14)

which describes traveling waves in a shallow canal. Here, u is a function of the
time variable t and one space variable θ, ut and u′ denote the corresponding
partial derivatives in t and θ, and a is a nonzero constant. A brief history of
this equation can be found in [294].

In this section we show how the Korteweg–de Vries equation appears as
the Euler equation with respect to a certain right-invariant metric on the
Virasoro–Bott group. Recall that the Euler equation with respect to a right-
invariant metric on a Lie group G is a dynamical system on the corresponding
Lie algebra g describing the evolution of the tangent vector along a geodesic on
G, where this vector is pulled back to the Lie algebra of G by right translation;
see Section I.4.

Consider the L2-inner product on the Virasoro algebra vir = Vect(S1)⊕R

defined by

〈(v(θ)∂θ, a), (w(θ)∂θ, c)〉 =
∫

S1
v(θ)w(θ)dθ + a · c . (2.15)

Extend this quadratic form to every tangent space on the Virasoro–Bott group
by right translations to define a (weak) right-invariant L2-metric on the group.

Theorem 2.15 ([305]) The Euler equation for the right-invariant L2-metric
on the Virasoro group is (the family of) the KdV equation:

ut = −3uu′ − au′′′ , (2.16)
at = 0 . (2.17)

Proof. According to Arnold’s Theorem I.4.14, the Euler equation on g∗ for
the right-invariant metric on the group G has the form
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d

dt
m(t) = ad∗

A−1m(t) m(t) , (2.18)

where m(t) is a point in g∗, and A : g → g∗ is the inertia operator defined by
the metric (using the left-invariant metric would give the minus sign in the
equation; cf. Remark I.4.16).

In the Virasoro coadjoint action, an element (v∂θ, c) ∈ vir of the Virasoro
algebra acts on an element (u(dθ)2, a) ∈ vir

∗ of the dual space via

ad∗
(v∂θ,c)(u(dθ)2, a) = ((−2v′u− vu′ − av′′′)(dθ)2, 0) ;

see equation (2.8). Furthermore, the L2-inner product gives rise to the “iden-
tity” inertia operator A : vir → vir

∗:

(u∂θ, a) �→ (u(dθ)2, a) ,

mapping a vector field u(θ)∂θ to the quadratic differential u(θ)(dθ)2 with the
same function u(θ).

Then, substituting (u(dθ)2, a) for m, we see that the Euler equation (2.18)
becomes

d

dt
(u(dθ)2, a) = ((−3uu′ − au′′′)(dθ)2, 0) ,

from which one immediately reads off the KdV equation (2.16), (2.17). �

The component a does not change with time (see equation (2.17))and plays
the role of a constant parameter in the KdV equation. It has the physical
meaning of the characteristic thickness of the shallow-water approximation
(see, e.g., [228], p. 169).

Remark 2.16 One can study more general metrics on the Virasoro algebra,
some of which are of particular interest in mathematical physics. Consider, for
instance, the following two-parameter family of weighted H1

α,β-inner products
on vir:

〈(v∂θ, b), (w∂θ, c)〉H1
α,β

=
∫

S1
(α vw + β v′w′) dθ + bc .

The case α = 1, β = 0 corresponds to the L2 inner product above, while
α = β = 1 corresponds to the H1 product.

Theorem 2.17 ([192]) The Euler equations for the right-invariant H1
α,β-

metric (with α �= 0) on the Virasoro group are given by the following system:

α(ut + 3uu′) − β((u′′)t + 2u′u′′ + uu′′′) + au′′′ = 0 , (2.19)
at = 0 . (2.20)
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Exercise 2.18 Give a proof of the latter theorem along the lines of the proof
of the L2-case above. (Hint: The inertia operator for the weighted H1 metric
is

A : (v∂θ, a) �→ ((Λv)(dθ)2, a),

where Λ := α − β∂2
θ is a second-order differential operator. Verify that in

terms of v = Λ−1u the Euler equation has the form

d

dt
(Λv) = −2(Λv)v′ − (Λv′)v + av′′′ ,

which is equivalent to equation (2.19).)

Remark 2.19 For α = 1, β = 0, equation (2.19) is the KdV equation (2.16).
For α = β = 1, one recovers the Camassa–Holm equation (see [268]). For
α = 0, β = 1, equation (2.19) becomes the Hunter–Saxton equation. We note
that in the case of α = 0, the H1

α,β-metric becomes the homogeneous Ḣ1-
metric, which is degenerate. Therefore, to define the Euler equations one has
to pass to the homogeneous space ̂Diff(S1)/S1 (or Diff(S1)/S1) and define the
geodesic flow on it; see details in [192]. It turns out that the space Diff(S1)/S1

equipped with the Ḣ1-metric is isometric to an open subset of an L2-sphere;
see [237, 238]. This isometry, in particular, allows one to extend solutions of
the Hunter–Saxton equation beyond breaking time and interpret them after
wave-breaking in an appropriate weak sense.

We also note that the case a = 0 corresponds to the nonextended Lie
algebra Vect(S1) of vector fields on the circle, rather than to the Virasoro
algebra vir. In the nonextended case, depending on the values of α and β,
one obtains the Hopf (or inviscid Burgers) equation ut + 3uu′ = 0 or the
nonextended Camassa–Holm equation [69, 127]

ut + 3uu′ + 2u′u′′ + uu′′′ + (u′′)t = 0 .

2.5 The Bi-Hamiltonian Structure of the KdV Equation

The KdV equation is not only a Hamiltonian system; it also exhibits strong
integrability properties. As we discussed before, there are various definitions
of what an integrable infinite-dimensional system is: one can require from
the system either the existence of action-angle coordinates, or the existence of
“sufficiently many” independent integrals of motion, or some other properties,
which may differ substantially in infinite dimensions. In this section we show
that the KdV equation is not only Hamiltonian, but in fact bi-Hamiltonian,
thus exhibiting one of the “strongest forms” of integrability. More precisely,
in addition to being Hamiltonian with respect to the Lie–Poisson bracket on
the dual space vir

∗, this equation turns out to be Hamiltonian with respect
to another compatible Poisson structure on the same space.

Recall that for any Lie algebra g, every point m0 ∈ g∗ gives rise to a
“constant” Poisson bracket { , }0 on g∗ by “freezing” the usual Lie–Poisson
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bracket { , }LP at the point m0. The constant Poisson bracket is defined for
smooth functions f, g on g∗ by

{f, g}0(m) := 〈[dfm, dgm],m0〉 ;

see Section I.4.4. Furthermore, the Poisson brackets { , }LP and { , }0 are
compatible for all choices of the point m0 (see Lemma I.4.21). The main goal
of this section is to show that for a certain choice of the “freezing point”
m0 ∈ vir

∗, the KdV equation is Hamiltonian with respect to the constant
Poisson structure { , }0. Note that other equations discussed above (Camassa–
Holm, Hunter–Saxton) have a similar bi-Hamiltonian structure, but related
to different choices of the “freezing point”; see [192].

Theorem 2.20 The KdV equation (2.14) is Hamiltonian with respect to the
constant Poisson bracket on vir

∗ with the “freezing point” m0 = (1
2 (dθ)2, 0) ∈

vir
∗.

Proof. Let F (u, a) be a function on vir
∗ and let (v∂θ, b) :=

(δF/δu, δF/δa) ∈ vir be the (variational) derivative dF(u(dθ)2,a) of F at
(u(dθ)2, a). Then the Hamiltonian equation with the Hamiltonian function
F , computed with respect to the constant Poisson structure “frozen” at
(u0(dx)2, a0), has the form

d

dt
(u(dθ)2, a) = ad∗

(v∂θ,b)(u0(dθ)2, a0) = −
(

(2u0v
′ + (u0)′v + a0v

′′′)(dθ)2, 0
)

.

(Here we use Remark I.4.22 and the explicit form (2.8) of the coadjoint action
ad∗ for the Virasoro algebra.)

Now specifying the “freezing” point to (u0(dθ)2, a0) = (1
2 (dθ)2, 0) ∈ vir

∗,
we come to

d

dt
(u(dθ)2, a) = −(v′(dθ)2, 0) , (2.21)

where v is defined as the “partial derivative” of the functional F , i.e., v∂θ =
δF/δu.

Next, consider the functional F of the form

F (u, a) =
∫

S1

(

1
2
u3 − a

2
(u′)2

)

dθ .

By definition, the variational derivative (δF/δu, δF/δa) ∈ vir of the functional
F is determined by the following identity satisfied for any (ξ(dθ)2, c) ∈ vir

∗:
〈

(ξ(dθ)2, c) ,
(

δF

δu
,
δF

δa

)〉

=
d

dε

∣

∣

∣

ε=0
F (u+ εξ, a+ εc).

For equation (2.21) we need only the partial derivative δF/δu, and we find it
as follows:
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d

dε

∣

∣

∣

ε=0
F (u+ εξ, a) =

d

dε

∣

∣

∣

ε=0

∫

S1

(

1
2
(u+ εξ)3 − a

2
(u′ + εξ′)2

)

dθ

=
∫

S1

(

3
2
u2ξ − au′ξ′

)

dθ =
∫

S1

(

3
2
u2ξ + au′′ξ

)

dθ

=
〈

((

3
2
u2 + au′′

)

∂θ, a

)

, (ξ(dθ)2, 0)
〉

.

Hence we obtain the derivative δF/δu = (3
2u

2 + au′′)∂θ. Since v∂θ = δF/δu,
now we substitute v = 3

2u
2 + au′′ into the equation (2.21), which gives

ut = −3uu′ − au′′′ ,

the KdV equation. �

Corollary 2.21 The KdV equation is bi-Hamiltonian with respect to the com-
patible Poisson structures { , }LP and { , }0 on vir

∗, where { , }0 denotes
the constant Poisson structure, frozen in the point (1

2 (dθ)2, 0) ∈ vir
∗.

The constant bracket for the KdV is usually called the first KdV structure,
or the Gardner–Faddeev–Zakharov bracket [140, 392], while the linear Lie–
Poisson structure is called the second KdV, or the Magri bracket [246]. The
analogues of these structures for higher-order differential operators are called
the first and second Adler–Gelfand–Dickey structures; see Section 4.

Remark 2.22 Similarly, one can show that both the Camassa–Holm and
Hunter–Saxton equations are bi-Hamiltonian with respect to the Lie–Poisson
structure and a constant structure on vir

∗. The respective “freezing” points
of the constant Poisson bracket on vir

∗ are m1 = (1
2 (dθ)2, 1) for the

Camassa–Holm equation and m2 = (0, 1) for the Hunter–Saxton equation (see
Figure 2.3).

KdV {u(θ)(dθ)2}
0

HS CH

a

Fig. 2.3. The freezing points of the constant Poisson bracket on vir
∗ that give rise

to the bi-Hamiltonian structures for the KdV, the Camassa–Holm, and the Hunter–
Saxton equations respectively.
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Remark 2.23 The bi-Hamiltonian nature of the KdV equation allows one to
obtain the whole hierarchy of the KdV Hamiltonians via the Lenard–Magri
scheme discussed in the introduction.

Namely, consider the linear combination of the Poisson brackets for the
KdV: the Virasoro Lie–Poisson and the constant ones:

{ , }λ := { , }LP + λ2{ , }0 .

Since the corresponding brackets are compatible, { , }λ defines a Poisson
bracket for all λ ∈ R, which is the usual Lie–Poisson bracket on vir

∗ shifted
in the direction of m0 = (1

2 (dθ)2, 0) ∈ vir
∗. (Note that one uses here the

parameter λ2 rather than λ for the expansion below to have a simpler form.)
Recall that we think of the dual space vir

∗ = {a∂2
θ + u(θ)} as the space of

Hill’s operators. The monodromy of a differential operator ∂2
θ + u(θ), which

is a matrix in SL(2,R), changes to a conjugate matrix under the Virasoro
coadjoint action (see Theorem 2.12). Therefore, the trace of the monodromy
is a Casimir function for the Poisson bracket { , }LP on (the hyperplane a = 1
in) the dual space vir

∗. The same reasoning allows one to obtain the following
result.

Lemma 2.24 Let Mλ denote the monodromy of the differential operator
d2

dθ2 + u(θ) − λ2. Then the function

hλ := log(tr(Mλ))

is a Casimir function for the Poisson bracket { , }λ on the space vir
∗.

Indeed, { , }λ is the usual Lie–Poisson bracket on vir
∗ shifted in the direction

of m0 = (0·∂2
θ +1/2) ∈ vir

∗, and so, instead of the Lie–Poisson Casimir tr(M),
we can use the shifted Casimir tr(Mλ) or any function of it, in particular,
log(tr(Mλ)).

Finally, by expanding hλ into a power series in λ−1 one produces first
integrals of the KdV equation:

hλ = 2πλ−
∞
∑

n=1

h2n−1λ
1−2n ,

where

h1 =
1
2

∫

S1
u dθ, h3 =

1
8

∫

S1
u2 dθ, h5 =

1
16

∫

S1
(u3 − 1

2
(u′)2) dθ, . . . ;

see, e.g., [31, 37].
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2.6 Bibliographical Notes

The cohomology of the Lie algebra of vector fields on the circle was computed
by Gelfand and Fuchs in [143], where the term Virasoro algebra was coined
after the paper [376] (see also [118, 138]). The Bott cocycle on the group
Diff(S1) first appeared in [53].

The group Diff(S1) (and hence the Virasoro group) does not admit a
natural complexification, i.e., a group corresponding to the complexified Lie
algebra Vect(S1)C; see [205, 322] and Example I.1.25. However, for a cone in
this complex Lie algebra consisting of those vector fields that “point outside of
the circle,” there exists a semigroup. This annulus semigroup appeared in the
papers of Neretin [291] and Segal [343]. For more details on representations
and applications of the Virasoro group and algebra see [292, 322, 153].

The classification of the coadjoint orbits of the Virasoro group can be
found in the literature under different guises: as a classification of projective
structures on the circle by Kuiper [223], as a classification of Hill’s operators
by Lazutkin and Pankratova [233], and in the present form, as Virasoro orbits,
in the papers by Kirillov [202, 205] and Segal [342]; see also [164, 304, 388, 32].
The adjoint orbits of the diffeomorphism group of the circle were described in
[164].

The Virasoro coadjoint orbit Diff(S1)/S1 can also be understood as the
universal Teichmüller space [326]; cf. [284, 285]. Curvatures of a Kähler met-
ric on this orbit were described in [208], while its complex Hilbert manifold
structure is discussed in [338, 363]. The Virasoro group itself admits a com-
plex structure and can be viewed as a holomorphic C

∗-bundle over its orbit
Diff(S1)/S1 [236].

There is a vast literature related to the geometry and Hamiltonian prop-
erties of the KdV equation, which is one of the key examples in any book
on soliton theory. The description of the KdV equation, as well as its super-
analogue, as an Euler–Arnold equation on the Virasoro group with respect to
the L2-metric can be found in [305, 344, 346]. More general, H1-type, metrics
on this group were considered in [268, 189, 192], and we followed the latter
paper in our exposition. Regularity properties of the Riemannian exponential
maps for these and other Sobolev metrics on the Virasoro and the diffeomor-
phism groups are described in [73, 74].

The Adler–Gelfand–Dickey structures [3, 141, 142] are the generalizations
of the KdV Poisson structures from Hill’s operators to linear differential op-
erators of higher order, and we discuss them in Section 4.

For the algebro-geometric approach to constructing solutions of the KdV
equation we address the reader to [216]; the description of the correspond-
ing infinite-dimensional Grassmann manifolds can be found in [347] and the
references therein. Various analytical aspects of the KdV theory, its spectral
theory, and the angle-action variables are discussed in the book [182]. The
geometry related to the KAM theory for near-integrable Hamiltonian systems,
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applied in the infinite-dimensional context, e.g., to the KdV-type equations,
is discussed in [224, 182].
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3 Groups of Diffeomorphisms

Diffeomorphism groups constitute one of the most intriguing classes of infinite-
dimensional Lie groups. They often serve as configuration spaces for various
equations of fluid and gas dynamics. In this section, our main objects of study
are the groups of volume-preserving diffeomorphisms, in particular their geom-
etry and coadjoint orbits. The Euler geodesic equations for such groups and
for their generalizations deliver the Euler equations for ideal incompressible
fluids on manifolds, as well as the equations of compressible fluids and mag-
netohydrodynamics. We also discuss how invariants of the coadjoint action of
certain diffeomorphism groups are related to knot theory and to the symplec-
tic structure on the space of immersed curves in R

3.

3.1 The Group of Volume-Preserving Diffeomorphisms
and Its Coadjoint Representation

Let M be an n-dimensional compact manifold (possibly with boundary) and
let µ be a volume form on M .

Definition 3.1 The group of volume-preserving diffeomorphisms of the mani-
fold M consists of all diffeomorphisms of M preserving the volume form µ:

SDiff(M) = {ϕ ∈ Diff(M) | ϕ∗µ = µ} ,

where the group multiplication is the composition of diffeomorphisms. (When-
ever this group of diffeomorphisms is not connected, our notation SDiff stands
for the connected component of the identity of this group.)

Exercise 3.2 The corresponding Lie algebra SVect(M) consists of
divergence-free vector fields on M :

SVect(M) = {ξ ∈ Vect(M) | Lξµ = 0 and ξ is tangent to ∂M} ,

where the algebra commutator is the negative of the Lie bracket of two vector
fields: [ξ, η] = −Lξη; cf. Example I.2.2.

It turns out that the (smooth part of the) dual of the Lie algebra SVect(M)
has a natural geometric description.

Proposition 3.3 The smooth part of the dual of the Lie algebra SVect(M)
is naturally identified with the space Ω1(M)/dΩ0(M) of smooth 1-forms on
M modulo exact 1-forms on M . The pairing is as follows:

〈ξ, [u]〉 =
∫

M

ιξu ∧ µ ,

where u ∈ Ω1(M) is any 1-form from the coset [u].
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In the coadjoint representation, a diffeomorphism ϕ ∈ SDiff(M) acts by
“change of coordinates”: it sends a coset [u] ∈ Ω1(M)/dΩ0(M) to the coset
[(ϕ−1)∗u]. Accordingly, the coadjoint action of SVect(M) on Ω1(M)/dΩ0(M)
is given by the negative of the Lie derivative:

ad∗
ξ : [u] �→ −[Lξu]

for any divergence-free vector field ξ on M .

Proof. Assume first that the manifold M has no boundary. Note that
divergence-free vector fields on M are in one-to-one correspondence with the
space of all closed (n − 1)-forms on M . Indeed, any vector field ξ on M
defines an (n − 1)-form νξ via interior product with the volume form on M :
νξ = ιξµ. Moreover, this form νξ is closed for a divergence-free field ξ, since
0 = Lξµ = dιξµ+ ιξdµ = dνξ.

The pairing between Ω1(M)/dΩ0(M) and SVect(M) can now be rewritten
as

〈ξ, [u]〉 =
∫

M

u ∧ νξ

for any representative 1-form u. Two different representatives u and ũ differ
by a differential df and give the same pairing. Indeed, since the form νξ is
closed, so is df ∧ νξ. Then the Stokes formula gives

〈ξ, df〉 =
∫

M

df ∧ νξ =
∫

M

d(f ∧ νξ) = 0

for M without boundary.
In the case of a manifold M with boundary ∂M , the restriction of the

closed (n − 1)-form νξ vanishes on ∂M . Then the application of the Stokes
formula gives the same result as above. Thus, the pairing between SVect(M)
and Ω1(M)/dΩ0(M) is indeed well defined.

Finally, recall that in the adjoint representation, the group Diff(M) acts
on its Lie algebra Vect(M) by coordinate changes: Adϕ(ξ) = ϕ∗ξ◦ϕ−1. Hence
we obtain

〈ξ,Ad∗
ϕ[u]〉 = 〈Adϕ−1 ξ, [u]〉 =

∫

M

u ∧ ιϕ−1
∗ ξµ =

∫

M

(ϕ−1)∗u ∧ ιξ
(

(ϕ−1)∗µ
)

.

Since ϕ preserves the volume form µ, we have Ad∗
ϕ[u] = [(ϕ−1)∗u]. The state-

ment on infinitesimal coadjoint action of the Lie algebra SVect(M) readily
follows.

Note also that the actions Ad∗ and ad∗ are well defined on the cosets,
since changes of coordinates commute with taking d. �
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Exercise 3.4 Complete the proof of Proposition 3.3 in the case of a manifold
M with boundary. (Hint: in order to show that the restriction of the closed
(n − 1)-form νξ vanishes on ∂M , use the fact that the field ξ is tangent to
∂M .)

3.2 The Euler Equation of an Ideal Incompressible Fluid

Imagine an ideal incompressible fluid occupying a domain M in R
n.

Definition 3.5 The fluid motion is described by a velocity field v(t, x) and
a pressure function p(t, x) that satisfy the classical Euler equation of an ideal
incompressible fluid:

∂tv + (v,∇)v = −∇p , (3.22)

where div v = 0 and the field v is tangent to the boundary of M . The function
p is defined uniquely modulo an additive constant by the conditions that v
have zero divergence and be tangent to the boundary.

In Euclidean coordinates, equation (3.22) reads

∂tvi +
n
∑

j=1

vj
∂vi

∂xj
= − ∂p

∂xi
.

The same equation describes the motion of an ideal incompressible fluid
filling an arbitrary Riemannian manifold M equipped with a volume form µ.
In the latter case, v is a divergence-free vector field on M , the notation (v,∇)v
stands for the Riemannian covariant derivative ∇vv of the field v in the di-
rection of itself, and div v is taken with respect to the volume form µ.

Remark 3.6 Equation (3.22) has a natural interpretation as a geodesic equa-
tion [12, 18]. Indeed, consider the flow (t, x) �→ φ(t, x) defined by the velocity
field v(t, x), which describes the motion of fluid particles:

∂tφ(t, x) = v(t, φ(t, x)), φ(0, x) = x

for all x ∈ M . The chain rule immediately gives

∂2
t φ(t, x) = (∂tv + (∂xv)(∂tφ))(t, φ(t, x)) = (∂tv + (v,∇)v)(t, φ(t, x)) ,

and hence the Euler equation (3.22) is equivalent to

∂2
t φ(t, x) = −(∇p)(t, φ(t, x)),

while the incompressibility condition div v = 0 becomes det(∂xφ(t, x)) = 1.
The latter form of the Euler equation (for a smooth flow φ(t, x)) says that the
acceleration of the flow is given by the gradient of a function. Therefore this
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acceleration is L2-orthogonal to the set of volume-preserving diffeomorphisms
(or, rather, to its tangent space, the space of divergence-free fields):

∫

M

(∇p, ξ)µ = 0

for all divergence-free vector fields ξ and all smooth functions p on M . In other
words, the fluid motion φ(t, .) is a geodesic line on the set of volume-preserving
diffeomorphisms of the domain M with respect to the induced L2-metric on
the group SDiff(M). This L2-metric is the kinetic energy of the fluid flow:
for a velocity field v its energy is E(v) = 1

2

∫

M
(v, v)µ. Fluid flows describe

geodesics on the group SDiff(M), since they extremize this energy according
to the least action principle.

In the case of an arbitrary Riemannian manifold M , the Euler equation
defines the geodesic flow on the group of volume-preserving diffeomorphisms of
M with respect to the right-invariant L2-metric on SDiff(M); see [12, 96, 24].

3.3 The Hamiltonian Structure and First Integrals of the Euler
Equations for an Incompressible Fluid

The geodesic properties of the Euler equation can also be described within
the Hamiltonian framework. The latter turns out to be useful in establishing
numerous conservation laws for flows of an ideal fluid.

Consider the Lie algebra SVect(M) of divergence-free vector fields on a
compact manifold M and its dual space SVect(M)∗ = Ω1(M)/dΩ0(M) of
1-forms modulo exact 1-forms. This algebra is equipped with the L2 quadratic
form

(ξ1, ξ2)SVect =
∫

M

(ξ1, ξ2)µ , (3.23)

which is induced by fixing a Riemannian metric ( , ) on the manifold M . The
corresponding inertia operator

A : SVect(M) → Ω1(M)/dΩ0(M)

sends a vector field ξ to the coset [u] of the 1-form u that is obtained from the
field ξ by “raising indices” with the help of the metric: u( . ) = (ξ, . ). (In R

n

with the standard Euclidean metric, the inertia operator A maps a vector field
ξ =

∑

ξi∂/∂xi to the 1-form uξ =
∑

ξidxi.) Since the Riemannian metric is
nondegenerate, so is the map A : ξ �→ [u]. Note that in each coset [u] there
is a unique representative 1-form, which is obtained by raising indices from a
divergence-free field.

Lemma 3.7 Let H be the quadratic Hamiltonian on Ω1(M)/dΩ0(M) defined
by the inertia operator A:
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H([u]) =
1
2
〈A−1[u], [u]〉 .

Then the Hamiltonian equation on Ω1(M)/dΩ0(M) for the Hamiltonian func-
tion −H with respect to the Lie–Poisson bracket is the following:

d

dt
[u] = −Lξ[u] , (3.24)

where [u] is the coset of the 1-form u related to the divergence-free field ξ with
the help of the metric, u( . ) = (ξ, . ).

Proof. Recall from Corollary I.4.11 that the Hamiltonian equation with
respect to the function −H is given by

d

dt
[u] = − ad∗

(−A−1[u])[u] = ad∗
A−1[u][u] .

The coadjoint action of the Lie algebra SVect(M) on its dual is given by the
negative of the Lie derivative, so that we get equation (3.24). �

Corollary 3.8 The Hamiltonian equation (3.24) is equivalent to the Euler
equation for an ideal incompressible fluid on the manifold M .

Proof. Rewriting equation (3.24) in terms of the coset representative, the
1-form u ∈ [u], gives

∂tu = −Lξu− dp̃ (3.25)

for a time-dependent function p̃. Passing back to vector fields, i.e., applying
A−1 to both sides of equation (3.25), we get our final equation

∂tξ = −(ξ,∇)ξ −∇p .

(Here we use the fact that “raising indices” sends the covariant derivative
(ξ,∇)ξ to the Lie derivative Lξu up to a full differential; see, e.g., [24].) The
latter is the Euler equation for an ideal incompressible fluid on M , where p is
interpreted as the pressure function. �

This description of the dual space and the Euler hydrodynamics equation
allows one to describe certain first integrals of the fluid motion practically
without calculations. Indeed, start with the following proposition, which pro-
vides certain Casimir functions for the coadjoint action of the group SDiff(M).
Let M be a compact manifold equipped with a volume form µ.

Proposition 3.9 ([307]) If the manifold M is of odd dimension 2m+1, then
the function
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A

[u]

u

g = SVect(M)

Ω1(M)
dΩ0(M)

g∗ = Ω1(M)/dΩ0(M)

ξ

Fig. 3.1. Projection of u ∈ Ω1(M) to the coset [u] ∈ Ω1(M)/dΩ0(M). The inertia
operator A sends a vector field ξ to the coset [u] of 1-forms.

I([u]) =
∫

M

u ∧ (du)m

on the space of cosets, Ω1(M)/dΩ0(M) = SVect(M)∗, is invariant under the
coadjoint action of the group SDiff(M).

If dim(M) = 2m, then for each k ∈ N, the function

Ik([u]) =
∫

M

(

(du)m

µ

)k

µ

on the space of cosets is invariant under the action of the group SDiff(M).

Here, (du)m/µ denotes the ratio of a 2m-form over the volume form on
M . This ratio is a function, which can be integrated against the volume form
µ on M .

Proof. First we have to check that I and Ik are well-defined functionals on
Ω1(M)/dΩ0(M). Note that for any exact 1-form df we have I(df) = 0 and
Ik(df) = 0. Similarly, one can see that each of the functionals I and Ik depends
not on a representative, but just on the corresponding coset, e.g., I(u) = I(u+
df) = I([u]). Furthermore, the group SDiff(M) acts on Ω1(M)/dΩ0(M) by
change of coordinates. Since the integrals I and Ik are defined in a coordinate-
free way, they are indeed invariant under this action. �

Corollary 3.10 The functionals I and, respectively, Ik on Ω1(M)/dΩ0(M)
are first integrals of the Euler equation for an ideal incompressible fluid filling
M of odd and, respectively, even dimension.

Proof. As we have seen in Corollary 3.8, the Euler equation is Hamiltonian
with respect to the usual Lie–Poisson bracket on the dual space of the Lie
algebra SVect(M). Therefore its flow lines are always tangent to coadjoint
orbits of the group SDiff(M). But by Proposition 3.9, the functions I and
Ik are constant on the coadjoint orbits and hence constant along the flow
lines. �
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Remark 3.11 Being Casimirs, the functionals I and Ik give conservation
laws for any Hamiltonian equation on SVect(M)∗ = Ω1(M)/dΩ0(M) with
respect to the Lie–Poisson bracket. In particular, the functionals I and Ik

are first integrals of the Euler equation for an arbitrary metric on M . These
integrals manifest the “kinematic symmetries” of the hydrodynamical system,
while the energy is an invariant related to the system’s “dynamics.”

Example 3.12 Specifying to the case of a three-dimensional domain M ⊂
R

3, we see that the function

I(ξ) =
∫

M

u ∧ du ,

where u and ξ are related by means of the Euclidean metric, is a first integral
of the Euler equation. A short direct calculation allows one to rewrite I(ξ) in
the form

I(ξ) =
∫

M

(ξ, curl ξ) d3x .

The latter integral has a natural geometric meaning of helicity of the vector
field curl ξ:

Definition 3.13 Let M be a three-dimensional compact manifold with a
volume form µ and suppose that the second de Rham cohomology group of
M vanishes: H2(M,R) = 0. Then, if η is a divergence-free vector field on M
tangent to the boundary of M , the corresponding 2-form ωη = ιηµ is closed,
and hence exact. So we can find a 1-form α on M such that ωη = dα. The
helicity of the vector field η is defined by

Hel(η) =
∫

M

α ∧ dα =
∫

M

d−1(ωη) ∧ ωη .

Exercise 3.14 Show that the helicity does not depend on the ambiguity in
the definition of the 1-form α = d−1ωη.

The helicity of a vector field η has a topological interpretation as the asymp-
totic Hopf invariant, or “average linking number” of the trajectories of the
vector field η (see [16, 24, 269] for details).

Example 3.15 Similarly, specifying to the case of a two-dimensional domain
M ⊂ R

2, we find infinitely many first integrals of the Euler equation, namely

Ik(ξ) =
∫

M

(curl ξ)kd2x ,

where curl ξ := ∂ξ1
∂x2

− ∂ξ2
∂x1

is the vorticity function on M ⊂ R
2.
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Remark 3.16 The functions I and Ik on Ω1(M)/dΩ0(M) are invariant un-
der the coadjoint action of the group SDiff(M). However, it should be noted
that they do not form a complete set of invariants of the coadjoint repre-
sentation. One can construct parametrized families of orbits on which these
functions take the same values.

Exercise 3.17 Prove that for an odd-dimensional manifold M not only is
the integral I([u]) over the entire manifold M invariant under the coadjoint
action of SDiff(M), but so are the integrals

IC([u]) =
∫

C

u ∧ (du)m

over every set C invariant with respect to the vorticity vector field η = curl ξ.
This field is defined for any odd n = 2m+1 as the kernel field of the 2m-form
(du)m on the manifold M : ιηµ = (du)m, where the 1-form u is related to the
vector field ξ with the help of the Riemannian metric.

Certain nonanalytic invariants of the coadjoint action on SVect(M)∗ can
be extracted from the ergodic description of the helicity functional as the
average of pairwise linkings of the trajectories of the field η; see [16]. In the
even-dimensional case, slightly more general invariants than Ik are obtained
by replacing ((du)m/µ)k with f((du)m/µ) for any function f : R → R.

The full classification of the coadjoint orbits of the diffeomorphism groups
is still an open problem [24, 205]. Below we show that a complete set of such
invariant functionals defined on singular coadjoint orbits of this group would
include all knot and link invariants!

3.4 Semidirect Products: The Group Setting for an Ideal
Magnetohydrodynamics and Compressible Fluids

It is curious to note that the similarity pointed out by V. Arnold between
the Euler top on the group SO(3) and the Euler ideal fluid equations on
SDiff(M) has a “magnetic analogue”: a parallelism between the Kirchhoff
and magnetohydrodynamics (MHD) equations; see the table in Example 4.18
of Chapter I.

The latter equations are both related to the groups that are semidirect
products. The Kirchhoff equations for the motion of a rigid body in a fluid
are associated with the group E(3) = SO(3)� R

3 of Euclidean motions of the
three-dimensional space. In this group, a Euclidean motion is described by a
pair (a, b), a rotation a ∈ SO(3) and a translation by a vector b ∈ R

3, so that
the group multiplication law between two such pairs,

(a2, b2) ◦ (a1, b1) = (a2a1, b2 + a2b1) ,

is determined by the consecutive application of motions.
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Similarly, magnetohydrodynamics is governed by the group SDiff(M) �

SVect(M). Elements of the corresponding Lie algebra are pairs of divergence-
free vector fields (v,B), which can be interpreted as the velocity field v and
the magnetic field B.

In the idealized setting, an inviscid incompressible fluid obeying hydro-
dynamical principles transports a magnetic field. In turn, the medium itself
experiences a reciprocal influence of the magnetic field. The evolution is de-
scribed by the following system of Maxwell’s equations.

Definition 3.18 Consider an electrically conducting incompressible fluid
that fills some domain M ⊂ R

3 and transports a divergence-free magnetic
field B. Then the evolution of the field B and of the fluid velocity field v is
described by the system of ideal magnetohydrodynamics (MHD) equations

∂tv = −(v,∇)v + (curl B) ×B −∇p ,
∂tB = −LvB ,

where div B = div v = 0 with respect to the standard volume form µ = d3x
in M and the coefficients are normalized by a suitable choice of units.

Here, the second equation is the definition of the “frozenness” of the mag-
netic field B into the medium, and LvB denotes the Lie bracket of two vector
fields. (Note that a frozenness-type condition usually indicates the structure
of a semidirect product in the corresponding symmetry group; cf. [253].) The
term (curl B) × B represents the Lorentz force j × B, which acts on a unit
charge moving with velocity j in the magnetic field B. The motion of electric
charges produces the electrical current field j proportional to curl B.

Theorem 3.19 ([377, 253]) The magnetohydrodynamics equations are the
Euler equations corresponding to the right-invariant metric on the group
SDiff(M) � SVect(M) generated by the sum of the kinetic and magnetic
energies

E(v,B) :=
1
2

∫

M

[(v, v) + (B,B)] µ

on its Lie algebra of pairs (v,B).

A somewhat similar description is available for compressible fluids as well.
Consider, for instance, barotropic gases or fluids, whose pressure is a fixed
function of density.

Definition 3.20 The equations of motion of a barotropic gas (or fluid) on a
Riemannian manifold M are given by

{

ρ ∂tv = −ρ (v,∇)v −∇h(ρ) ,
∂tρ+ div(ρ · v) = 0 ,

(3.26)
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where ρ ∈ C∞(M) is the density of the gas, the time-dependent vector field v
is the velocity vector field, and h : C∞(M) → C∞(M) is the fixed correspon-
dence between the density function ρ and the pressure function p = h(ρ). The
equations of barotropic gas dynamics usually correspond to a specific choice
of h(ρ) = const · ρa. For an ideal gas, a = 1 + 2

D , where D is the number of
degrees of freedom of a molecule. For instance, for monatomic gases (argon,
krypton) D = 3 and a = 5/3, while for diatomic gases (such as nitrogen,
oxygen, and hence approximately for air) D = 5 and a = 7/5.

To describe these equations as Euler equations we note first that the main
player here will be the group Diff(M) of all (not only volume-preserving)
diffeomorphisms of a manifold M . Its Lie algebra Vect(M) consists of all
smooth vector fields on M .

For the barotropic gas dynamics we need a certain extension of this group.
Namely, consider the semidirect product group G = Diff(M) �C∞(M). This
is the group consisting of pairs (ϕ, f), where ϕ is a diffeomorphism of the
manifold M , and f is a smooth function. The product on the group Diff(M)�

C∞(M) is given by

(ϕ, f) · (ψ, g) = (ϕ ◦ ψ,ϕ∗g + f) ,

where ϕ∗g = g ◦ ϕ−1 denotes the pushforward of the function g by the dif-
feomorphism ϕ (or, equivalently, the pullback by ϕ−1). The smoothness of
the group product on Diff(M) �C∞(M) follows from that of the product on
Diff(M) and that of the action of Diff(M) on C∞(M).

ϕ

Diff(M)

(ϕ, f)

ϕ ◦ ψ

(ϕ ◦ ψ,ϕ∗g + f)

ψ

(ψ, g)

Diff(M) � C∞(M)

Fig. 3.2. As a topological space, the semidirect product Diff(M) � C∞(M) is the
product of the spaces Diff(M) and C∞(M). The group structure is not a direct
product, but is twisted by the action of Diff(M) on C∞(M) by pushforwards.

The Lie algebra g of the group Diff(M) � C∞(M) is also a semidirect
product, the Lie algebra Vect(M) � C∞(M). As a vector space, it is the
direct sum Vect(M) ⊕ C∞(M), while the Lie algebra structure on this space
encompasses the natural action of vector fields on functions.
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Exercise 3.21 Find explicit formulas for the adjoint representation of the
group Diff(M) � C∞(M) and the Lie bracket of its algebra. (Hint: for more
details on this and the following exercises, see Appendix A.7.)

To describe the corresponding dual space, we return first to the group
Diff(M) of all diffeomorphisms, whose Lie algebra Vect(M) consists of all
smooth vector fields.

Exercise 3.22 Show that the (smooth) dual of the Lie algebra Vect(M) can
be naturally identified with the space Ω1(M) ⊗C∞(M) Ω

n(M). Elements of
this space are linear combinations of tensor products of 1-forms with n-forms
on M , where given a 1-form α and an n-form µ we identify the elements
f ·α⊗µ with α⊗ f ·µ for any smooth function f . The pairing between vector
fields on M and elements of this space Ω1(M) ⊗C∞(M) Ω

n(M) =: Vect(M)∗

is given by

〈ξ, α⊗ µ〉 =
∫

M

(ιξα)µ .

The naturality of the pairing means that the coadjoint action of Diff(M) is
the change of coordinates by a diffeomorphism.

Now the smooth part of the dual of the semidirect product Lie algebra
Vect(M)�C∞(M) can be identified with the space (Ω1(M)⊗C∞(M)Ω

n(M))⊕
Ωn(M) via the pairing

〈(ξ, f), (α⊗ µ, ν)〉 =
∫

M

(ιξα)µ+
∫

M

fν .

Exercise 3.23 Show that the coadjoint action of the group Diff(M)�C∞(M)
on the space (Ω1(M) ⊗C∞(M) Ω

n(M)) ⊕Ωn(M) is given by

Ad∗
(ϕ,f)−1(α⊗ η, ν) = (ϕ∗α⊗ ϕ∗η + ϕ∗df ⊗ ϕ∗ν, ϕ∗ν) . (3.27)

In order to define a dynamical system related to this group, we need some
additional data. Fix a Riemannian metric ( , ) and a volume form µ on the
manifold M . Furthermore, fix a function h : C∞(M) → C∞(M) that assigns
to a density ρ of the fluid its pressure h(ρ).

Define the Hamiltonian functional H : Vect(M) ⊕ C∞(M) → R by

H(ξ, ρ) =
∫

M

(

1
2
(ξ, ξ) ρ+ ρΦ(ρ)

)

µ ,

where Φ(ρ) is chosen such that ρ2Φ′(ρ) = h(ρ).

Exercise 3.24 Show that the Euler equation corresponding to the lift of the
Hamiltonian −H to the dual of the Lie algebra is exactly the Euler equation
of a barotropic fluid. (The lift of H to the dual space is given by the inertia
operator defined by the Riemannian metric, see details in Appendix A.7.)
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Exercise 3.25 Find Casimir functions similar to the ones we discussed in
the case of the Euler equation of an ideal incompressible fluid. (Hint: in the
coordinate system “moving with the fluid” the equations of motion can be
thought of as those for an incompressible fluid.)

Remark 3.26 Thus it turns out that the barotropic fluid equations also have
an infinite number of conservation laws in the even-dimensional case, and at
least one first integral in the odd-dimensional case; see [24, 307].

The Hamiltonian approach allows one to apply the technique of Casimir
functions to the stability study of barotropic fluids and ideal MHD systems:
their dynamics take place on coadjoint orbits of the corresponding groups,
and the Casimir functions help in describing the corresponding conditional
extrema of the Hamiltonians.

More general equations of compressible fluids include also the function of
entropy. The corresponding Lie group can be identified with the semidirect
product G = Diff(M) � (C∞(M) ⊕ C∞(M)): the first summand of the ex-
tension stands for the density, while the second one represents the entropy
function; see [90].

3.5 Symplectic Structure on the Space of Knots
and the Landau–Lifschitz Equation

Consider an embedding of the (oriented) circle S1 into Euclidean space R
3,

i.e., a knot in R
3. Associate to this curve a linear functional on the space

SVect(R3) of divergence-free fields in R
3, that is, an element of the dual

space SVect(R3)∗, as follows. Take a compact oriented surface S ⊂ R
3 such

that the oriented boundary of S coincides with the knot γ: ∂S = γ. Such a sur-
face is called a Seifert surface for γ. Then to any vector field ξ ∈ Vect(R3) we
can associate its flux through the surface S. If the vector field ξ is divergence-
free, the flux does not depend on the choice of the surface S, so that the curve
γ defines a functional on the Lie algebra SVect(R3):

〈γ, ξ〉 = Flux(ξ)|S =
∫

S

ιξµ , (3.28)

where µ = d3x is the standard volume form in R
3; see Figure 3.3.

Remark 3.27 Obviously, the functional on the Lie algebra SVect(R3) de-
fined by the curve γ does not lie in the smooth part of the dual of SVect(R3).
But we can still associate to γ a coset of singular, rather than smooth, 1-forms
on R

3. Namely, given a Seifert surface S we consider the “δ-type” 1-form uS

supported on S, whose integral over any closed curve σ in R
3 intersecting the

surface S transversally counts (with signs) the intersections of the curve σ
with this surface S.
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Fig. 3.3. A Seifert surface for a knot defines the flux functional on vector fields.

Exercise 3.28 Verify that although the 1-form uS depends on the choice of
the surface S, its coset [uS ] does not: the choice of another Seifert surface ˜S
changes the 1-form uS by a complete differential.

This coset [uS ] belongs to a closure Ω1(R3)/dΩ0(R3) of the smooth dual
space SVect(R3)∗ = Ω1(R3)/dΩ0(R3). Note that the latter space of all smooth
1-forms modulo exact 1-forms is isomorphic to the space Z2(R3) of all smooth
closed 2-forms in R

3: The exterior derivative d takes any such coset of 1-forms
to a closed 2-form without any loss of information, since H1(R3) = 0.

Alternatively, one can directly associate to the curve γ a singular closed
2-form ωγ in R

3. This is the δ-type 2-form (called the de Rham current) sup-
ported on γ. (More precisely, de Rham currents are, by definition, continuous
linear functionals on differential forms. The curve γ defines the current ωγ ,
whose value on any smooth 1-form α on R

3 is 〈ωγ , α〉 =
∫

γ
α. Similarly, the

current uS is defined by prescribing its value 〈uS , β〉 =
∫

S
β for any smooth

2-form β on R
3.) The relation duS = ωγ between these currents exactly mani-

fests the relation ∂S = γ between a knot γ and its Seifert surface S.
In this way, a knot γ in R

3 can be seen as an element of the (full) dual space
to the Lie algebra of divergence-free vector fields on R

3. From this viewpoint,
the coadjoint orbit through γ is the equivalence class of the knot γ under
various isotopies. (Evidently, any isotopy of a knot γ ⊂ R

3 can be extended to
a volume-preserving diffeomorphism of the ambient space R

3.) This leads to
the curious observation that knot invariants constitute a part of the coadjoint
invariants of the whole Lie group SDiff(R3); see, e.g., [16, 24].

Let us extend our consideration from embedded to immersed closed curves
in R

3. The space C of such curves can be regarded as an infinite-dimensional
symplectic manifold. Let γ = γ(S1) ⊂ R

3 be a closed immersed curve in R
3,

and for now fix a parametrization θ of the circle S1. A tangent vector α to C
at γ is an infinitesimal variation of the curve γ, that is, a normal vector field
attached to γ(S1).

Definition 3.29 The Marsden–Weinstein symplectic structure is the follow-
ing 2-form ωMW on the space C of immersed closed curves in R

3 with a fixed
volume form µ. Its value on the two tangent vectors a and b to C at γ is given
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by the oriented volume of the collar spanned along γ by the vectors a(θ) and
b(θ); see Figure 3.4. Explicitly, for the chosen parametrization θ,

ωMW(a, b) :=
∫

S1
µ(a(θ), b(θ), γ′(θ))dθ =

∫

γ

ιbιa µ .

The latter integral shows that the value of ω does not depend on the parame-
trization, i.e., ωMW is indeed a symplectic structure on the space of nonpara-
metrized curves.

γ

Fig. 3.4. The value of the symplectic structure ωMW evaluated on two variations of
the curve γ is the volume of the collar spanned by the variations.

Proposition 3.30 The Marsden–Weinstein symplectic structure on the space
of embedded curves containing γ coincides with the natural Kirillov–Kostant
symplectic structure on the coadjoint orbit of the group SDiff(R3) through the
curve γ, regarded as an element of the dual space to SVect(R3).

Exercise 3.31 Prove this proposition. (Hint: see [255, 24].)

Remark 3.32 The same construction works for any three-dimensional mani-
fold equipped with a volume form. In higher dimensions, a similar construction
allows one to define a symplectic structure on the space of closed immersed
submanifolds of codimension 2. One can also prove its equivalence with the
Kirillov–Kostant symplectic structure on (“singular”) coadjoint orbits for
SDiff(Mn), which are linear functionals on divergence-free vector fields in
M , represented by “fluxes through” hypersurfaces in M bounded by these
submanifolds; cf. [156].

Returning to the 3D case, we are going to make use of not only the volume
form, but also the Euclidean structure in R

3. Define the following “energy”
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function H on the space of immersed closed curves that assigns to a loop
γ ∈ C its length:

H(γ) =
∫

S1
‖γ′(θ)‖ dθ =

∫

S1

√

(γ′(θ), γ′(θ)) dθ .

Proposition 3.33 The Hamiltonian equation corresponding to this energy
function H with respect to the Marsden–Weinstein symplectic structure is
given by the binormal (or filament) equation

∂tγ = γ′ × γ′′ (3.29)

in the arc-length parameter θ, see Figure 3.5. (Here, γ′ denotes the derivative
∂
∂θγ, and in the arc-length parametrization ‖γ′(θ)‖ = 1 for all θ ∈ S1.)

γ′

γ′′

∂tγ = γ′ × γ′′

γ

Fig. 3.5. The binormal equation describes the movement of a curve in R
3 in the

direction ∂tγ = γ′ × γ′′.

Exercise 3.34 Prove this proposition. Show also that if θ is not arc-length,
then the corresponding Hamiltonian equation becomes

∂tγ = k(θ, t)γ′ × γ′′ , (3.30)

where k(θ, t) is the curvature of the curve at the point θ at time t.
(Hint: For the functional H(γ) in the arc-parametrization, the variational

derivative (i.e., the “gradient” of H in the space of curves C) is δH/δγ =
−(length of γ)−1 γ′′. This can be thought of as a vector field normal to γ. In
turn, the Marsden–Weinstein symplectic structure at γ ∈ C can be regarded
as the symplectic structure averaged from all two-dimensional planes normal
to the loop γ. Then to obtain the corresponding Hamiltonian field vH , which
is the skew-gradient of H, we have to rotate the above gradient field δH/δγ by
π/2 around each tangent vector γ′(θ): if Jγ(∗) = γ′ × ∗ is the corresponding
rotation operator, we get

vH = Jγ(δH/δγ) = −(length of γ)−1 γ′ × γ′′. )
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Notice that the binormal vector γ′ × γ′′ is, in particular, orthogonal to γ′,
and hence the evolution of the curve γ does not change the length of γ, i.e.,
the Hamiltonian is indeed preserved.

This equation is also called the da Rios or localized induction approxima-
tion (LIA) equation; see the nice survey [331]. It can also be obtained from
the three-dimensional Euler equation (3.22) by keeping only “local terms” in
the corresponding evolution law for a vortex filament; see, e.g., [139].

Remark 3.35 Equation (3.29) is equivalent to the Heisenberg magnetic chain
equation. Namely, set L = γ′. Then equation (3.29) becomes

∂tL = ∂tγ
′ = γ′′ × γ′′ + γ′ × γ′′′ = γ′ × γ′′′ ,

so that we get
∂tL = L× L′′ , (3.31)

which is also the simplest form of the Landau–Lifschitz equation.

Remark 3.36 The Heisenberg magnetic chain (or Landau–Lifschitz)
equation has another interpretation as the Euler equation for a cer-
tain left-invariant sub-Riemannian metric on the loop group LSO(3) =
C∞(S1,SO(3)). The Hamiltonian formulation is as follows. Let us identify
the Lie algebra Lso(3) = C∞(S1, so(3)) with the smooth part of its dual
Lso(3)∗ via the pairing

〈X,Y 〉 = −
∫

S1
tr(X(θ)Y (θ)) dθ .

Now instead of defining an inertia operator A : Lso(3) → Lso(3)∗ we define
the following noninvertible self-adjoint operator B : Lso(3)∗ → Lso(3) acting
in the opposite direction: B(Y ) = −Y ′′. (If B were invertible, it would have
the meaning of the inverse of the corresponding inertia operator: B = A−1.)
The corresponding Hamiltonian function on the dual space Lso(3)∗ requires
only the operator B for its definition and it is given by

H(Y ) :=
1
2
〈Y,B(Y )〉 = −1

2
〈Y, Y ′′〉 =

1
2
〈Y ′, Y ′〉

for Y ∈ Lso(3)∗.
The image of B in Lso(3) is the subspace n0 of so(3)-valued functions on

the circle with zero mean. On this hyperplane n0 ⊂ Lso(3) the operator B
can be inverted, and this gives rise to the so called H−1-metric

E(X) =
1
2
〈∂−1

θ X, ∂−1
θ X〉 ,

since it is given by the squared L2-norm of the antiderivative ∂−1
θ X for func-

tions X with zero mean, X ∈ n0 ⊂ Lso(3).
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Note that the quadratic form on the subspace n0 does not extend to a left-
invariant Riemannian metric on a subgroup of LSO(3). Indeed, this subspace
n0 ⊂ Lso(3) does not form a Lie subalgebra: the bracket of two loops with zero
mean does not necessarily have zero mean. The subspace n0 of the tangent
space at the identity id ∈ LSO(3) generates a left-invariant distribution on
the group LSO(3), and we can extend the quadratic form E(X) from n0 to a
metric on this distribution. This is an example of an infinite-dimensional non-
integrable distribution on a group with a left-invariant sub-Riemannian met-
ric. Normal geodesics for this metric are described by the same Hamiltonian
picture as for a left-invariant Riemannian metric on the group, i.e., by the
Heisenberg magnetic chain (or Landau–Lifschitz) equation (3.31).

Note also that the same Hamiltonian equation on Lso(3)∗ can be obtained
from an invertible operator B̄ := id +B, i.e., for B̄(Y ) := Y−Y ′′, which defines
a left-invariant Riemannian metric on the group LSO(3); see [7]. Indeed, the
addition of the identity inertia operator does not change the Hamiltonian
dynamics on the orbits, since the latter operator corresponds to the Killing
form, and hence on each coadjoint orbit the new Hamiltonian differs from the
old one by a constant.

Exercise 3.37 Show that the Landau–Lifschitz equation (3.31) is the Euler
equation for the energy E (or, equivalently, for the Hamiltonian function H).

Derive the Landau–Lifschitz equation with the same Hamiltonian H for
the loops in any semisimple Lie algebra g, where − tr(XY ) is replaced by the
Killing form on g.

Remark 3.38 One can rewrite the binormal equations in the Frenet frame for
γ as evolution equations for the curvature k(θ, t) and torsion τ(θ, t). Curiously,
by passing to the new functions “velocity” v := τ and “energy density” ρ := k2

one obtains exactly the equations of a 1-dimensional barotropic fluid for a
specific function h relating density and pressure; see [370].

Exercise 3.39 Find this function h(ρ) corresponding to the binormal
equation.

Another important feature of the binormal equation was observed by
Hasimoto [158]. He found the transformation

ψ(θ, t) = k(θ, t) exp

(

i ·
∫ θ

0

τ(η, t)dη

)

,

which sends the binormal equation to the nonlinear Schrödinger equation

−i ∂tψ = ψ′′ +
1
2
|ψ|2ψ

for a complex-valued wave function ψ : S1 → C. The latter equation is
known to be a completely integrable (bi-Hamiltonian) infinite-dimensional
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system (see, e.g., [90]). And so is the binormal equation, since the Hasimoto
transformation respects the corresponding Poisson and symplectic structures;
see [232, 65]. A direct relation between the Schrödinger equation and the
barotropic fluid equation is described in [360].

3.6 Diffeomorphism Groups as Metric Spaces

In this section we sidestep slightly from our main theme, the coadjoint orbits
of the group of diffeomorphisms, and take a look at the geometry of the dif-
feomorphism groups themselves. We discuss without proofs various peculiar
properties of the groups of volume-preserving and Hamiltonian diffeomor-
phisms.

Consider a volume-preserving diffeomorphism of a bounded domain and
regard it as a final fluid configuration for a fluid flow starting at the identity
diffeomorphism. In order to reach the position prescribed by this diffeomor-
phism, every fluid particle has to move along some path in the domain. The
distance of this diffeomorphism from the identity in the diffeomorphism group
is the averaged characteristic of the path lengths of the particles.

It turns out that the geometry of the groups of volume-preserving dif-
feomorphisms of two-dimensional manifolds differs drastically from that of
higher-dimensional ones. This difference is due to the fact that in three (and
more) dimensions there is enough space for particles to move to their final
positions without hitting each other. On the other hand, the motion of the
particles in the plane might necessitate their rotations about one another.
The latter phenomenon of “braiding” makes the system of paths of particles
in 2D necessarily long, in spite of the boundedness of the domain. The distinc-
tion between different dimensions can be formulated in terms of properties of
SDiff(M) as a metric space.

Recall that on a Riemannian manifold M the group SDiff(M) of volume-
preserving diffeomorphisms is equipped with the right-invariant L2-metric,
which is defined at the identity by the L2-energy of vector fields.

Definition 3.40 To any smooth path {φ(t, .) | 0 ≤ t ≤ 1} on the group
SDiff(M), i.e., to a family of volume preserving diffeomorphisms, we associate
its (L2-) length:

�{φ(t, .)} :=
∫ 1

0

(∫

Mn

|∂tφ(t, x)|2µ
)1/2

dt.

Then the distance between two fluid configurations ϕ,ψ ∈ SDiff(M) is the
infimum of the lengths of all paths in SDiff(M) connecting them:

distSDiff(ϕ,ψ) = inf �{φ(t, .)} ,

where the φ(0, .) = ϕ and φ(1, .) = ψ. It is natural to define the (L2-) diameter
of the group SDiff(M) as the supremum of distances between any two of its
elements:
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diam ( SDiff(M) ) = sup
ϕ,ψ∈SDiff(M)

distSDiff(ϕ,ψ).

Theorem 3.41 ([355, 357]) For a unit n-dimensional cube Mn where n ≥
3, the diameter of the group of smooth volume-preserving diffeomorphisms
SDiff(Mn) is finite in the right-invariant metric distSDiff and it is bounded
above as follows:

diam ( SDiff(Mn) ) ≤ 2
√

n

3
.

Finiteness of the diameter holds for an arbitrary simply connected mani-
fold M of dimension three or higher. The two-dimensional case is completely
different:

Theorem 3.42 ([100]) For an arbitrary manifold M of dimension n = 2,
the diameter of the group SDiff(M) is infinite.

Note that the diameter in the case n ≥ 3 can become infinite if the fun-
damental group of M is nontrivial [100]. On the other hand, in the two-
dimensional case the infiniteness of the diameter is of “local” nature. The
main difference between the geometries of the groups of diffeomorphisms in
two and three dimensions is based on the observation that for a long path
on SDiff(M3) that twists the particles in space, there always exists a “short-
cut” untwisting them by making use of the third coordinate. One can com-
pare this with the corresponding linear problems: π1(SL(2,R)) = Z, while
π1(SL(n,R)) = Z/2Z for n ≥ 3. (Such a linear problem arises if we associate
to a diffeomorphism in SDiff(M) and some fixed point in M the Jacobi matrix
of the diffeomorphism at that point. Then for a path in SDiff(M) this gives
a path in SL(n,R).)

Remark 3.43 More precisely, for an n-dimensional cube (n ≥ 3) the distance
between two volume-preserving diffeomorphisms ϕ,ψ ∈ SDiff(M) is bounded
above by some power of the L2-norm of the “difference” between them:

distSDiff(ϕ,ψ) ≤ C · ||ϕ− ψ||αL2(M),

where the exponent α in this inequality is at least 2/(n+ 4), and, presum-
ably, this estimate is sharp [357]. This property means that the embedding of
the group SDiff(Mn) into the vector space L2(M,Rn) for n ≥ 3 is “Hölder-
regular” (the greater α, the more regular is the embedding, although appar-
ently, it is far from being smooth). Certainly, this Hölder property implies
the finiteness of the diameter of the diffeomorphism group. A similar estimate
exists for a simply connected higher-dimensional M .
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Fig. 3.6. Profile of the Hamiltonian function (left) whose flow (right) for suffi-
ciently long time provides a “long path” on the group SDiff(B2) of area-preserving
diffeomorphisms.

However, no such estimate can hold for n = 2: one can find a pair of
volume-preserving diffeomorphisms arbitrarily far from each other on the
group SDiff(M2), but close in the L2-metric on the square or a disk. For
instance, let M be the unit disk B2 ⊂ R

2 with the standard volume form.
An explicit example of a long path on the group SDiff(B2) is given by the
following flow for sufficiently long time t: in polar coordinates it is defined by

(r, φ) �→ (r, φ+ t · v(r)),

where the angular velocity v(r) is nonconstant; see Figure 3.6. One can show
that the distance of this diffeomorphism from the identity in the group grows
linearly in time.

Remark 3.44 This also allows one to give the following example of an
unattainable diffeomorphism of the square [356], i.e., a diffeomorphism that
cannot be connected to the identity in SDiff(M) by a piecewise-smooth path of
finite length. The corresponding Hamiltonian has “hills” of infinitely increas-
ing heights with supports on a sequence of disks converging to the boundary
of the square (see Figure 3.7). In contrast, if M is an n-dimensional cube and
n ≥ 3, then all volume-preserving diffeomorphisms of M are attainable [356].

Fig. 3.7. An unattainable diffeomorphism of the square.
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Furthermore, the above 2D results hold in the more general context of
Hamiltonian diffeomorphisms of symplectic manifolds. Let M2n be a compact
manifold with a symplectic form ω that is exact: ω = dα for some 1-form α
on M . Note that such a manifold M has to have a nonempty boundary, since
otherwise we would have

∫

M

ωn =
∫

M

d(α ∧ ωn−1) = 0 ,

which contradicts the nondegeneracy of the symplectic form.

Definition 3.45 Let Ham(M) be the group of Hamiltonian diffeomorphisms
of M , i.e., the group of time-one flows of Hamiltonian vector fields on M . The
Lie algebra of the group Ham(M) is the Lie algebra of Hamiltonian vector
fields on M tangent to ∂M .

Theorem 3.42 on the infinite diameter in 2D admits the following gen-
eralization to the case of the group Ham(M) for an exact symplectic 2n-
dimensional manifold M .

Theorem 3.46 ([100]) The Lp-diameter diamp(Ham(M)) of the group of
Hamiltonian diffeomorphisms of M is infinite in any right-invariant Lp-
metric.

Here we define the right-invariant Lp-metric on the group Ham(M) or
SDiff(M) by the same formula as above, but using the Lp-norm instead of
L2: the Lp-length of a path is

�p{φ(t, .)} :=
∫ 1

0

‖∂tφ(t, x)‖Lp(M) dt =
∫ 1

0

(∫

M

|∂tφ(t, x)|pµ
)1/p

dt ,

where µ = ωn is the volume form. Note that the strongest result is in the
L1-metric, since

�p{ . } ≥ CM,p · �1{ . }
for some constant CM,p > 0.

In Appendix A.6.2 we give a proof of a simplified version of this theo-
rem, following [99]. It turns out that the L1-lengths of paths on the group of
Hamiltonian diffeomorphisms stationary on the boundary of M are bounded
below by the Calabi invariant.

Remark 3.47 Yet another manifestation of the difference between the
geometries of the groups of volume-preserving diffeomorphisms in the two-
and three-dimensional cases is the geometry of their Riemannian exponential
maps. The corresponding problem of description of conjugate points along geo-
desics in SDiff(M) was posed by Arnold back in the 1960s in the paper [12]
on the geometry of the Euler equation. It is shown in [97] that for a compact
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two-dimensional surface M without boundary the exponential map of the L2-
metric on SDiff(M) is a nonlinear Fredholm map of index zero. In particular,
this implies that conjugate points are isolated and of finite multiplicity along
finite geodesic segments. In other words, in this case the Riemannian expo-
nential map on SDiff(M) has the same structure of singularities as that on a
finite-dimensional manifold. For a three-dimensional M the situation changes
drastically: the set of conjugate points is not discrete. In particular, conjugate
points cluster to the first one, while the exponential operator is not Fredholm,
as its range is not closed [97, 323].

Remark 3.48 Finally, it is interesting to relate the geometry of the group of
volume-preserving diffeomorphisms to that of all diffeomorphisms. In a sense,
the dynamics of an ideal fluid are dual to the Monge–Kantorovich mass trans-
port problem, which asks for the most economical way to move, say, a pile
of sand to a prescribed location. Mass (or density) is transported most effec-
tively by gradient vector fields. The latter are L2-orthogonal to divergence-free
ones, which, in contrast, preserve the volume (or mass). The corresponding
transportation (also called Kantorovich or Wasserstein) metric on the space
of densities and the L2-metric on volume-preserving diffeomorphisms can be
viewed as natural extensions of each other within the framework of the group
of all diffeomorphisms, see [303, 374, 193] and Appendix A.5.

3.7 Bibliographical Notes

V. Arnold’s seminal paper [12], which described the Euler hydrodynamics
equation for an ideal fluid [108] as the equation of geodesics on the group of
volume-preserving diffeomorphisms, generated a great deal of interest in the
group-theoretical and Hamiltonian aspects of hydrodynamics. The analytical
questions of this approach were treated in [96]; see also more on analysis on
diffeomorphism groups in [95, 157]. The classical treatise on fluid dynamics is
the Landau–Lifschitz book [229].

The Hamiltonian nature of the Euler equation was described in [13, 18].
The geometry of coadjoint orbits of the Lie algebra of divergence-free vector
fields was studied in [255, 205, 24]. Finite-dimensional mechanical prototypes
of ideal fluid dynamics were discussed in [13, 18, 24, 82, 214].

The frozenness of the vorticity in the two- and three-dimensional cases was
known to Helmholtz and Kelvin. The invariance of the helicity for the Euler
equation was observed in [269, 278]. The fact that the helicity and energy are
the only invariants of the first order (i.e., whose local density depends only on
the field and on its first partial derivatives) for the three-dimensional Euler
equation was established in [351]. In higher dimensions the above-mentioned
first integrals of the Euler hydrodynamics equation were found in [352] for the
case of R

n and in [307, 187] for the general case.
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The general two-point variational problem for finding a shortest geodesic
between two diffeomorphisms in SDiff(M) does not always have a solution,
as was shown by Shnirelman in [355, 357]. Brenier proved that the solution,
however, always exists in a wider class of generalized flows [59]. Peculiar weak
solutions to the Euler equation are discussed in [358]. The group-theoretic
meaning of various equations of mathematical physics and, in particular, those
related to semidirect products and extensions, is discussed in [253]; see also
[24, 42, 90, 295, 167, 187, 245, 377, 378].

The symplectic structure on curves in R
3 appeared in [255]. The book

[62] is a good source of references for various geometric structures on such
curves and for the corresponding evolution equations. The interpretation
of the Landau–Lifschitz equation as the Euler equation on a loop group
was obtained in [7]; see [244]. For finite-dimensional examples of invariant
sub-Riemannian metrics on Lie groups, similar to the infinite-dimensional
Example 3.36, see [44, 113, 114, 273].

The results on the diameter of the groups of volume-preserving diffeomor-
phisms in right-invariant metrics can be found in [355, 357] and [99, 100]. We
also discuss the bi-invariant Hofer metric on the group of Hamiltonian diffeo-
morphisms in Appendix A.6.1 and address the reader to the book [317] for
more detail. Curvature calculations for diffeomorphism groups can be found in
[12, 243]. The structure of the exponential map on the diffeomorphism group
was treated in [97, 323]. Appendix A.5 discusses the Riemannian geometry of
the full diffeomorphism group and its relation to problems of optimal mass
transport; see the references therein.

The structure theory of various diffeomorphism groups is discussed in [368,
33, 172]. Semigroups of polymorphisms (or stochastic kernels) can the thought
of as natural completions of the groups of diffeomorphisms; see [293] on their
geometry and representation theory.
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4 The Group of Pseudodifferential Symbols

The Lie algebra of vector fields on the circle embeds naturally into the
Lie algebra of differential operators on the circle, where the Lie bracket of
two differential operators of arbitrary degrees is given by their commutator:
[A,B] = A ◦ B − B ◦ A. In this section, we study yet a bigger Lie algebra of
pseudodifferential symbols on the circle, which contains the algebra of differ-
ential operators as a subalgebra.

We have seen in Section 2 that the Lie algebra of vector fields on the circle
admits a unique nontrivial central extension, the Virasoro algebra vir. It turns
out that both the Lie algebras of differential operators DO and pseudodiffer-
ential symbols ψDS on the circle also admit central extensions, ̂DO and ψ̂DS
respectively, which, upon restriction to the subalgebra of vector fields, give
the Virasoro algebra; see the following diagram:

Vect(S1) ↪→ DO ↪→ ψDS
↑ ↑ ↑

vir ↪→ ̂DO ↪→ ψ̂DS .

From this point of view, the algebra of pseudodifferential symbols is the most
general of the three Lie algebras mentioned above. Somewhat surprisingly,
when passing to this big Lie algebra ψDS, the construction of its central
extension drastically simplifies and resembles the construction of the affine
Lie algebras in Section 1.

Furthermore, roughly “half of the algebra ψ̂DS” can be exponentiated
to a Lie group of pseudodifferential symbols of arbitrary real (or complex)
degrees. This group turns out to be a Poisson Lie group. Its Poisson structure
is closely related to the theory of the KdV- and KP-type equations, and we
describe a universal hierarchy of Hamiltonians on this group encompassing
many integrable systems.

4.1 The Lie Algebra of Pseudodifferential Symbols

Definition 4.1 The associative algebra ψDS of pseudodifferential symbols on
the circle consists of formal semi-infinite series

A(θ, ∂) =
n
∑

k=−∞
ak(θ)∂k

with coefficients ak ∈ C∞(S1). The product of two such symbols is defined
according to the Leibniz rule

∂ ◦ f = f∂ + f ′ ,

where f ′ = df/dθ. (This relation explains the meaning of the symbol ∂ :=
d/dθ: applying both sides to any “test” function g gives ∂(fg) = f∂g + f ′g,
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where f stands for the operator of multiplication by a function f .) The natural
extension of this rule to arbitrary integers k and n gives

∂k ◦ f∂n = f∂n+k +
∞
∑

i=1

(

k
i

)

f (i)∂n+k−i , (4.32)

where
(

k
i

)

:=
k(k − 1) · · · (k − i+ 1)

i!
(4.33)

denotes the binomial coefficient. The Lie algebra structure on ψDS is given
by the usual commutator [A,B] = A ◦B −B ◦A.

Exercise 4.2 Check the associativity of the product ◦ on ψDS.

Remark 4.3 For integral k > 0 the sum in equation (4.32) is finite and
manifests the composition of differential operators.

For k < 0 the binomial coefficients (4.33) are never zero, so that the sum
in the right-hand side of equation (4.32) is infinite. For example, for k = −1
and n = 0, we obtain

∂−1 ◦ f = f∂−1 − f ′∂−2 + f ′′∂−3 − · · · .

To make sense of this equality, one can apply ∂ to both sides and get the
identity

∂ ◦ (∂−1 ◦ f) = ∂ ◦ (f∂−1 − f ′∂−2 + f ′′∂−3 − · · · )
= f + f ′∂−1 − f ′∂−1 − f ′′∂−2 + f ′′∂−2 + · · · = f .

Thus ∂ and ∂−1 are indeed inverses of each other.

Remark 4.4 The Lie algebra ψDS has two natural subalgebras: the Lie al-
gebra DO of differential operators on the circle

DO :=
{

n
∑

k=0

ak(θ)∂k | ak ∈ C∞(S1)
}

and the Lie algebra INT of integral symbols, which is given by

INT :=
{

−1
∑

k=−∞
ak(θ)∂k | ak ∈ C∞(S1)

}

.

As a vector space, the Lie algebra ψDS is a direct sum of these subalgebras:
ψDS = DO⊕ INT.

Furthermore, the Lie algebra of pseudodifferential symbols admits an al-
gebraic trace, an analogue of the trace of usual matrices:
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Definition 4.5 The trace of a pseudodifferential symbol A =
∑

ai(θ)∂i is
defined by

tr

(

n
∑

i=−∞
ai(θ)∂i

)

:=
∫

S1
a−1(θ)dθ .

Exercise 4.6 (i) Show that tr[A,B] = 0 for all A, B ∈ ψDS. This im-
plies that the bilinear form 〈A,B〉 := tr(A ◦ B) is invariant, i.e., it satisfies
〈[A,B], C〉 = 〈A, [B,C]〉.

(ii) Show that the bilinear form 〈A,B〉 = tr(A ◦ B) is nondegenerate on
ψDS and that the subalgebras DO and INT are isotropic subspaces of ψDS,
i.e., that the restrictions of this form to both DO and INT vanish.

Remark 4.7 One can define the pseudodifferential symbols on C
∗, rather

than on the circle S1, using the variable z = eiθ, similarly to Remark 1.5. Here
one considers the series

∑n
k=−∞ ak(z)∂k

z , where ak is a Laurent polynomial
in z. The relation of the corresponding Lie algebras is provided by the chain
rule: ∂ := ∂θ = (∂z/∂θ)∂z = iz · ∂z. Then the trace for symbols on C

∗ can be
defined by tr

(
∑n

k=−∞ ak(z)∂k
z

)

:= res|z=0(a−1(z)/z) .

4.2 Outer Derivations and Central Extensions of ψ DS

It is well known that the exponent of the derivative is the shift operator on
functions, as given by the Taylor formula:

exp(t∂) f(θ) =

( ∞
∑

k=0

tk

k!
∂k

)

f(θ) = f(θ) + tf ′(θ) +
t2

2
f ′′(θ) + · · · = f(θ + t) .

Below we are going to define the logarithm of the derivative operator ∂. This
notion turns out to have a completely different flavor: this will be an operator
not on functions, but on pseudodifferential symbols, and it appears rather
useful in describing their central extensions

To introduce this notion we first remark that in the definition of the prod-
uct of two pseudodifferential symbols in formula (4.32) one can replace the
integer k by an arbitrary real (or complex) number α to obtain

[∂α, f∂n] =
∞
∑

i=1

(

α
i

)

f (i)∂n+α−i , (4.34)

where the binomial coefficients on the right-hand side are defined just as in
the integer case:

(

α
i

)

:=
α(α− 1) · · · (α− i+ 1)

i!
. (4.35)

Let us formally write the identity ∂α = eα log ∂ , which implies
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d

dα

∣

∣

∣

α=0
∂α = (log ∂) ∂α|α=0 = log ∂ .

Hence, differentiating both sides of equation (4.34) at α = 0 gives

[log ∂, f∂n] =
∞
∑

i=1

(−1)i+1

i
f (i)∂n−i. (4.36)

We use this formula to define the map [log ∂, . ] : ψDS → ψDS, where log ∂
can be thought of as the “velocity vector” to the family of differentiations ∂α.

Definition / Proposition 4.8 The linear map [log ∂, . ] : ψDS → ψDS
given by formula (4.36) is an outer derivation of the Lie algebra ψDS of
pseudodifferential symbols.

Exercise 4.9 Verify that the map [log ∂, . ] is indeed a derivation of the as-
sociative algebra ψDS:

[log ∂,A ◦B] = [log ∂,A] ◦B +A ◦ [log ∂,B] ,

which implies the statement about the Lie algebra.

We postpone the explanation why this derivation is outer until Proposition
4.12 and Remark 4.13. Now we employ the derivation [log ∂, . ] to define a
central extension of the Lie algebra ψDS.

Theorem 4.10 ([215]) The map � : ψDS×ψDS → R given by

�(A,B) := tr([log ∂,A] ◦B)

defines a Lie algebra 2-cocycle on ψDS.

Exercise 4.11 Prove the theorem.

It turns out that the cocycle � on the Lie algebra ψDS generalizes some
of the Lie algebra cocycles we have come across before:

Proposition 4.12 The restriction of the 2-cocycle � to the subalgebra
Vect(S1) ⊂ ψDS gives the Gelfand–Fuchs 2-cocycle

�(f∂, g∂) =
1
6

∫

S1
f ′′g′ dθ

for any vector fields f(θ)∂ and g(θ)∂ on S1.
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Proof. This is a direct calculation. We have

�(f∂, g∂) = tr([log ∂, f∂] ◦ g∂) = tr(g∂ ◦ [log ∂, f∂])

= tr
(

g∂ ◦
(

f ′∂0 − f ′′

2
∂−1 +

f ′′′

3
∂−2 − · · ·

)

)

= tr
(

· · · +
(

− g
f ′′′

2
+ g

f ′′′

3

)

∂−1 + · · ·
)

= tr
(

· · · − 1
6
gf ′′′∂−1 + · · ·

)

,

where the dots denote terms other than ∂−1. Hence by the trace definition,
we have

�(f∂, g∂) = −1
6

∫

S1
f ′′′g dθ =

1
6

∫

S1
f ′′g′ dθ ,

which is a multiple of the Gelfand–Fuchs cocycle. �

Remark 4.13 The logarithmic cocycle � on the Lie algebra ψDS is nontriv-
ial, since even its restriction to the subalgebra Vect(S1) ⊂ ψDS is nontrivial.
Furthermore, the nontriviality of the cocycle � also implies that the deriva-
tion [log ∂, . ] is outer, since otherwise the 2-cocycle � would be cohomologous
to a 2-coboundary on ψDS. Indeed, if log ∂ were a pseudodifferential symbol,
we could rewrite the cocycle �(A,B) = tr([log ∂,A]◦B) = tr(log ∂ ◦ [A,B]) =
〈log ∂, [A,B]〉 as a linear functional on the commutator, i.e., as a 2-coboundary
on ψDS. Of course, log ∂ �∈ ψDS, and the above line is not justified. (The
above “transformations” are useful to keep in mind, however, when checking
the cocycle identity for �; cf. Exercise 4.11.)

Exercise 4.14 Show that the restriction of the 2-cocycle � to the subalgebra
of differential operators DO ⊂ ψDS is a multiple of the Kac–Peterson cocycle:

�(f∂n, g∂m) =
n!m!

(n+m+ 1)!

∫

S1
f (m+1)g(n) dθ .

(The corresponding central extension ̂DO of differential operators is often
called the W1+∞-algebra in the physics literature. The reason for this funny
notation is that the algebra W∞, which appeared first, was the subalgebra
of differential operators generated by the Virasoro generators, i.e., by vector
fields, and did not include functions. The above notation W1+∞ emphasizes
that this larger algebra of all differential operators includes functions as well.)

In particular, the restriction of the cocycle � to the abelian subalgebra
C∞(S1) of smooth functions on the circle gives the 2-cocycle that defines the
infinite-dimensional Heisenberg algebra:
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�(f, g) =
∫

S1
f ′g dθ

for any smooth functions f = f(θ) and g = g(θ) on S1.

Remark 4.15 One can easily generalize the cocycle � to the Lie algebra of
gl(n)-valued pseudodifferential symbols. Then the restriction to the subalge-
bra of Lie-algebra-valued functions gives back the cocycle defining the affine
Lie algebra L̂gl(n).

But rather than viewing the cocycle of the affine algebra as a particular
case of the logarithmic cocycle, one can see the following parallelism in the
two constructions. The 2-cocycle on the loop algebra Lg was defined by

ω(X,Y ) =
∫

S1
tr(XY ′) dθ = 〈X, [∂ , Y ]〉 ,

where ∂ = d
dθ ; see Section 1. So the outer derivation [∂ , . ] of the loop algebra

Lg is “replaced” by the outer derivation [log ∂ , . ] of the Lie algebra ψDS.

Remark 4.16 Consider the linear function f : R → R, f(θ) = θ. Even
though the function θ is not periodic and hence not defined on the circle S1,
its commutator [θ ,A] with any pseudodifferential symbol A ∈ ψDS is again a
pseudodifferential symbol on S1. This allows one to define another 2-cocycle
�′ on the Lie algebra ψDS by

�′(A,B) := tr([θ,A] ◦B) .

The similarity between the cocycles � and �′ becomes more apparent if
we consider the Lie algebra of pseudodifferential symbols on C

∗. By identifying
eiθ with z, one rewrites θ as −i log z, and hence the cocycle �′ assumes the
form

�′(A,B) = −i · tr([log z,A] ◦B) .

On the other hand, an analogue of the above cocycle � in the coordinate z
has a similar form,

�(A,B) = tr([log ∂z, A] ◦B) , .

cf. Remark 4.7. The cocycles � and �′ span the second cohomology of the Lie
algebra ψDS, since this cohomology group is known to be two-dimensional
[116, 94]. For us, however, the cocycle � will play a more important role,
since its restriction to vector fields gives the Virasoro algebra, while the other
cocycle �′ vanishes there.

Exercise 4.17 Show that the restriction of the cocycle �′ to the subalgebra
DO ⊂ ψDS vanishes: �′(A,B) = 0 for any two differential operators A and
B on the circle.
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4.3 The Manin Triple of Pseudodifferential Symbols

The 2-cocycle � discussed in the preceding section defines a central extension
ψ̂DO of the Lie algebra ψDS. In this section we are concerned with yet a
bigger Lie algebra, obtained by extending ψDO by adding both the central
extension and the derivation [log ∂, . ].

Definition 4.18 The doubly extended Lie algebra of ψDS is the semidirect
product of the (centrally extended) Lie algebra ψ̂DS of pseudodifferential
symbols with the one-dimensional space of derivations {λ log ∂ | λ ∈ R}. As
a vector space, this Lie algebra can be written as

ψ̃DS = ψ̂DO ⊕ R log ∂ = ψDO ⊕ R ·� ⊕ R · log ∂ ,

while the Lie bracket between log ∂ and ψDO is given by the derivation
[log ∂, . ], and the center R ·� commutes with everything: [� , . ] = 0. (Here,
slightly abusing notation, we denote by R · � the central direction in the
algebra ψ̃DS.)

Remark 4.19 Furthermore, as a vector space, the Lie algebra ψ̃DS has a
direct sum decomposition ψ̃DS = ̂DO⊕ ˜INT , where ̂DO denotes the centrally
extended Lie algebra of differential operators on S1:

̂DO =
{

b� +
n
∑

i=0

ai(θ)∂i | ai ∈ C∞(S1), b ∈ R

}

,

while ˜INT denotes the Lie algebra of integral symbols INT extended by the
“cocentral” direction log ∂:

˜INT =
{

α log ∂ +
−1
∑

i=−∞
ai(θ)∂i | ai ∈ C∞(S1), α ∈ R

}

(see Figure 4.1).

log ∂

c

∂0 ∂1 ∂2 ∂3 ∂4

˜INT

̂DO

∂−1∂−2∂−3∂−4

Fig. 4.1. ̂DO and ˜INT as subalgebras of the Lie algebra ψ̃ DS.
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The advantage of the double extension ψ̃DS is that this Lie algebra admits
a nondegenerate invariant bilinear form (the “Killing form”):

Exercise 4.20 Check that the bilinear form 〈 , 〉 on the Lie algebra ψ̃DS
given by

〈A1+b1·�+α1·log ∂ , A2+b2·�+α2·log ∂〉 := tr(A1◦A2)+b1α2+b2α1 (4.37)

is nondegenerate and invariant. Show that the subalgebras ̂DO and ˜INT are
isotropic subspaces of ψ̃DS with respect to this form.

Corollary 4.21 The bilinear form 〈 , 〉 on ψ̃DS identifies the subalgebra ˜INT
with the (smooth part of) the dual to the subalgebra ̂DO and vice versa.

These observations can be summarized in the language of Manin triples.

Definition 4.22 Three Lie algebras g, g+, and g− form a Manin triple if the
following two conditions are satisfied:

1. The Lie algebras g± are Lie subalgebras of g such that g = g+ ⊕ g− as
vector spaces.

2. There exists a nondegenerate invariant bilinear form on g such that g+

and g− are isotropic subspaces.

Example 4.23 (i) The algebras (ψDS,DO, INT) form a Manin triple with
respect to the bilinear form 〈A , B〉 = tr(A ◦B); cf. Exercise 4.6.

(ii) The algebras (ψ̃DS,̂DO, ˜INT) form a Manin triple with respect to the
bilinear form (4.37), as Exercise 4.20 shows.

The importance of Manin triples comes from the fact that there is a one-
to-one correspondence between Manin triples and Lie bialgebras:

Definition 4.24 A Lie algebra g is called a Lie bialgebra if its dual space
g∗ comes equipped with a Lie algebra structure [ , ]∗ such that the map
α : g → g ∧ g dual to the commutator map [ , ]∗ : g∗ ∧ g∗ → g∗ satisfies

adX α(Y ) = α([X,Y ]) . (4.38)

Here ad denotes the adjoint action adX(Z∧W ) = adX(Z)∧W +Z∧adX(W )
of g on g ∧ g.

The condition on the map α : g → g ∧ g can be stated in terms of Lie
algebra cohomology: the map α has to be a Lie algebra 1-cocycle on g relative
to the adjoint representation of g on g ∧ g.
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Theorem 4.25 Let (g, g+, g−) be a Manin triple. Then the Lie algebra g−
is naturally identified with g∗+ and it endows g+ with the structure of a Lie
bialgebra. On the other hand, for any Lie bialgebra g there is a natural Lie
algebra structure on g = g ⊕ g∗ such that (g, g, g∗) is a Manin triple.

Namely, given a Lie bialgebra g, one can define a commutator on g = g⊕g∗

by

[X +A, Y +B]g = [X,Y ]g − ad∗
B(X)+ad∗

A(Y )+ [A,B]g∗ +ad∗
X(B)− ad∗

Y (A)

for all X,Y ∈ g and A,B ∈ g∗. The condition that this commutator satisfy
the Jacobi identity is equivalent to the condition (4.38) on the map α. For a
full proof of Theorem 4.25, see, e.g., [349, 242].

Summarizing the discussion above we come to the following result.

Corollary 4.26 (= 4.21′) The Lie algebras ψ̃DS, ̂DO, and ˜INT form a
Manin triple. In particular, ˜INT is a Lie bialgebra.

Although the above correspondence of Manin triples and Lie bialgebras, as
well as the relation to Poisson Lie groups discussed below, is proved in a finite-
dimensional context only, the related explicit formulas for the commutators,
products, pairings, etc. work in many specific infinite-dimensional situations.
In particular, they can be checked directly for the case of pseudodifferential
symbols.

4.4 The Lie Group of α-Pseudodifferential Symbols

The Lie algebra of vector fields is the Lie algebra of a Lie group, the group
of diffeomorphisms. However, when we pass from vector fields to differential
operators of all degrees, there is no natural Lie group attached to the corre-
sponding Lie algebra DO or to its central extension ̂DO.12

Interestingly, the Lie algebra ˜INT of integral symbols, which is dual to ̂DO
in the the Manin triple (ψ̃DS,̂DO, ˜INT), comes with a group attached to it.
Below we describe this group of α-pseudodifferential symbols ˜GINT.

Definition 4.27 Define the group of α-pseudodifferential symbols to be the
set of monic (i.e., with the highest coefficient equal to 1) pseudodifferential
symbols of degree α ∈ R:

˜GINT =
{

∂α

(

1 +
−1
∑

i=−∞
ai(θ)∂i

)

| α ∈ R, ai ∈ C∞(S1)
}

.

12 One can show, for instance, that the would-be group adjoint orbits in DO are
dense, which is impossible for any reasonable definition of a (smooth) group
action.
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The group multiplication in ˜GINT is defined by equation (4.34):

∂α ◦ f = f∂α +
∞
∑

i=1

(

α
i

)

f (i)∂α−i .

Exercise 4.28 Check that ˜GINT is indeed a group, i.e., that it is closed under
taking products and inverses.

Remark 4.29 The group ˜GINT is a semidirect product

˜GINT = GINT � {∂α | α ∈ R} ,

where

GINT =
{

1 +
−1
∑

i=−∞
ai(θ)∂i

}

⊂ ˜GINT

denotes the group of monic pseudodifferential symbols of degree 0, while
{∂α | α ∈ R} is the abelian one-parameter group of “fractional differenti-
ations”: ∂α ◦ ∂β = ∂α+β , which acts on GINT.

˜GINT

˜INT

α = const

GINT

∂α

̂DO = ˜INT
∗

log ∂

Fig. 4.2. The group ˜GINT of α-pseudodifferential symbols and its Lie algebra ˜INT.

To identify the Lie algebra for the group ˜GINT, first we consider the finite-
dimensional example of the unipotent Lie group of upper triangular matri-
ces with 1’s on the diagonal. Its Lie algebra is nilpotent and represented by
strictly upper triangular matrices. Similarly, we expect the Lie algebra of the
group GINT to be given by the Lie algebra INT of integral symbols. On the
other hand, we already know the Lie algebra of the one-parameter subgroup
{∂α | α ∈ R} ⊂ ˜GINT, since it is given by R log ∂ by our construction. Thus we
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expect the group ˜GINT to have the Lie algebra ˜INT = INT �{α log ∂ | α ∈ R}
(see Figure 4.2). The following theorem formalizes this argument.

Theorem 4.30 ([198]) The exponential map exp : ˜INT → ˜GINT is well de-
fined and bijective.

The bijective property of the exponential map exp : ˜INT → ˜GINT means
that the group ˜GINT is quasi-unipotent, i.e. it is an infinite-dimensional ana-
logue of the finite-dimensional unipotent group.

Remark 4.31 The idea of the proof of Theorem 4.30 is as follows. Assume
the existence of the exponential map on this group. Then for an integral
symbol A ∈ INT, the one-parameter family Ls = exp(s(a log ∂ + A)) should
(by definition) satisfy the equation

(

d

ds
Ls

)

◦ L−1
s = a log ∂ +A (4.39)

with the initial condition L0 = 1. Equation (4.39) gives a system of differ-
ential equations on the (s-dependent) coefficients of Ls, which turns out to
be uniquely solvable. Hence equation (4.39) can be used to define the one-
parameter subgroup Ls and therefore the exponential map. Now the proof
of Theorem 4.30 follows from the following two exercises and the Campbell–
Hausdorff formula; see details in the next section.

Exercise 4.32 Show that the formula

exp(P ) =
∑

k≥0

1
k!
P k

for an integral symbol P ∈ INT gives a well-defined map INT → GINT: the
coefficient at each ∂j in the right-hand side is a finite sum. Similarly, show
that the inverse map GINT → INT given by

log(1 + P ) =
∑

k≥1

(−1)k

k
P k+1

is well defined. (Hint: use the fact that degP k ≤ −k.)

The above exercise proves the following proposition, which is a “restricted”
version of Theorem 4.30, by giving the explicit formula for the exponential
map and its inverse.

Proposition 4.33 The map exp : INT → GINT is well defined and bijective.

The next exercise makes sense of the formal calculation d
dα |α=0 ∂

α = log ∂
we made before.
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Exercise 4.34 Verify that the element log ∂ in the Lie algebra ˜INT generates
the one-parameter subgroup {∂α | α ∈ R} ⊂ ˜GINT by computing the limit
of the commutation relations of the tangent elements to the subgroups {∂α}
and GINT:

∂ε ◦ exp(δP ) ◦ ∂−ε ◦ exp(−δP ) = 1 + δε[log ∂, P ] + O(ε2, δ2)

for any P ∈ INT and as ε, δ → 0.

(Hint: By using the approximation exp(δP ) = 1 + δP + O(δ2) show that
the left-hand side, modulo the terms O(δ2), is equal to

1 + δ [∂ε, P ] ◦ ∂−ε = 1 + δ
∞
∑

k=1

(

ε
k

)

a
(k)
j ∂j−k

for a symbol P = aj(θ)∂j . Then employ the identity d
dε |ε=0

(

ε
k

)

= (−1)k+1

k

and the definition of log ∂.)

Remark 4.35 Note that ˜GINT is a Fréchet Lie group. Indeed, the decom-
position ˜GINT = GINT � {∂α | α ∈ R} can be used to define a topology on
this group as follows. The group GINT is the inverse limit of Fréchet vector
spaces (each one being the direct sum of finitely many C∞(S1)’s, the spaces of
the first n coefficients of the integral symbols, with the usual C∞ topology).
Hence it can be endowed with the inverse limit topology. Then we equip ˜GINT

with the direct product topology of GINT and the usual topology on R in the
α-direction.

4.5 The Exponential Map for Pseudodifferential Symbols

In this section we prove Theorem 4.30 on the surjectivity of the exponential
map exp : ˜INT → ˜GINT on pseudodifferential symbols.

If P is an element in a Lie algebra (think of a matrix Lie algebra, for in-
stance), the would-be exponential Ls := exp(sP ) should satisfy the differential
equation

dLs

ds
◦ (Ls)−1 = P . (4.40)

We are going to use this equation to define the element exp(P ) ∈ ˜GINT.

Lemma 4.36 For an integral symbol P , the map P �→ (Ls)s=1 gives a well-
defined map exp : INT → GINT.
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Although this lemma is covered by Proposition 4.33, we prove it in a way
that can be easily adapted to the extended group ˜GINT below.

Proof. Fix an integral symbol P =
∑−1

i=−∞ ai(θ)∂i ∈ INT . Its would-be
exponent

Ls = 1 +
−1
∑

k=−∞
uk(θ; s)∂k

has to satisfy the the differential equation (4.40) or, equivalently, d
dsLs =

P ◦ Ls . Rewriting the latter equation in terms of the coefficients at ∂k for
k ≤ −1, we obtain an infinite system of differential equations in the “triangular
form”

d

ds
uk(θ; s) = Φk (u1(θ; s), . . . , uk−1(θ; s)) . (4.41)

Here Φk is a polynomial in the u1, . . . , uk−1 and their derivatives with coeffi-
cients in C∞(S1). (For example, we have d

dsu1(θ; s) = a1(θ) and d
dsu2(θ; s) =

a2(θ)+a1(θ)u1(θ; s)+a1(θ)u′1(θ; s), where u′1 := ∂u1/∂θ, etc.) This system can
be solved uniquely after fixing the initial condition u(θ; 0) = 0, i.e., L0 = 1.
Furthermore, since the functions ai are periodic in θ, so will be the functions
uk. Hence the exponential map is well defined for all P ∈ INT. �

Now we are ready to prove

Theorem 4.30. The map exp : ˜INT → ˜GINT is well defined and bijective.

Proof. Take an element P̃ = λ log ∂+P ∈ ˜INT, where P =
∑−1

i=−∞ ai(θ)∂i

is an integral symbol from INT. Without loss of generality we set λ = 1. (The
case λ = 0 is covered by Proposition 4.33.) Equation (4.40) now becomes

dL̃s

ds
= (log ∂ + P ) L̃s . (4.42)

Let us set L̃s = (1 + Qs)∂s ∈ ˜GINT. Then the equation above assumes the
form

dQs

ds
= [log ∂,Qs] + P ◦ (1 +Qs) . (4.43)

Indeed, for the product L̃s+εL̃
−1
s we have, after some transformations,

L̃s+εL̃
−1
s = (∂ε(1 +Qs+ε) − [∂ε, Qs+ε]) (1 +Qs)−1

= 1 + ε log ∂ + ε
dQs

ds
(1 +Qs)−1 − ε[log ∂,Qs](1 +Qs)−1 + O(ε2) ,

as ε → 0. On the other hand, this product is equal to 1+ε
(

d
ds L̃s

)

L̃−1
s +O(ε2),

which leads to the equivalence of equations (4.42) and (4.43).
Equation (4.43) gives rise to a triangular system of ordinary differential

equations similar to (4.41). Such a system can be solved uniquely, so that the
exponential map is well defined on the whole Lie algebra ˜INT.
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Finally, we have to check that the exponential map is bijective. To do this
we construct an inverse map to exp. Fix some L̃ ∈ ˜GINT, where L̃ = (1+Q)∂s

for an integral symbol Q =
∑−1

i=−∞ ai(θ)∂i. Surjectivity of the exponential
map INT → GINT for the nonextended group (Proposition 4.33) allows us to
find some P ∈ INT such that exp(P ) = 1 +Q. Hence we get

L̃ = (1 +Q)∂s = exp(P ) ◦ exp(s log ∂) .

The Campbell–Hausdorff formula implies that

L̃ = exp(P + s log ∂ + s[P, log ∂]/2 + · · · ) .

So we can define the inverse of the exponential map by

log(L̃) := P + s log ∂ + s[P, log ∂]/2 + · · · .

Note that each coefficient at every ∂k in the expression for log(L̃) is a finite
sum (since the terms in the sum above have decreasing degree due to the
increasing number of commutators). Therefore, the map log : ˜GINT → ˜INT
is well defined, which implies that the exponential map exp : ˜INT → ˜GINT is
indeed bijective. �

4.6 Poisson Structures on the Group of α-Pseudodifferential
Symbols

The fact that the Lie algebra ˜INT of integral symbols is actually a Lie bial-
gebra (or a part of a Manin triple) implies that the corresponding Lie group
˜GINT is a Poisson Lie group:

Definition 4.37 A Poisson Lie group (G, { , }) is a Lie group G equipped
with a Poisson structure { , } such that the multiplication G × G → G and
the inverse mapping G → G− (sending g �→ g−1) are Poisson maps, where
G×G carries the product Poisson structure and G− denotes the Lie group G
equipped with the opposite Poisson structure −{ , }.

Theorem 4.38 For any connected and simply connected Lie group G, there
is a one-to-one correspondence between Lie bialgebra structures on its Lie
algebra g and Poisson Lie group structures on G.

For a proof of this theorem, see, e.g., [349, 242]. The explicit construction
of the Poisson bracket on G from the Lie bialgebra structure on g is as follows.
Regard the Lie bialgebra g as a part g = g− of the Manin triple (ḡ, g+, g−)
with corresponding Lie groups Ḡ, G+, and G−. (We write g+ = g∗ and g− = g

in order to distuinguish between the different duals involved.) Define the fol-
lowing Poisson structure on the group G = G−. Let ξ, η ∈ T ∗

g G− be cotangent
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vectors to G− at a point g ∈ G− and let ξ̄, η̄ be arbitrary extensions of ξ and
η to cotangent vectors of the group Ḡ ⊃ G− at g. Furthermore, denote by r∗g ξ̄

and l∗g ξ̄ the pullbacks of ξ̄ ∈ T ∗
g Ḡ to T ∗

e Ḡ = ḡ∗ via, respectively, the right and
left translations. Finally, let ( )+ be the projection of ḡ∗ to g∗+ = g− along g∗−
and define ( )− analogously. Then the Poisson structure on the group G = G−
is defined by the bivector field Π whose value on the covectors ξ and η at the
point g is given by the following formula:

Πg(ξ, η) = 〈(r∗g ξ̄)+, r∗g η̄〉 − 〈(l∗g ξ̄)+, l∗g η̄〉 . (4.44)

Remark 4.39 Note that we do not actually need the existence of Lie groups
Ḡ and G+ corresponding to the Lie algebras ḡ and g+. For the above con-
struction to work, it suffices to know how the Lie group G− acts on the big
Lie algebra ḡ = g+⊕g−. Indeed, for cotangent vectors ξ, η ∈ T ∗

g G− at a point
g ∈ G, let A = r∗gξ and B = r∗gη denote their pullbacks to T ∗

e G− = g∗−. Now,
if Ā and B̄ are any liftings of A,B ∈ g∗− = ḡ/g∗+ to ḡ, then formula (4.44) for
the Poisson structure on the group G− can be rewritten in the form

Πg(ξ, η) = 〈(Ā)+, B̄〉 − 〈(Ad∗
g Ā)+,Ad∗

g B̄〉 . (4.45)

This observation allows one to extend this construction to the infinite-
dimensional case at hand. Indeed, set g− = ˜INT and g+ = ̂DO, while the
group ˜GINT acts on the Lie algebra ψ̃DS by conjugation. Then formula (4.45)
defines a bivector field on the group ˜GINT, which endows it with the structure
of a Poisson Lie group.

Corollary 4.40 The group ˜GINT carries a natural Poisson structure that
gives it the structure of a Poisson Lie group.

Our next goal will be to identify this Poisson structure on the group ˜GINT

explicitly. Let us express ˜GINT =
⋃

α∈R
˜Gα as a union of the “hyperplanes”

˜Gα =
{

L | L = ∂α ◦
(

1 +
−1
∑

k=−∞
uk(z)∂k

)

}

of symbols of fixed degree α = const.

Definition 4.41 The quadratic (or second) generalized Gelfand–Dickey
Poisson structure { , }GD on the group ˜GINT is defined as follows:

1. The degree function α is its Casimir function, i.e., the hyperplanes ˜Gα are
Poisson submanifolds for this Poisson structure. In other words, for two
functions f, g : ˜GINT → R, the value of their Poisson bracket {f, g}GD at
any point L = ∂α0(1 + · · · ) ∈ ˜GINT depends only on the restriction of f
and g to the hyperplane ˜Gα0 .
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2. The subsets ˜Gα are affine spaces, so one can identify the tangent space to
the hyperplane ˜Gα0 of symbols of fixed degree α0 with the set ∂α0 ◦ INT:
a tangent vector at the symbol L of degree α0 has the form δL = ∂α0 ◦
∑−1

k=−∞ uk(z)∂k ∈ ∂α0 ◦ INT.
This allows one to identify the corresponding cotangent space with
DO ◦ ∂−α0 . Any cotangent vector A ∈ DO ◦ ∂−α0 defines a linear func-
tional FA on the tangent space ∂α0 ◦ INT via the following pairing:

FA(δL) := 〈A, δL〉 = tr(A ◦ δL) .

Here the product A ◦ δL is a symbol of integral degree and its trace tr is
well defined.

3. Finally, it is sufficient to define the Poisson bracket on linear functionals,
and

{FA, FB}GD(L) := FB (VA(L)) ,

where VA is the following Hamiltonian mapping FA �→ VA(L) (from the
cotangent space {A} to the tangent space {δL}):

VA(L) = (L ◦A)+ ◦ L− L ◦ (A ◦ L)+ . (4.46)

Here X+ denotes the purely differential part of a pseudodifferential symbol
X ∈ ψDS.

Note that in the above formula for the Poisson bracket we regard the
functional FB as a linear functional on the space ˜Gα0 in the left-hand side,
and as a covector (on the tangent space) at L in the right-hand side. The
bracket of two functionals linear in L may already be quadratic in L.

Exercise 4.42 Show that VA(L) is well defined as a vector field on ˜Gα0 , i.e.,
show that deg VA(L) ≤ α0 − 1 and its degree differs from α0 by an integer.
(Hint: one can rewrite VA(L) in the form

VA(L) = (L ◦A− (L ◦A)−) ◦ L− L ◦ (A ◦ L− (A ◦ L)−)
= −(L ◦A)− ◦ L+ L ◦ (A ◦ L)− ,

where X− = X −X+ stands for the purely integral part of a symbol X.)

Theorem 4.43 ([198, 101]) The Poisson structure of the Poisson Lie group
˜GINT coincides with the quadratic generalized Gelfand–Dickey structure.

We start with the following lemma:

Lemma 4.44 The function deg : ˜GINT → R, which assigns to a pseudodif-
ferential symbol its degree, is a Casimir function on ˜GINT, i.e., it Poisson-
commutes with all differentiable functions on ˜GINT.



4. The Group of Pseudodifferential Symbols 127

Proof. First observe that the pullback of the differential ddeg from any
point L to the identity in ˜GINT corresponds to the covector A = (0, 1) ∈ ̂DO =
DO⊕R ·�, which is an element of the center of the Lie algebra ̂DO. Extend A

to an element Ā = (0̄, 1, 0) in the center of ψ̃DS = ψDS⊕R·�⊕R·log ∂. (Here,
0̄ denotes the extension of 0 ∈ DO to the zero element in ψDS = DO⊕ INT.)
Now one can see that the expression

〈(0̄, 1, 0)+, (B̄, b, β)〉 − 〈(L−1 ◦ (0̄, 1, 0) ◦ L)+, L−1 ◦ (B̄, b, β) ◦ L〉

from equation (4.45) vanishes for all (B̄, b, β) ∈ ψ̃DS. Hence, the function deg
is indeed a Casimir function on ˜GINT. �

Proof of Theorem 4.43. Lemma 4.44 implies that the hyperplanes
deg(L) = const in ˜GINT are Poisson submanifolds, and we can restrict our
attention to their tangent spaces. Let X and Y be cotangent vectors at L to
the hyperplane α = α0. Regard X and Y as elements of DO ◦ ∂−α0 . Let X̄ and
Ȳ denote arbitrary extensions of X and Y to ψDS ◦ ∂−α0 . By the definition
of the Poisson bracket on ˜GINT, one can write

ΠL(X,Y ) =〈(r∗LX̄)+, r∗LȲ 〉 − 〈(Ad∗
L(r∗LX̄))+,Ad∗

L r
∗
LȲ 〉

=〈(L ◦ X̄)+, L ◦ Ȳ 〉 − 〈(X̄ ◦ L)+, Ȳ ◦ L〉
=〈(L ◦ X̄)+ ◦ L− L ◦ (X̄ ◦ L)+, Ȳ 〉 ,

which is the quadratic generalized Gelfand–Dickey bracket. (In the calculation
above, we used that right multiplication on vectors becomes left multiplication
on covectors.) �

INT ◦ ∂α

INT

∂0

˜GINT

GINT

α = const
∂α

Fig. 4.3. The tangent space to the hyperplane α = const in the group ˜GINT.

Definition 4.45 The linear (or first) generalized Gelfand–Dickey structure
can be defined on the “integral” hyperplanes ˜Gα with α ∈ Z in the group
˜GINT by setting
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V 1
A(L) := [L,A]+ − [L,A+] . (4.47)

Proposition 4.46 The first and the second generalized Gelfand–Dickey
structures are compatible.

Proof. Indeed, from formula (4.46) for VA(L) we obtain

VA(L+ λ∂0) = VA(L) + λV 1
A(L) ,

so that VA(L) + λV 1
A(L) is the second Gelfand–Dickey structure shifted by

λ∂0. Note that the shift of L by λ∂0 makes sense only if L is of integral
degree. �

Remark 4.47 The classical definitions of both the first and the second
Gelfand–Dickey (also called Adler–Gelfand–Dickey) structures are usually
given in the case that α is a fixed positive integer n and L is a differential
operator; cf. [3, 80].

One can see that for the second (quadratic) bracket, the set Ln := {L ∈
˜Gn | L+ = L} of purely differential operators is a Poisson submanifold in the
Poisson “hyperplane” ˜Gn of all monic pseudodifferential symbols of the same
degree n. Indeed, for any differential operator L = ∂n + un−1∂

n−1 + · · · +
u0 and an arbitrary symbol A from the space DO ◦ ∂−n, the corresponding
Hamiltonian vector VA(L) = (LA)+ L − L(AL)+ is always a differential
operator of order n−1, and hence all Hamiltonian fields keep the submanifold
Ln of such differential operators invariant.

The corresponding quadratic Poisson algebras of functions on the sets Ln

(or, more generally, on the hyperplanes deg(L) = n) are also called classical
Wn-algebras.

Exercise 4.48 Show that in the Poisson Lie group ˜GINT not only are the
submanifolds Ln of purely differential operators Poisson, but so are the sub-
manifolds L−1

n of the inverses of differential operators, as well as the products
L−1

n Lm for any n and m. (Hint: use the properties of a Poisson Lie group that
taking products and inverses are Poisson maps.)

Remark 4.49 Another point to mention is that the linear Gelfand–Dickey
bracket simplifies significantly when it is restricted to purely differential oper-
ators. Namely, linear functionals on the spaces Ln are given by pseudodifferen-
tial symbols A of degree deg(A) ≤ −1 via the pairing 〈A,L〉 = tr(A◦L). Since
the degree of A is negative, we have A+ = 0, whence the term [L,A+] does
not appear in the expression for V 1

A(L) above. Thus in this case, the first gen-
eralized Gelfand–Dickey structure reduces to the usual first Gelfand–Dickey
structure defined as V1

A(L) := [L,A]+. Finally, note that the latter Poisson
structure is nothing else but the linear Lie–Poisson structure on differential
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operators, regarded as the dual space DO = INT∗ to the Lie algebra INT of
integral symbols [234].

Remark 4.50 Both the first and the second Gelfand–Dickey Poisson struc-
tures on the spaces Ln can also be obtained by a Hamiltonian reduction from
the dual of the affine L̂gl(n)-algebras in the classical Drinfeld–Sokolov re-

duction. The linear Lie–Poisson structure on L̂gl(n)
∗

becomes the quadratic
Gelfand–Dickey bracket on Ln after the reduction, while a constant Poisson
structure on L̂gl(n)

∗
becomes the linear Gelfand–Dickey bracket. We describe

this construction in Appendix A.8.
It turns out that this reduction procedure can be extended to the whole

hyperplanes deg(L) = α and can also be defined for an arbitrary complex
degree α; see [191]. The corresponding affine algebra before the reduction is
constructed with the help of the algebra gl(α) for any complex α (“the algebra
of matrices of complex size”) introduced in [116].

4.7 Integrable Hierarchies on the Poisson Lie Group ˜GINT

Consider the following family of Hamiltonian functions {Hm} : ˜GINT → R

parametrized by an integer parameter m ∈ N: the value of Hm at the
pseudodifferential symbol L ∈ ˜GINT of degree α �= 0 is

Hm(L) :=
α

m
tr(Lm/α) .

Here any real power of L is a uniquely defined element in ˜GINT, since the group
˜GINT is quasi-unipotent and the exponential map is one-to-one; see Theorem
4.30 and Section 4.5. One can think of the powers Lm/α as intersections of
the one-parameter subgroup Lt passing through L with the “hyperplanes” of
symbols of integral degree m. Since deg(L) = α, the degree deg(Lm/α) = m
is an integer, and hence both the corresponding trace tr and the function Hm

are well defined.

Theorem 4.51 ([198, 101]) 1. The Hamiltonian equations corresponding
to the functions Hm are well defined on any hyperplane deg(L) = const �=
0 in the Poisson Lie group ˜GINT.

2. Each function Hm defines the following Hamiltonian equation with respect
to the (quadratic) Poisson structure on ˜GINT:

∂L

∂tm
= [(Lm/α)+, L] , (4.48)

where (Lm/α)+ denotes the purely differential part of the symbol Lm/α.
3. All the functions Hm, m = 1, 2, . . . , are first integrals for each of these

Hamiltonian equations. Equivalently, these functions Hm are pairwise in
involution with respect to the Poisson structure on the group ˜GINT.
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Proof. (1) The flows of the Hamiltonians Hm do not change the degree of
symbols, since deg(L) is a Casimir function on ˜GINT.

(2) We prove part 2 for α = 1 (and refer to [198, 101] and the exercise
below for general α). In this case, deg(L) = 1 and Hm(L) = 1

m tr(Lm). To
write out the Hamiltonian equations we need to find the variational derivative
δHm/δL of the Hamiltonian function first. By definition,

〈δHm

δL
(L), δL

〉

:=
d

dε

∣

∣

∣

ε=0
Hm(L+ ε · δL)

= lim
ε→0

1
ε

(

1
m

tr((L+ ε · δL)m) − 1
m

tr(Lm)
)

= tr(Lm−1δL) .

Recall that tangent vectors δL to the set of symbols {L | deg(L) = 1} are
symbols of degree 0. Then the cotangent vectors to the same set have the form
DO ◦ ∂−1. In particular, we have δHm/δL = (Lm−1)≥−1, i.e., the variational
derivative δHm/δL is the part of the symbol Lm−1 in which we keep only
the terms of degree ≥ −1. We can, however, use the whole symbol Lm−1 as
the variational derivative δHm/δL, since other terms do not contribute to the
pairing 〈A, δL〉 = tr(A ◦ δL) between the tangent and cotangent spaces.

Now substitute the value δHm/δL = Lm−1 to the definition of the
Gelfand–Dickey bracket to find the corresponding Hamiltonian field:

VδHm/δL(L) = (L ◦ Lm−1)+ ◦ L− L ◦ (Lm−1 ◦ L)+
= (Lm)+ ◦ L− L ◦ (Lm)+ = [(Lm)+, L] .

This implies the form of the Hamiltonian equations given in the theorem. The
case of general α is handled similarly by showing that δHm/δL = L(m/α)−1,
but requires a bit more work (see below).

(3) The last part now follows directly, since the flow for Hm changes a
symbol into a conjugate one. Thus, the ad-invariant function Hn stays invari-
ant on the flow lines of Hm, so that the commutator {Hm,Hn} vanishes for
all m,n. �

Exercise 4.52 Verify the last statement of the theorem above directly by
obtaining zero as a result of the differentiation:

{Hm,Hn} =
∂Hn

∂tm
=

α

n

∂ tr(Ln/α)
∂tm

.

Exercise 4.53 Prove that for general α �= 0 one has δHm/δL = L(m/α)−1.
(Hint: first prove this for integral values of α; then use that the coefficients of
both sides depend rationally on α; see details in [198, 101].)
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Exercise 4.54 Prove that the first flow at any hierarchy has the form

∂L

∂t1
=

∂L

∂θ
,

which expresses the fact that the space variable θ can be taken as the first
time variable.

Remark 4.55 Equations (4.48) form an infinite sequence of commuting flows
on the coefficients of the symbols L. These flows are defined on the hyperplanes
of symbols of fixed degree α and are universal in the sense that they interpolate
between several well-known hierarchies of integrable Hamiltonian systems.
Here we list a few interesting cases; cf. [372]:

1. On the hyperplane deg(L) = 1 one obtains the so called Kadomtsev–
Petviashvili (KP) hierarchy, which has two equivalent and commonly used
written forms:

∂L

∂tm
= [(Lm)+, L] = −[(Lm)−, L] .

The compatibility (or zero curvature) equation between the second and
the third flows of this hierarchy,

∂(L2)+
∂t3

− ∂(L3)+
∂t2

= [(L3)+, (L2)+] , (4.49)

leads to the Kadomtsev–Petviashvili equation in the form

(4ut3 − 12uuθ − uθθθ)θ − 3ut2t2 = 0 (4.50)

on the function u(θ, t2, t3) of two space variables θ = t1 and t2 and one
time variable t3 (see also Exercise 4.56 below). The latter is often regarded
as a two-dimensional version of the KdV equation: the KdV solutions give
rise to the KP solutions independent of the space variable t2.

2. The restriction of the universal hierarchy to the Poisson submanifolds
Ln := {L | L+ = L , deg(L) = n} of purely differential operators of
degree n gives the n-KdV hierarchy

∂L

∂tm
= [(Lm/n)+, L] , m = 1, 2, . . . , n− 1, n+ 1, n+ 2, . . . .

The classical KdV hierarchy corresponds to the case n = 2 and L =
∂2+u(θ). (Notice the familiar form of a Hill’s operator.) The KdV equation
appears for m = 3 as an evolution equation on the potential u(θ).
Another classical case is the Boussinesq equation, which corresponds to
n = 3, m = 2 and arises as a pair of equations on two functions u, v in
the variables θ, t:

uθθ − 2vθ + ut = 0 ,
2uθθθ − 3vθθ + 3vt + 2uuθ = 0 .
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Using cross differentiation, it is possible to eliminate v and obtain the
equation

3utt + uθθθθ + 2(u2)θθ = 0 . (4.51)

3. Consider the space Kn,m := L−1
n Lm of rational pseudodifferential symbols

on the circle, i.e., the space of symbols of the form L−1
1 L2, where L1 and

L2 are (mutually prime) monic differential operators of degree n and m
respectively. As we discussed in the preceding section, such spaces are
Poisson submanifolds, and one can restrict to them the Hamiltonian flows.
The restriction of the universal hierarchy to these spaces generates the
rational reductions of the KP hierarchy [217].

4. Consider also pseudodifferential symbols with complex coefficients and
take the Hamiltonians Hm(L) = i

m tr(Lm). Then for m = 2 and L =
∂ +ψ∗∂−1ψ, the corresponding Hamiltonian flow generates the nonlinear
Schrödinger equation (NLS) in the form

i
∂ψ

∂t
= ψθθ + 2|ψ|2ψ .

This equation can also be viewed as a rational KP reduction to the sub-
manifold K1,2; see details in [217].

Exercise 4.56 Show that the compatibility equation (4.49) for a symbol L =
∂ + u∂−1 + v∂−2 + · · · yields the following system of equations for u and v:

ut2 =uθθ + 2vθ ,

3vt2 + 3uθt2 + 6uuθ = 3vθθ + 2ut3 + uθθθ .

Use cross differentiation to eliminate v from the equations above and obtain
the Kadomtsev–Petviashvili equation (4.50) for u.

4.8 Bibliographical Notes

Various structures related to pseudodifferential symbols are described in detail
in the book [80]. The Adler–Gelfand–Dickey brackets were defined in [3, 142].
The Poisson Lie group approach to these structures was presented in [101,
198], where we refer the interested reader for more details on the questions
discussed in this section. The reader can find a brief introduction to Poisson
Lie groups in [87, 242, 349], for example.

The Adler–Gelfand–Dickey structures on scalar differential operators can
be obtained via the Drinfeld–Sokolov reduction from matrix operators; see
[88, 115] and Appendix A.8. This reduction extends to the symbols of all
complex degrees [192]. In the mathematical physics literature, the Gelfand–
Dickey Poisson algebras are called classical W -algebras; see [112, 41, 81]. The
Lie algebra and Poisson Lie group of pseudodifferential symbols have natural
q-analogues, which were described in [313, 314]; see also [131].
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The 2-cocycle on differential operators on the circle appeared in [179],
while the logarithmic 2-cocycle on the Lie algebra of pseudodifferential sym-
bols on the circle was introduced in [215]. For generalizations of the loga-
rithmic cocycle to symbols on higher-dimensional manifolds see [324, 94]. For
the description of cohomology of Lie algebras of differential operators and
pseudodifferential symbols see [116, 118, 94]. Representations of the centrally
extended Lie algebra of differential operators were studied in [180, 130]. The
logarithmic cocycle also appears in the study of the multiplicative anomaly
for determinants of elliptic pseudodifferential operators [211].

One can find in [372, 250, 129] more details on the corresponding equa-
tions of mathematical physics. For rational reductions of the KP hierarchy we
refer to [217, 102, 186], while higher-dimensional extensions of this hierarchy
are described in [310]. Quantum versions of the corresponding equations are
discussed, for example, in [117].
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5 Double Loop and Elliptic Lie Groups

While loop algebras have the one-dimensional central extension, current alge-
bras on compact manifolds admit infinite-dimensional central extensions once
the manifold dimension is bigger than 1. However, if the manifold M is a two-
dimensional (Riemann) surface regarded as a complex curve, there is a way
to choose a special and, in many respects, natural finite-dimensional central
extension for the current algebra on M . While the nonextended algebra itself
is the same for all choices of the complex structure, it is the 2-cocycle on this
current algebra that relies on this choice.

In this section we consider the case of an elliptic curve M = Σ, where
the theory is most complete. The corresponding Lie algebra is often called
the double loop or elliptic Lie algebra. It turns out that many constructions
for the affine algebras have their analogues for the elliptic case. In particular,
the coadjoint orbits of the corresponding elliptic Lie group are classified by
equivalence classes of holomorphic G-bundles over the elliptic curve.

It turns out that the Calogero–Moser dynamical systems provide a bridge,
or, rather, a ladder that unites the three classes of the Lie algebras: there is a
universal construction of a Hamiltonian reduction on the dual of a Lie algebra,
which for the finite-dimensional simple Lie algebras, affine Lie algebras, and
elliptic Lie algebras leads to the Calogero–Moser integrable systems with,
respectively, rational, trigonometric, and elliptic potentials.

5.1 Central Extensions of Double Loop Groups
and Their Lie Algebras

Let g be a complex semisimple Lie algebra and G the corresponding simply
connected Lie group. Throughout this section we fix an elliptic curve Σ, i.e.,
a 2-dimensional torus endowed with a complex structure. One can always
represent such a curve as a quotient Σ = C/(Z + τZ), where τ is a complex
number with Im τ > 0. Fix a holomorphic 1-form dz on Σ, which is canonical
up to a complex factor.

0 0

τ

C/(Z + τZ)

11

C/Z

Fig. 5.1. A cylinder and an elliptic curve as quotients of C.

The double loop algebra gΣ is the Lie algebra of smooth maps from the
torus Σ to the Lie algebra g with the pointwise bracket, gΣ = C∞(Σ, g). Note
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that neither the elements nor the commutator of the double loop algebra de-
pends on the complex structure on Σ. However, the complex structure enters
the definition of the central extension of gΣ .

Definition 5.1 The elliptic Lie algebra corresponding to the Lie algebra g

and the elliptic curve Σ is the complex one-dimensional central extension
ĝΣ of the double loop algebra gΣ defined as the vector space ĝΣ = gΣ ⊕ C

endowed with the following commutator:

[(X(z, z̄), a) , (Y (z, z̄), b)] =
(

[X(z, z̄), Y (z, z̄)] ,
∫

Σ

dz ∧ 〈X, dY 〉
)

,

where 〈 , 〉 denotes the Killing form on the Lie algebra g.

By decomposing the operator d = ∂ + ∂̄ into its Dolbault components ∂
and ∂̄, one can rewrite the cocycle ωΣ that defines the central extension as

ωΣ(X,Y ) :=
∫

Σ

dz ∧ 〈X, ∂̄Y 〉 . (5.52)

Note that the complex structure of the elliptic curve Σ appears only in the
cocycle ωΣ , and conformal equivalence of curves induces the isomorphism of
the elliptic algebras.

The Lie group corresponding to the double loop algebra gΣ is given by the
double loop group GΣ , where G is the simply connected complex Lie group
corresponding to the Lie algebra g. Similarly to the case of the loop group, the
central extension of the double loop algebra gives rise to an extension of the
corresponding group. However, the group extension is now given by means of
a “complex analogue of the circle.” Namely, the elliptic curve Σ itself can be
regarded as such an analogue, while the identification Σ = C/(Z + τZ) gives
it the structure of an abelian group.

Theorem 5.2 The central extension ĝΣ of the Lie algebra gΣ lifts to a central
extension ̂GΣ of the current group GΣ, where the extension is by means of
the elliptic curve Σ itself:

e → Σ → ̂GΣ → GΣ → e .

The central extension ̂GΣ , called the elliptic Lie group, can be constructed
similarly to the central extension of the loop group LG (see [322, 106]). More
explicit (quotient) constructions either use ingenious generalizations [241] of
the construction of the affine group (see [263]; cf. Section 1.3) or are purely
complex and involve the higher-dimensional residues (see [133]; cf. Chapter
III for more details).

Remark 5.3 In a similar way one can define the current algebra for any
compact Riemann surface (or complex curve) C of genus κ > 0. Let HC =
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H0(C, Ω1
C) be the vector space of holomorphic differentials on C, which has

the complex dimension dim(HC) = κ. Define a complex κ-dimensional central
extension of the Lie algebra gC by the following 2-cocycle ωC with values in
H∗

C , dual to the space HC of holomorphic differentials. Namely, set the value
of this cocycle on any holomorphic 1-form α on C to be

ωC(X,Y )(α) :=
∫

C
α ∧ 〈X, ∂̄Y 〉 .

This central extension lifts to a central extension of the current group GC =
C∞(C, G), this time by the Jacobian J(C) of the complex curve C:

e → J(C) → ̂GC → GC → e ;

see [106]. If C is an elliptic curve Σ, its Jacobian is given by the curve Σ itself,
and one recovers the central extension of the double loop group described
above.

Remark 5.4 If M is of real dimension 2, but it is not equipped with a
complex structure, or if M is higher-dimensional, then a priori, we do not
have a preferred choice of a finite-dimensional cocycle. For any compact
M the universal extension of the current algebra is by means of the space
Ω1(M)/dΩ0(M) of all 1-forms on M modulo exact 1-forms; see Remark 1.7
in Chapter II. For details, the interested reader is referred to [322, 287, 288],
where one can find the study of this extension for a general manifold M ,
including the noncompact case and the case with boundary.

5.2 Coadjoint Orbits

In this section, we study the coadjoint representation of the elliptic Lie group
̂GΣ for the elliptic curve Σ.

Definition 5.5 The (smooth part of the) dual space (ĝΣ)∗ of the Lie algebra
ĝΣ is identified with the space gΣ ⊕ C via the pairing

〈(A, a), (X, c)〉 :=
∫

Σ

〈A,X〉dz ∧ dz̄ + a · c ,

where 〈 , 〉 is the Killing form on the finite-dimensional Lie algebra g, (X, c) ∈
ĝΣ , and (A, a) ∈ (ĝΣ)∗ = gΣ ⊕ C.

Proposition 5.6 In the coadjoint representation of the elliptic Lie group ̂GΣ

an element g ∈ GΣ acts on the dual space (ĝΣ)∗ as follows:

g : (A, a) �→ (Adg(A) + a(∂̄g)g−1, a) .



5. Double Loop and Elliptic Lie Groups 137

In other words, elements of the dual space (ĝΣ)∗ can be thought of as
∂̄-connections {−a∂̄ +A(z, z̄)}, while the group coadjoint action is the gauge
action on these connections, cf. Remark 1.13.

This proposition describes the coadjoint representation of the whole group
̂GΣ completely, since the center acts trivially in the coadjoint representation.

Proof. The proof repeats that for the corresponding statement for the affine
Lie groups. �

One of the main features of the centrally extended elliptic Lie algebras
and Lie groups is a nice classification of their coadjoint orbits in terms of
holomorphic principal G-bundles over the elliptic curve Σ. To study them we
first note that the hyperplanes a = const are invariant under the coadjoint
action of the group GΣ in the dual space (ĝΣ)∗. Fix a nonzero value of a and
examine the orbits contained in the corresponding hyperplane Ha ⊂ (ĝΣ)∗.

Theorem 5.7 ([106]) Coadjoint orbits of the group GΣ in the hyperplane
Ha are in one-to-one correspondence with equivalence classes of holomorphic
G-bundles over Σ.

Proof. Given an element (A, a) ∈ (ĝΣ)∗, we consider the operator D =
a∂̄−A and associate to it a holomorphic principal G-bundle over Σ as follows.
Consider the partial differential equation

a∂̄ψ −Aψ = 0 .

(Here one can think of A as a g-valued (0, 1)-form, the operator D = a∂̄−A as
a partial (0, 1)-connection, while ψ is a horizontal section for this connection;
cf. Section III.1.1.) One can find an open covering Ui, i ∈ I, of the curve Σ
such that there exist local solutions ψi : Ui → G of this equation. Now define
transition functions φij : Ui ∩ Uj → G by ϕij = ψ−1

i ψj . It is easy to see
that these functions are holomorphic and satisfy ϕij = ϕ−1

ji on Ui ∩ Uj and
ϕijϕjkϕki = id on Ui ∩ Uj ∩ Uk. Thus, they can be taken to be the gluing
functions of a holomorphic principal G-bundle P (A) on the curve Σ.

Conversely, for any holomorphic principal G-bundle P on Σ there exists
an operator D = a∂̄−A such that P = P (A). Indeed, any principal G-bundle
on Σ is topologically trivial, since G is simply connected. When a global
trivialization is chosen, the local holomorphic trivializations over open sets Ui

will be expressed by smooth functions ψi : Ui → G such that the transition
functions ϕij = ψ−1

i ψj are holomorphic on Ui ∩ Uj .
Then we have

∂̄ψi · ψ−1
i = ψj · ∂̄(ψ−1

j ψi) · ψ−1
i − ψj · ∂̄ψ−1

j = ∂̄ψj · ψ−1
j

on Ui ∩ Uj . Therefore there exists a g-valued 1-form A on Σ such that A =
a∂̄ψi · ψ−1

i on Ui for all i ∈ I. Set D = a∂̄ −A. Then the bundle P is defined
as the bundle P (A).
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Finally, two holomorphic principal G-bundles P (A1) and P (A2) are iso-
morphic if and only if there exists some g ∈ GΣ such that A2 = gA1g

−1 +
a(∂̄g)g−1, i.e., if the differential operators D1 = a∂̄ − A1 and D2 = a∂̄ − A2

are related by a gauge transformation: g ◦D1 = D2. �

Exercise 5.8 Define an elliptic analogue of the Virasoro algebra, i.e., a cen-
tral extension of the Lie algebra Vect(0,1)(Σ) of (0, 1)-vector fields on the
elliptic curve Σ and describe its coadjoint orbits. (Hint: cf. [106].)

In a similar way one can define an analogue of the Virasoro algebra for a
complex curve C of genus κ > 1, where it is going to be a central extension of
the Lie algebra Vect(0,1)(C) of complex dimension κ; see [106]. This extension
turns out to be universal [380]. One can also define the elliptic analogues of
the Gelfand–Dickey brackets on the space of differential operators of higher
order, {

∑n
k=0 uk(z, z̄)∂̄k | uk ∈ C∞(Σ,C)}; see [107].

Remark 5.9 For an arbitrary complex curve (i.e., a compact Riemann sur-
face) C, the orbits of the group ̂GC in the module of (0, 1)- (or ∂̄-) connections
have a nice geometric interpretation similar to the one described above [106].
Namely, these orbits can be classified in terms of equivalence classes of holo-
morphic principal G-bundles on the complex curve C.

However, for higher-genus curves, the space of such connections is not a
hyperplane in the corresponding dual space of the Lie algebra ĝC . (The iden-
tification does not work directly, since the holomorphic differentials defining
the 2-cocycle have zeros on C.) The classification of coadjoint orbits of the
corresponding group ̂GC for C of higher genus is still unknown.

5.3 Holomorphic Loop Groups and Monodromy

Recall that coadjoint orbits of a centrally extended loop group ̂LG can be
classified in terms of conjugacy classes of the corresponding finite-dimensional
Lie group G. Namely, the conjugacy class corresponding to a coadjoint orbit
can be interpreted as the monodromy of a (necessarily flat) connection on
the circle. As we shall see in this section, the coadjoint orbits of the centrally
extended double loop group ̂GΣ admit a similar description.

Definition 5.10 Let HoLG denote the group of holomorphic maps from the
cylinder C/Z to a simply connected complex Lie group G with pointwise
multiplication:

HoLG = {g : C/Z → G | g holomorphic } .

The group HoLG is called the holomorphic loop group of G.
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Fix some τ ∈ C. We define the “τ -twisted” conjugacy classes of the group
HoLG as the orbits of the HoLG-action on itself given by

g(z) : h(z) �→ hg(z) := g(z)h(z)g(z + τ)−1 . (5.53)

(These orbits depend only on the coset τ + Z, and below, τ is regarded as an
element of C or C/Z whenever this does not cause ambiguity.)

Remark 5.11 The τ -twisted conjugacy classes of the group HoLG can be
seen as “restricted conjugacy classes” of the bigger group H̃oLG = HoLG �

C/Z. More precisely, the cylinder C/Z acts on the group HoLG through trans-
lations of the argument (i.e., by “rotating” the loops, τ : f(z) �→ f(z + τ)),
and we form the semidirect product H̃oLG = HoLG� C/Z associated to this
action. The group H̃oLG acts on itself by conjugation.

Exercise 5.12 For (f, t) and (g, τ) ∈ H̃oLG we have (f, t)(g, τ)(f, t)−1 =
(h, τ), where

h(z) = f(z)g(z + t)f(z + τ)−1

for z ∈ C/Z.

One can see that this action leaves the subset HoLG × τ with fixed τ

invariant. The restricted conjugacy classes of the group H̃oLG are the HoLG-
orbits in the “hyperplane” HoLG × τ , where HoLG is viewed as a subgroup
of the larger group H̃oLG.

For what follows we assume that Im τ > 0. The next theorem can be
thought of as a direct analogue of the corresponding theorem for ordinary
loop groups.

Proposition 5.13 Let Σ = C/(Z + τZ) be the elliptic curve with an elliptic
parameter τ . For any fixed a �= 0 there is a one-to-one correspondence between
coadjoint orbits of the group ̂GΣ in the hyperplane Ha = {(A, a) | A ∈ gΣ} ⊂
(ĝΣ)∗ and τ -twisted conjugacy classes in the holomorphic loop group HoLG.

Proof. Let A be a smooth function on the torus Σ. Consider the differential
equation

a∂̄ψ −Aψ = 0 (5.54)

with respect to a G-valued function ψ on the cylinder C/Z.
Let ψ0(z) be a solution of this equation. Then ψ0(z+ τ) is also a solution,

since the equation is periodic in τ . Therefore, ν0(z) = ψ0(z)−1ψ0(z+τ) is also
a G-valued function on the cylinder that is holomorphic, since ∂̄ν0/∂z̄ = 0. If
we choose another solution of equation (5.54), say, ψ1, it will have the form
ψ1(z) = ψ0(z)µ(z), where µ is a holomorphic G-valued function on the same
cylinder. Therefore, the function ν1(z) = ψ1(z)−1ψ1(z + τ) can be expressed
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as follows: ν1(z) = µ(z)−1ν0(z)µ(z + τ). This implies that the τ -twisted con-
jugacy class of the element (ν0, τ) is independent of the choice of the solution
ψ0 of equation (5.54). Thus we have associated a twisted conjugacy class of
HoLG to any equation of the form (5.54).

Now we note that different equations of this form (5.54) associated to
differential operators from one coadjoint orbit give the same twisted conjugacy
class in HoLG. Indeed, fix some element g ∈ GΣ and, as before, let ψ0 denote
a solution of (5.54). Then the G-valued function φ = g ·ψ0 gives a solution of
the equation

a∂̄φ− (gAg−1 + a(∂̄g)g−1)φ = 0 .

Since g is periodic in τ , we obtain

φ(z)−1φ(z + τ) = ψ0(z)−1g(z)−1g(z + τ)ψ0(z + τ) = ψ0(z)−1ψ0(z + τ) .

This shows that the restricted conjugacy class of HoLG associated to the
element (A, a) ∈ gΣ ⊕ C with a �= 0 is the same as the restricted conjugacy
class associated to the element (gAg−1 + a(∂̄g)g−1, a), i.e., one and the same
class corresponds to a coadjoint orbit of the group ̂GΣ .

It remains to show that every conjugacy class in HoLG × τ comes from
a certain equation (5.54). Given an element g ∈ HoLG, we take any smooth
map ψ : C/Z → G satisfying g(z) = ψ(z)−1ψ(z + τ) and set A := a(∂̄ψ)ψ−1.
The fact that ψ(z)−1ψ(z + τ) is holomorphic implies that A is periodic in τ ,
since

0 = a∂̄(ψ(z)−1ψ(z + τ)) = ψ(z)−1(−A(z) +A(z + τ))ψ(z + τ) .

Therefore, A is a smooth map from the elliptic curve Σ to the Lie algebra
g, while the conjugacy class corresponding to the coadjoint orbit through
(A, a) ∈ gΣ ⊕ C gives the τ -twisted conjugacy class through the element
g ∈ HoLG. Thus we have established a one-to-one correspondence between
orbits of the action ofGΣ in Ha and conjugacy classes of H̃oLG in HoLG×τ . �

Note that the τ -twisted conjugacy class of (ν0, τ) plays the role of the
conjugacy class of monodromy M for an ordinary differential equation d

dθψ−
Aψ = 0 in the orbit classification for affine algebras, cf. proof of Theorem
1.15.

Remark 5.14 Above we have identified (i) the coadjoint orbits in the elliptic
Lie algebras with either (ii) equivalence classes of holomorphic principal G-
bundles over the elliptic curve Στ = C/(Z⊕ τZ), or (iii) restricted conjugacy
classes of the group HoLG of holomorphic loops lying inside the “hyperplane”
HoLGτ . Below we describe a direct one-to-one correspondence between the
bundles and the holomorphic loops (due to E. Looijenga, cf. [240]).
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Obtain the torus Στ from the annulus {z ∈ C/Z | 0 ≤ Im z ≤ Im τ} by
gluing together the boundary components according to the rule z ↔ z + τ .
In order to define a holomorphic bundle on the corresponding elliptic curve,
it is enough to present a G-valued holomorphic transition function ϕ(z) in
a neighborhood of the seam Im z = 0. Therefore, one can naturally asso-
ciate a holomorphic G-bundle to every element (g, τ) ∈ HoLGτ by setting
ϕ(z) = g(z). Observe that equation (5.53) expresses exactly the fact that the
equivalence class of this bundle does not depend on the choice of the element
inside the conjugacy class, and that different conjugacy classes give rise to in-
equivalent bundles. It remains to make sure that every holomorphic G-bundle
over Στ comes from a certain conjugacy class in HoLGτ . To see this, let us
pick a bundle B over Στ , and pull it back to the cylinder C/Z. The obtained
bundle B̃ is holomorphically trivial (as is every holomorphic principal bun-
dle on the cylinder with a connected structure group). Let us pick a global
holomorphic section χ(z) of B̃. Then χ(z+ τ) is another holomorphic section.
Therefore, g(z) = χ(z)−1χ(z+ τ) is a holomorphic function. By construction,
the bundle B is associated to the conjugacy class of (g, τ).

Consider the space S of smooth maps ψ : C/Z → G such that ψ(z)−1ψ(z+
τ) is holomorphic. Such maps can be thought of as solutions to all differential
equations a ∂̄ψ − Aψ = 0 for some fixed a �= 0, as we considered above. Now
we can put all the considerations from this section into the following unifying
picture:

π2

{Differential operators a∂̄ −A}

π1π2

= Ha ⊂ (ĝΣ)∗

{Equivalence classes of holomorphic G-bundles on Σ}

{Maps ψ : C/Z → G such that ψ(z)−1ψ(z + τ) is holomorphic}

Holomorphic loops HoLG

π1

The holomorphic loop group HoLG acts on this set S of solutions via right
multiplication and on itself by (twisted) conjugation. On the other hand, the
double loop group GΣ acts on the set of solutions by left multiplication and on
the hyperplane Ha = {(A, a) | A ∈ gΣ} by the coadjoint action. The map π1

denotes factoring out the action of the group HoLG, and π2 denotes factoring
out the action of the double loop group GΣ .

Remark 5.15 As we discussed before, the orbits of affine groups ̂LG (in a
given affine hyperplane of the dual space) are labeled by conjugacy classes
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of the corresponding monodromy operator (cf. Section 1.2). In particular,
their codimensions are given by codimensions of the conjugacy classes of the
monodromy in the Lie group G, and hence these codimensions are bounded
above by dimG.

On the other hand, the codimension of orbits in elliptic Lie algebras can
be arbitrarily large, even for G = SL(2,C). For instance, the conjugacy class
of the element

([

ae2πimz 0
0 a−1e−2πimz

]

, τ

)

in HoLGτ has codimension 2m+ 2 if m > 0; see [107].

Remark 5.16 The algebraic version of the above correspondence between all
twisted conjugacy classes and isomorphism classes of holomorphic G-bundles
was presented in [34]. It turns out that for an algebraic group G there is a
natural bijection between “integral” twisted conjugacy classes in the group of
formal loops in G and isomorphism classes of semistable holomorphic principal
G-bundles on Σ.

5.4 Digression: Definition of the Calogero–Moser Systems

In this section, we take a step aside and describe a family of integrable systems,
the so-called Calogero–Moser systems. We show how these systems can be
obtained by Hamiltonian reduction from cotangent bundles of certain Lie
algebras. It turns out that three different types of integrable potentials for
such systems, rational, trigonometric, and elliptic ones, exactly correspond
to the three different types of Lie algebras we discussed above: simple finite-
dimensional, affine, and elliptic ones, respectively. This beautiful construction
(due to [185, 148]) ties together these three classes of Lie algebras.

Consider a system of n interacting particles on the line that are governed
by the Hamiltonian

H(q1, . . . , qn, p1, . . . , pn) =
1
2

n
∑

i=1

p2
i +

∑

i>j

V (qi − qj) , (5.55)

where the qi denote the positions of the particles and the pi denote their
momenta. The potential V depends only on the distance qi − qj between the
particles, qi ∈ R.

qnqn−1. . .q2q1

Fig. 5.2. n particles on the real line
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Definition 5.17 The Calogero–Moser systems are Hamiltonian systems of
type (5.55), where the potential is given by one of the functions

(a) V (ξ) = 1/ξ2 (the rational case),

(b) V (ξ) =

{

a2/sin2(aξ)
a2/sinh2(aξ)

(the trigonometric/hyperbolic cases), and

(c) V (ξ) = a2℘(aξ; τ) (the elliptic case) .
In the elliptic case, τ ∈ C with Im τ > 0 is a fixed parameter that should

be viewed as the modular parameter of the elliptic curve Σ = C/(Z + τZ).
The Weierstrass ℘-function ℘( · ; τ) with periods 1 and τ is defined by

℘(ξ; τ) =
1
ξ2

+
∑

(m1,m2)∈Z2

(m1,m2) �=(0,0)

(

1
(ξ −m1 −m2τ)2

− 1
(m1 +m2τ)2

)

.

The Weierstrass ℘ function is a a meromorphic function on the elliptic curve
Σ = C/(Z + τZ) with a single pole of order 2 at z = 0.

Note that in the limit a → 0, the trigonometric/hyperbolic Hamiltonian
degenerates to the Hamiltonian of the rational Calogero–Moser system. Sim-
ilarly, in the limit τ → i∞ with i =

√
−1, the Hamiltonian of the elliptic

Calogero–Moser system degenerates to the hyperbolic case, since the function
℘(ξ; τ) reduces to π2

sinh2(πξ)
− π2

3 .

Remark 5.18 The Calogero–Moser systems can be defined for any simple
root system [298]. In particular, the linear functions (qi−qj) can be viewed as
the roots of the root system An−1. How the latter can be replaced by another
root system is briefly described in Appendix A.1.

Another direction for generalizations is defining the Ruijsenaars–Schneider
systems, relativistic analogues of the Calogero–Moser systems. In the elliptic
case the Ruijsenaars–Schneider Hamiltonian is

H(p, q) =
n
∑

i=1

cosh(βpi)
∏

j, j �=i

√

1 − a2℘(a(qj − qi); τ) .

Analogues of the rational and trigonometric Calogero–Moser systems can be
obtained from this Hamiltonian by degenerations (see Appendix A.10.3).

The Calogero–Moser systems are known to be integrable and can be de-
scribed within a group-theoretical framework. We start with the rational case.

Theorem 5.19 ([185]) The rational Calogero–Moser system of n particles
can be obtained by a Hamiltonian reduction of a system of free particles related
to the algebra g = su(n). In particular, it is completely integrable.
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Proof. For the simple Lie group G = SU(n) its Lie algebra g = su(n)
consists of traceless skew-Hermitian n×n matrices. Identify the dual space g∗

with g itself using the nondegenerate bilinear form 〈A,B〉 = − tr(AB). This
identification gives an isomorphism T ∗g ∼= g⊕g. The cotangent bundle of any
manifold carries a natural symplectic structure. Using the identification of g

with g∗, the symplectic form ω on T ∗g is given by

ω ((A1, B1), (A2, B2)) = 〈A1, B2〉 − 〈A2, B1〉 (5.56)

for a pair of vectors (A1, B1), (A2, B2) at any point (P,Q) ∈ g ⊕ g = T ∗g.
The group G acts on g by conjugation. The induced action of G on the

cotangent bundle T ∗g = g⊕g is given by conjugation on each of the summands.
In particular, the symplectic form ω is invariant under the G-action.

Exercise 5.20 Show that the map Φ : g ⊕ g → g given by

Φ (Q,P ) = [Q,P ]

satisfies the moment map condition. That is, show that the map Φ is G-
equivariant and d〈Φ,X〉 = ω(ξX , . ) for all X ∈ g, where ξX denotes the
vector field on T ∗g generated by an element X ∈ g. The latter means that ξX

at a point (Q,P ) ∈ g ⊕ g is given by ([X,Q], [X,P ]).

To perform the Hamiltonian reduction for some element µ ∈ g∗, we con-
sider the manifold Φ−1(µ)/Gµ, where Gµ denotes the stabilizer subgroup of
µ under the coadjoint representation. Let us fix µ := i(−I + v ⊗ v∗), where
v ∈ C

n is the vector all of whose entries are equal to 1 in the standard basis,
∗ denotes the Hermitian conjugation, and I denotes the identity matrix (here
and till the end of this section, we set i =

√
−1 to distinguish the imaginary

unit from the index i). Then µ is the matrix with 0’s on the diagonal and i’s
in all other entries. The inverse image of the moment map Φ−1(µ) is the set
of all (Q,P ) ∈ g ⊕ g such that

[Q,P ] = µ .

Lemma 5.21 Let (Q,P ) be an element of Φ−1(µ). There is a simultaneous
conjugation of Q and P by an element in Gµ such that Q becomes a diagonal
matrix. Furthermore, for Q = diag(iq1, . . . , iqn) one can assume the entries
qj ∈ R to be nonincreasing.

Proof. Since every matrix in SU(n) is diagonalizable, one can choose some
unitary matrix g such that D = gQg−1 is diagonal. Set E = gPg−1 and
w = gv. Then [D,E] = i(I − w ⊗ w∗) is a matrix with 0’s on the diagonal
(since D is diagonal). This implies that wjw

∗
j = 1, whence wj = eitj for some

tj ∈ R. Hence the product of g and the diagonal matrix with entries e−itj

belongs to the stabilizer of µ. Finally, since multiplying v by a permutation
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matrix does not change it (due to our choice of v), we can arrange the diagonal
entries iqj of Q in such a way that the qj are nonincreasing. �

This lemma shows that the reduced space Φ−1(µ)/Gµ is given by the
solutions of the equation

[Q,P ] = µ (5.57)

for a fixed µ and unknown Q and P . Here Q ∈ su(n) is a diagonal matrix,
P ∈ su(n) is arbitrary, and µ is the matrix having zeros on the diagonal and
i’s in all off-diagonal entries. Let ipjk denote the entries of the matrix P , and
let Q be diag(iq1, . . . , iqn). Then equation (5.57) translates to pjk = −i

(qj−qk)

for j �= k, while pjj ∈ R are arbitrary.
Now consider a system of n particles freely moving over the vector space

of the Lie algebra g. The Hamiltonian of this system is given by its kinetic
energy:

H(Q,P ) = −1
2

tr(P 2) .

The function H is invariant under conjugation by elements of SU(n). So it
descends to a function ˜H on the quotient Φ−1(µ)/Gµ. The above consideration
shows that the reduced Hamiltonian is given by

˜H(Q,P ) = −1
2

tr(P 2) =
1
2

∑

j

p2
jj +

∑

j>k

1
(qj − qk)2

.

This is the Hamiltonian of the rational Calogero–Moser system. First integrals
of this system are given by G-invariant functions tr(P k) for k = 2, . . . , n on
the Lie algebra g = su(n). �

Remark 5.22 When constructing the rational Calogero–Moser system via
the Hamiltonian reduction, we had to solve the moment map equation [Q,P ] =
µ, in which we diagonalized Q and solved for P . We could just as well have
diagonalized the matrix P first and then solved for Q. We would have obtained
the same Hamiltonian system with the p and q variables interchanged. This
shows that the rational Calogero–Moser system is self-dual.

However, in general, one can obtain a system in Q different from the one
in P . This change of variables is the passage to the dual system. For instance,
the trigonometric Calogero–Moser system turns out to be dual to the rational
Ruijsenaars–Schneider model, while the trigonometric Ruijsenaars–Schneider
model is also self-dual. For more details and facts about dualities in integrable
systems, see [123] and the references therein.
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5.5 The Trigonometric Calogero–Moser System
and Affine Lie Algebras

Now we turn to the trigonometric Calogero–Moser system.

Theorem 5.23 ([148, 185]) The trigonometric Calogero–Moser system of
n particles can be obtained by a Hamiltonian reduction of a system of free
particles related to the affine algebra L̂su(n). In particular, it is completely
integrable.

Proof. Let G be the group SU(n) with Lie algebra g = su(n) and let LG
denote the loop group of G, i.e., the group of smooth maps from S1 = R/Z to
G. Furthermore, let us denote by a∗ the vector space of smooth maps from the
circle to the dual g∗ of the Lie algebra g enlarged by a “cocentral” direction:

a∗ = C∞(S1, g∗) ⊕ R.

The space a∗ should be viewed as the smooth part of the dual of the affine
Lie algebra ̂Lg = C∞(S1, g)⊕R (hence the star ∗ in the notation). As such, it
carries a natural action of the loop group LG which comes from the coadjoint
action of the centrally extended loop group ̂LG. Namely, an element g ∈ LG
acts on the space a∗ via

g : (Q, a) �→ (gQg−1 + ag′g−1, a) ,

where we have identified the Lie algebra g with its dual g∗ via the Killing
form.

Let a∗∗ denote the distributional (or full) dual of the space a∗. We present
a∗∗ as a direct sum

a∗∗ = F(S1, g) ⊕ R ,

where F(S1, g) denotes the space of g-valued distributions on S1, and R de-
notes the “central” direction. Although the space a∗∗ contains the affine Lie
algebra ̂Lg = C∞(S1, g) ⊕ R as a subspace, the Lie algebra structure of ̂Lg

does not extend to a Lie algebra structure on the vector space a∗∗. Neverthe-
less, the loop group LG acts naturally on the space a∗∗ via the dual to the
coadjoint representation, and it contains the usual adjoint representation of
the loop group LG on its Lie algebra as a subrepresentation. Explicitly, the
action of LG on a∗∗ is given by

g : (P, c) �→
(

gPg−1, c−
∫ 1

0

tr(Pg−1g′) dθ
)

.

Regard the direct sum a∗⊕a∗∗ as the cotangent bundle of the vector space
a∗. This allows one to endow a∗ ⊕ a∗∗ with an LG-action and a natural sym-
plectic structure ω, which is invariant under the LG-action. (The symplectic
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structure can be written down explicitly by adapting equation (5.56) to the
current situation.)

It turns out that the action of the loop group LG on the space a∗ ⊕ a∗∗ is
Hamiltonian, i.e., it admits an LG-equivariant moment map Φ : a∗ ⊕ a∗∗ →
(Lg)∗. However, the moment map takes values not in the smooth part of the
dual of the Lie algebra Lg, but in the distributional dual, i.e., in the space
F(S1, g∗) of g∗-valued distributions on S1. The analogue of Exercise 5.20 in
this situation is the following

Proposition 5.24 The action of the loop group LG on the space a∗ ⊕ a∗∗ is
Hamiltonian with the moment map given by

Φ ((Q, a), (P, c)) = [Q,P ] − a∂P .

Here, [Q,P ] denotes the pointwise commutator of Q and P , and the derivative
∂P := dP/dθ is understood in the distributional sense.

(Recall that if P has a finite jump at a point of S1, its distributional derivative
∂P acquires a Dirac δ-type singularity at that point.)

Now perform the Hamiltonian reduction. Let us consider the element µ⊗
δ0 ∈ (Lg)∗, where µ = i(−I + v ⊗ v∗) is the matrix with 0’s on the diagonal
and i’s for all off-diagonal entries, and δ0 is the Dirac δ-function centered at
a point θ = 0 ∈ S1 (again, i =

√
−1). Under the coadjoint action of the group

LG on (Lg)∗, an element g ∈ LG maps µ⊗ δ0 to g(0)µg(0)−1 ⊗ δ0. Note that
the LG-orbit through µ⊗ δ0 is finite-dimensional !

Lemma 5.25 Let ((Q, a), (P, c)) be an element in the inverse image Φ−1(µ⊗
δ0). Then, if a �= 0, there is an element g in the stabilizer of µ ⊗ δ0 such
that gQg−1 +ag′g−1 is a diagonal matrix whose entries are constants iqj with
nonincreasing qj ∈ R.

Proof. The assertion that Q is conjugate to a diagonal matrix with nonin-
creasing diagonal entries follows from the classification of the coadjoint orbits
of the smooth loop group LG in Section 1.2. The argument that g can be
chosen in the stabilizer group (LG)µ⊗δ0 is the same as in the proof of Lemma
5.21. �

The moment map equation is given by

[Q,P ] − a∂P = µ⊗ δ0 ,

where Q ∈ su(n) is a diagonal matrix and P ∈ (Lsu(n))∗ is arbitrary. Let iqj

denote the (diagonal) entries of Q, and let ipjk denote the entries of P . In
these coordinates, the moment map equation reads as follows:

pjk(iqj − iqk) − a∂pjk = δ0 for j �= k , (5.58)
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and
∂pjj = 0 ,

regarded as equations for distributions pjk on S1 = R/Z.

Lemma 5.26 For a fixed a �= 0, the solutions of equation (5.58) are given by

pjk(θ) =
ebjkθ

a(ebjk − 1)
(5.59)

with bjk := i(qj − qk)/a for j �= k, and pjj ∈ R are arbitrary constants.

Proof. Note that away from θ = 0, equation (5.58) is an ordinary linear
differential equation with constant coefficients. So the solution assumes the
form (5.59). Regarded as a function on the circle, pjk has a finite jump at θ = 0;
hence its derivative acquires a δ-type singularity. To prove the statement, we
have to evaluate equation (5.58) on a test function f : S1 → R. This gives

〈(iqj − iqk)pjk − a∂pjk, f〉 = (iqj − iqk)
∫

S1
pjk(θ)f(θ)dθ + a

∫

S1
pjk(θ)f ′(θ)dθ

= (iqj − iqk)
∫

S1
pjk(θ)f(θ)dθ − a

∫

S1
p′jk(θ)f(θ)dθ + af(0)(pjk(1) − pjk(0))

= f(0) =: 〈δ0, f〉 ,

where in the second step we used integration by parts and in the last step we
used the fact that pjk is of the form (5.59). In particular, we have pjk(1) −
pjk(0) = 1/a. �

Finally, the function H : a∗ ⊕ a∗∗ → R defined by

H ((Q, a), (P, c)) = −1
2

∫

S1
tr(P 2) dθ

is invariant under the action of the group LG on the space a∗ ⊕ a∗∗. Fixing a
and restricting the function H to the solutions of the moment map equation,
we get

H ((Q, a), (P, c)) =
1
2

∑

j

p2
jj +

∑

j>k

1
4a2 sin2( 1

2a (qj − qk))
. (5.60)

This is exactly the Hamiltonian function of the trigonometric Calogero–Moser
system. First integrals of this system are given by (the reductions of) G-
invariant functions on the Lie algebra g, integrated over the circle: Hk(Q,P ) =
∫

S1 tr(P k) dθ, k = 2, . . . , n. �
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5.6 The Elliptic Calogero–Moser System and Elliptic Lie Algebras

Finally, we show how the elliptic Calogero–Moser system naturally appears
in the context of elliptic Lie algebras corresponding to SL(n,C).

Theorem 5.27 ([148]) The elliptic Calogero–Moser system of n particles
with the modular parameter τ is obtained by a Hamiltonian reduction of a
system of free particles related to the elliptic algebra ̂sl(n,C)Σ on the elliptic
curve Σ with the parameter τ . In particular, it is completely integrable.

Proof. Let Σ = C/(Z⊕τZ) be an elliptic curve and let G = SL(n,C) denote
the special linear group with Lie algebra g = sl(n,C). We denote by b∗ the
space of smooth maps from the curve Σ to the dual g∗ of the Lie algebra g

enlarged by one “cocentral” dimension:

b∗ = C∞(Σ, g∗) ⊕ C .

The space b∗ can be thought of as the smooth part of the dual space of the
elliptic Lie algebra ĝΣ (see Section 5.2). Hence, it carries the coadjoint action
of the double loop group GΣ , which is given by

g : (Q, a) �→ gQg−1 + a(∂̄g)g−1

for an element g ∈ GΣ . (As before, we identify the Lie algebra g with its dual
via the Killing form.)

Let b∗∗ denote the distributional dual of the space b∗, i.e., the space of g-
valued distributions on the elliptic curveΣ enlarged by the “central” direction:

b∗∗ = F(Σ, g) ⊕ C .

The vector space b∗∗ carries the dual of the coadjoint representation of GΣ ,
which contains the usual adjoint representation of the group GΣ as a subspace.

As in the last section, the action of the group GΣ on the cotangent bundle
T ∗b∗ = b∗⊕b∗∗ turns out to be Hamiltonian, with the moment map Φ taking
values in the full dual of the current algebra gΣ , i.e., in the space of g∗-valued
distributions on the curve Σ:

Proposition 5.28 The action of the current group GΣ on the space b∗⊕b∗∗

is Hamiltonian with the moment map given by

Φ ((Q, a), (P, c)) = [Q,P ] − a∂̄P .

Here, [Q,P ] denotes the pointwise commutator of Q and P , and the derivative
∂̄P := ∂̄P/∂z̄ is understood in the distributional sense.
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Remark 5.29 Since we are considering the group G = SL(n,C), we have
to deal with nondiagonalizable matrices: in contrast to the cases of finite-
dimensional and affine Lie algebras based on the Lie algebra su(n), it is not
true anymore that in the coadjoint representation of the elliptic Lie algebra
ĝΣ , every element (Q, a) ∈ b∗ with a �= 0 is conjugated to a constant diagonal
matrix. However, recall that for fixed a �= 0, the set of coadjoint orbits in
the (a = const)-hyperplane in b∗ is in one-to-one correspondence with the
set of equivalence classes of holomorphic SL(n,C)-bundles over the elliptic
curve Σ. We call a holomorphic SL(n,C)-bundle flat and unitary if it admits
a flat connection whose holonomy assumes values in the maximal compact
subgroup SU(n) ⊂ SL(n,C). It is a general fact that almost all holomorphic
SL(n,C)-bundles on the elliptic curve Σ are flat and unitary. To be more
precise, if {Bt}t∈T is a holomorphic family of holomorphic SL(n,C)-bundles
on Σ parametrized by a complex parameter space T , then the subset T0 ⊂ T
of those t for which Bt is flat and unitary is Zariski open in T .

Lemma 5.30 If the element (Q, a) ∈ b∗ corresponds to a flat and unitary
bundle on the elliptic curve Σ, then there exists a gauge transformation g ∈
GΣ such that gQg−1 + a(∂̄g)g−1 is a constant diagonal matrix.

Proof. An SL(n,C)-bundle ξ on the elliptic curve Σ = C/(Z ⊕ τZ) that is
flat and unitary can be defined as a quotient ξ = (SL(n,C)× C)/(Z ⊕ τZ) as
follows. Fix a flat connection with monodromies t1, t2 ∈ SU(n) ⊂ SL(n,C).
Such a connection exists by the assumption that the bundle ξ is flat and
unitary. The group Z⊕τZ acts on SL(n,C)×C via (1, 0) : (h, z) �→ (t1 h, z+1),
and (0, τ) : (h, z) �→ (t2 h, z + τ). Since the group Z ⊕ τZ is abelian, the
monodromies t1 =: exp(H1) and t2 =: exp(H2) have to commute. Hence they
can be diagonalized simultaneously.

The bundle ξ is isomorphic to the bundle ˜ξ = (SL(n,C)×C/Z)/τZ, where
τZ acts via τ : (h, z) �→ (exp(H2 − τH1)h, z + τ). The isomorphism between
the two bundles is delivered by the map (h, z) �→ (exp(−zH1)h, z). Now,
exp(H2 − τH1) can be viewed as an element of the holomorphic loop group
HoL(SL(n,C)), and ˜ξ is the holomorphic SL(n,C)-bundle on the elliptic curve
Σ that corresponds to the τ -twisted conjugacy class in HoL(SL(n,C)) contain-
ing the element exp(H2 − τH1) (see Remark 5.14). So the element (Q, a) ∈ b∗

is gauge-equivalent to (H2 − τH1, a) ∈ b∗, where H2 − τH1 is a constant
diagonal matrix. �

Since the set of all (Q, a) ∈ b∗ corresponding to flat and unitary bundles
is open and invariant under the action of the group GΣ , it makes sense to
restrict the Poisson structure and the Hamiltonian reduction to this subset.
To proceed with the Hamiltonian reduction, we fix the element α⊗δ0 ∈ (gΣ)∗,
where α is the matrix with 0’s on the diagonal and 1’s everywhere else, and
δ0 is the Dirac δ-function centered at 0 ∈ Σ.
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Lemma 5.31 Let ((Q, a), (P, c)) be an element in the inverse image Φ−1(µ⊗
δ0). Then, if a �= 0 and the element (Q, a) ∈ b∗ corresponds to a flat and
unitary SL(n,C)-bundle on the curve Σ, there exists an element g in the
stabilizer of α ⊗ δ0 such that gQg−1 + a(∂̄g)g−1 is a diagonal matrix whose
entries are constants qj ∈ C.

Proof. The proof of this lemma repeats that of Lemma 5.25, employing
Remark 5.29 and Lemma 5.30. �

Now the moment map equation is given by

[Q,P ] − a∂̄P = α⊗ δ0 ,

where Q ∈ sl(n,C) is a diagonal matrix and P ∈ (sl(n,C)Σ)∗ is arbitrary.
Let qj denote the diagonal entries of Q and let pjk denote the entries of P .
Then the moment map equation written in the entries of the matrices P and
Q reads as follows:

pjk(qj − qk) − a∂̄pjk = δ0 (5.61)

for any j and k with j �= k, and where the equation is regarded in the sense of
C-valued distributions pjk on the elliptic curve Σ. For pjj the moment map
equation becomes a∂̄pjj = 0, which shows that pjj are arbitrary complex
constants. To solve equation (5.61), recall some facts about theta functions
(see, e.g, [230]):

Definition / Proposition 5.32 Fix some τ ∈ C with Im τ > 0. The theta
function

θ1,1(z; τ) =
∑

n∈Z+ 1
2

e2πin(z+ 1
2 )+πiτn2

is a holomorphic function in z ∈ C with a simple zero at z = 0. Furthermore,
the function θ1,1 satisfies the identities

θ1,1(z + 1; τ) = −θ1,1(z; τ) ,

θ1,1(z + τ ; τ) = −e−2πiz−πiτθ1,1(z; τ) .

Using the theta function θ1,1, one can write down solutions for the moment
map equation (5.61):

Lemma 5.33 For τ = τ1 + iτ2 we set bjk = τ2(qk−qj)
πa . Then, for fixed a �= 0,

the solutions of the moment map equation (5.61) are given by

pjk(z) = eπbjk(z−z̄)/τ2
θ1,1(z + bjk; τ)

θ1,1(z; τ)θ1,1(bjk; τ)
(5.62)

for j �= k, and pjj ∈ C are arbitrary constants.
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Proof. Using the transformation properties of the theta function θ1,1, one
checks that the functions pjk are periodic with periods 1 and τ . Furthermore,
the function

ψjk(z) =
θ1,1(z + bjk; τ)

θ1,1(z; τ)θ1,1(bjk; τ)

is meromorphic and has a first-order pole in z = 0. Therefore, its ∂̄-derivative
acquires a Dirac δ-type singularity at the point z = 0. Hence, evaluating
equation (5.61) on a test function f : Σ → C proves the assertion. �

Finally, write down GΣ-invariant Hamiltonians on the space b∗⊕b∗∗. The
quadratic one is given by

((Q, a), (P, c)) =
1
2

∫

Σ

tr(P 2) dz ∧ dz̄ . (5.63)

Note that the functions pjkpkj = ψjk(z)ψkj(z) are meromorphic and doubly
periodic in z with periods 1 and τ . They have a second-order pole at z = 0
and zeros at z = ±bjk. This shows that one can express

pjkpkj = λ(℘(bjk) − ℘(z))

for some constant λ ∈ C. So after rescaling, the Hamiltonian H descends
to the Hamiltonian of the elliptic Calogero–Moser system on the symplectic
quotient.

Similarly to the cases of rational and trigonometric Calogero–Moser sys-
tems, first integrals of this system can be obtained from G-invariant functions
on the Lie algebra g by integrating them over the elliptic curve:

Hk((Q, a), (P, c)) =
∫

Σ

tr(P k) dz ∧ dz̄ .

�

In this way, three different types of integrable potentials of the Calogero–
Moser systems turned out to be related to the “ladder” of the loop alge-
bras: finite-dimensional (or “0-loop”) algebras, loop algebras, and double loop
algebras [148].

5.7 Bibliographical Notes

The elliptic Lie algebras were introduced in [106]. The equivalence of the bun-
dles and the holomorphic loops discussed in Remark 5.14 is due to Looijenga;
see [106]. The diagram in the same remark was suggested to us by P. Slodowy.

The correspondence between the set of equivalence classes of holomorphic
G-bundles on the elliptic curve Σ and the set of τ -twisted conjugacy classes
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in the holomorphic loop group HoLG can be used to give a simple proof of
Looijenga’s theorem [240] that the (coarse) moduli space of semistable G-
bundles on the elliptic curve Σ is a weighted projective space (see [135, 161,
271]). This construction also links the theory of loop groups to singularity
theory [160].

It is also possible to define elliptic Lie algebras more abstractly, using the
notion of elliptic root systems [334, 8, 315]. The coadjoint orbits of the corre-
sponding Lie groups can be classified in terms of holomorphic bundles whose
structure groups are nonsimply connected (and possibly even nonconnected),
and in terms of twisted conjugacy classes of nonconnected loop groups [386].

The Krichever–Novikov-type algebras constitute another class of infinite-
dimensional algebras related to holomorphic G-bundles over Riemann sur-
faces; see [219, 220, 353]. We discuss them and their relation to the affine and
elliptic algebras in Appendix A.3.

The orbit classification for current Lie algebras on higher-dimensional
manifolds (or even on surfaces, where the 2-cocycle does not rely on the choice
of a complex structure) is a difficult problem. Note that having fixed a closed
(n−1)-form defining the 2-cocycle of the current algebra, one can describe the
orbits in terms of the corresponding one-dimensional foliation with a trans-
verse measure on the manifold and a leafwise connection; see [63]. This brings
in coadjoint invariants relying on the dynamical properties and geometry of
this background foliation. In particular, the notion of asymptotic holonomy
naturally appears in the context of coadjoint orbits for current groups on a
two-dimensional torus.

The structure and representations of the current algebra on higher-
dimensional manifolds with the infinite-dimensional extension are well studied
in the case of toroidal Lie algebras (where M is an n-dimensional torus); see
[40, 43, 276, 277].

There exists an extensive literature on the Calogero–Moser Hamiltonians,
and here we merely mention several papers relevant to our discussion above.
The rational Calogero–Moser systems were introduced by Calogero [66] and
Moser [280], while the trigonometric potentials (the Sutherland model) were
introduced in [361]. The hyperbolic and elliptic potentials were considered
in [67, 68]. Olshanetsky and Perelomov [298] noted that one can replace the
linear functions (qi − qj) by the roots of an arbitrary root system and proved
the integrability of the corresponding systems in many cases. The integrability
for all root systems was proved in [50, 51]. The Ruijsenaars–Schneider systems
were described in [333].

The construction of the rational Calogero–Moser system from Hamiltonian
reduction from the cotangent bundle of the Lie algebra su(n) appears in [185],
which we follow in Section 5.4. In the sections on trigonometric and elliptic
Calogero–Moser systems we follow the papers [148] and [290]. The latter paper
also describes the integrable systems corresponding to the orbits with finitely
many δ-functions on the curve. Dualities of various integrable systems are
discussed in [123] and the references therein.





III

Applications of Groups: Topological
and Holomorphic Gauge Theories

1 Holomorphic Bundles and Hitchin Systems

Here we recall some basic notions from the theory of holomorphic vector
bundles. As an application we construct Hitchin systems, which are integrable
systems related to vector bundles on Riemann surfaces.

1.1 Basics on Holomorphic Bundles

Let M be a complex manifold, let E → M be a complex vector bundle on M ,
and denote the set of C∞ sections of the vector bundle E by Γ (E).

Definition 1.1 A holomorphic structure on the complex vector bundle E →
M is a covering of open sets {Ui}i∈I of the manifold M together with local
trivializations ϕi : E|Ui

→ Ui × C
n such that the transition functions

ϕi ◦ ϕ−1
j : (Ui ∩ Uj) × C

n → (Ui ∩ Uj) × C
n ,

which commute with the projections to the base, are holomorphic and C-linear
on fibers.

Remark 1.2 Since the transition functions ϕi ◦ ϕ−1
j induce the identity on

the first factor, they give rise to holomorphic maps ϕij : Ui ∩Uj → GL(n,C).
It is easy to check that the maps ϕij satisfy the cocycle condition:

ϕijϕji = id on Ui ∩ Uj and
ϕijϕjkϕki = id on Ui ∩ Uj ∩ Uk .

On the other hand, given an open covering {Ui}i∈I of M together with
a collection of holomorphic maps ϕij : Ui ∩ Uj → GL(n,C) that satisfy the
cocycle condition above, one can define a holomorphic vector bundle on M
as follows. The total space E of the bundle is the union ∪i∈IUi × C

n subject
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to the relation (x, v) ∼ (x, ϕij(x)v) whenever x ∈ Ui ∩ Uj . This is a well-
defined equivalence relation, since the maps ϕij satisfy the cocycle condition.
The transition functions of this bundle are given by (id |Ui∩Uj

, ϕij), which are
holomorphic. Hence the bundle is indeed a holomorphic vector bundle on M .

Holomorphic bundles can also be defined by equipping the total space
E with a structure of a complex manifold and requiring the trivializations
ϕi : E|Ui

→ Ui × C
n to be holomorphic maps of complex manifolds. Such

trivializations are called holomorphic and in their terms the definition of holo-
morphic sections is immediate: A local section s of a holomorphic bundle E
over U ⊂ M is called holomorphic if the map s : U → E is a holomorphic
map between two complex manifolds.

Remark 1.3 Recall that on a complex manifold M the complexified de Rham
complex (Ω∗, d) splits into the double complex (Ω∗,∗, ∂, ∂̄), where ∂ : Ωp,q →
Ωp+1,q and ∂̄ : Ωp,q → Ωp,q+1 are the holomorphic and antiholomorphic
differentials such that ∂ + ∂̄ = d. In a local coordinate chart (z1, . . . , zn), the
forms in Ωp,q can be written as
∑

fi1,...,ip,j1,...,jq
(z1, . . . , zn, z̄1, . . . , z̄n) dzi1 ∧ · · · ∧ dzip

∧ dz̄j1 ∧ · · · ∧ dz̄jq
.

Note that a function f : U → C is holomorphic if ∂̄f = 0.
For any complex vector bundle E on M one defines the set of E-valued

(p, q)-forms as Ωp,q(E) = Γ (E)⊗Ωp,q. Given a holomorphic structure on the
bundle E, the operator ∂̄E : Ωp,q(E) → Ωp,q+1(E) is uniquely defined by the
properties

1. ∂̄E(fs) = (∂̄f)s+ f(∂̄Es) for all f ∈ C∞(M) and s ∈ Γ (E);
2. ∂̄E(s) vanishes on an open U ⊂ M if and only if the section s is holomor-

phic in U .

Indeed, in any local trivialization (U,ϕU ) of E, the operator ∂̄E can be taken
to be the standard differential ∂̄. To see that ∂̄E is independent of the choice
of local trivialization, consider a different trivialization (V, ϕV ). On U ∩V the
trivializations are related by a holomorphic map ϕUV : U ∩ V → GL(n,C).
The differential of a section s is given by ∂̄E(ϕUV s) = (∂̄ϕUV )s+ϕUV ∂̄E(s) =
ϕUV ∂̄E(s), since ϕUV is holomorphic. This shows that the differential ∂̄E is
indeed well defined.

Thus a holomorphic structure on a complex vector bundle E → M gives
rise to a differential operator ∂̄E on the set of sections of E, which van-
ishes on the set of holomorphic sections of the bundle E. On the other
hand, any connection dA on a complex vector bundle E (i.e., any linear map
dA : Ω0(E) → Ω1(E) that satisfies the Leibniz rule dA(fs) = (df)s + fdA(s)
for all sections s and functions f) splits into partial connections dA = ∂β + ∂̄α

with ∂β : Ω0(E) → Ω1,0(E) and ∂̄α : Ω0(E) → Ω0,1(E). Given a connection
dA on the bundle E, it is a natural question to ask whether ∂̄α is integrable,



1. Holomorphic Bundles and Hitchin Systems 157

i.e., whether it comes from a holomorphic structure on E. To find a crite-
rion for the integrability of a partial connection ∂̄α, let us extend ∂̄α to a
map Ω0,p(E) → Ω0,p+1(E). Then, in a local C∞-trivialization (U,ϕ), we can
write ∂̄α = ∂̄ + αϕ, where αϕ is a matrix of 1-forms on U . Set Φα = ∂̄2

α ∈
Ω0,2(EndE). In the local trivialization, we have Φϕ

α = ∂̄αϕ + αϕ ∧ αϕ. Now
we can state the integrability theorem for partial connections:

Theorem 1.4 A partial connection ∂̄α on a complex vector bundle E → M
is integrable if and only if ∂̄2

α = 0.

Theorem 1.4 is essentially a bundle-valued version of the Nirenberg–Newlander
theorem on the integrability of almost complex structures. The integrability
condition ∂̄2

α = 0 ensures that for the equation ∂̄αs = 0 there locally exists
the maximal possible number of solutions linearly independent over the ring
of holomorphic functions on M . For a proof of Theorem 1.4, see, e.g., [209].

Remark 1.5 Let dA denote a connection in the vector bundle E → M . The
curvature FA of the connection dA is the (EndE)-valued 2-form on M defined
by FA = d2

A ∈ Ω2(EndE). If E is a complex vector bundle, the curvature
FA of the connection dA splits into FA = F 2,0

A + F 1,1
A + F 0,2

A . Theorem 1.4
states that the (0, 1)-part of the connection dA on the complex vector bundle
E defines a holomorphic structure on E if and only if the (0, 2)-part of its
curvature vanishes.

Definition 1.6 Fix a Hermitian structure on the vector bundle E over M ,
i.e. a Hermitian metric ( , ) on each fiber that varies smoothly along the
manifold M . A connection dA on the bundle E is called unitary if it is com-
patible with the Hermitian metric, i.e., if it satisfies

d(s, t) = (dAs, t) + (s, dAt)

for any two sections s, t of the bundle E.

Lemma 1.7 Let ∂̄α be a partial connection on a complex Hermitian vector
bundle E. Then there exists a unique unitary connection dA on the bundle E
such that the (0, 1)-part of dA is given by ∂̄α.

Proof. Let Aϕ be the matrix of 1-forms representing the connection dA in
a unitary trivialization (U,ϕ) of the bundle E. Then the unitarity condition
on the connection dA reads Aϕ = −(Aϕ)∗. This shows that given a partial
connection ∂̄α with local connection matrix αϕ, one can define a matrix Aϕ by
Aϕ := αϕ − (αϕ)∗. This defines the connection dA globally, and its unitarity
is clear from the construction. �

Suppose that a complex Hermitian vector bundle E on the complex com-
pact manifold M admits a holomorphic structure.
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Theorem 1.8 A unitary connection on a Hermitian complex vector bundle
E over M is compatible with a holomorphic structure on E if and only if it
has curvature of type (1, 1). In this case the connection is uniquely determined
by the metric and the holomorphic structure.

Proof. Indeed, define the holomorphic structure on E by an integrable par-
tial (0, 1)-connection. As we have seen above, this connection uniquely extends
to a unitary connection dA on the vector bundle E, which is now compatible
with both Hermitian and holomorphic structures. Since the curvature FA of
a unitary connection is skew adjoint, we find that F 0,2

A = (F 2,0
A )∗. On the

other hand, the compatibility of the connection with the holomorphic struc-
ture forces F 0,2

A = 0, so that the curvature matrix FA has to be a matrix of
(1, 1)-forms. �

We now restrict our attention to bundles over Riemann surfaces. Recall
that the degree deg(L) of a line bundle L over a compact Riemann surface
Σ is defined to be the integral of its first Chern class: deg(L) =

∫

Σ
c1(L) ∈ Z.

For some facts on Chern classes and the degree, see, e.g., [150]. As an example,
consider a line bundle LP corresponding to a point P ∈ Σ. This bundle is
glued from the trivial bundles over a local coordinate neighborhood U0 of
P and U1 = Σ \ {P}. The bundle LP is defined by means of the transition
function ϕ01 : U0 ∩ U1 → C

∗ = GL(1,C) defined as ϕ01(z) = z, where z in
the left-hand side is a local coordinate around P . Then deg(LP ) = 1.

The following proposition summarizes some important properties of the
degree:

Proposition 1.9 1. For any line bundles L and L̃ over Σ one has

deg(L⊗ L̃) = deg(L) + deg(L̃).

2. If deg(L) < 0, then the bundle L has no nontrivial holomorphic sections.

For a vector bundle E its rank rank(E) is the dimension of its fibers, and
the degree deg(E) of the bundle E is the degree of its determinant bundle,
i.e., of the highest exterior power of the bundle E. Finally, let us recall the
notion of a stable bundle.

Definition 1.10 A holomorphic vector bundle E on a Riemann surface is
stable if for any proper subbundle F ⊂ E one has

deg(F )
rank(F )

<
deg(E)
rank(E)

.

The number µ(E) = deg(E)/rank(E) is called the slope of the vector bundle
E. The bundle E is called semistable if the inequality above is not strict:
µ(F ) ≤ µ(E).
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In the sequel, we are going to deal with the space of equivalence classes
of holomorphic bundles. While in general, this is not a nice space, the situa-
tion becomes much better under the stability assumption on the bundles: the
space of equivalence classes of stable bundles has the structure of a complex
manifold. For instance, one of the consequences of the stability condition is
the following:

Exercise 1.11 Let E be a stable vector bundle over a Riemann surface. Show
that the only endomorphisms of E are scalars. (Hint: suppose that there is a
nontrivial endomorphism, and apply the stability condition to the image and
kernel subbundles; see details, e.g., in [239].)

Remark 1.12 The condition of stability of a holomorphic vector bundle E
on a higher-dimensional Kähler manifold Mn is defined similarly. The degree
of the bundle is now defined by deg(E) =

∫

M
ωn−1 ∧ c1(E), where ω is a

Kähler class on M and c1(E) is the first Chern class of the bundle E. So the
degree of the bundle E depends on the choice of the Kähler class ω on M . Fur-
thermore, instead of considering just subbundles of the given vector bundle E,
one considers coherent subsheaves of E.

1.2 Hitchin Systems

In this section we give a short introduction to the Hitchin systems. These
are integrable systems on the cotangent bundle of the moduli space of stable
vector bundle on a Riemann surface of genus κ > 1 [163]. Similarly to the
Calogero–Moser systems, which we have discussed in Section 5.4 of Chapter II,
the Hitchin systems can be defined via symplectic reduction from the action
of an infinite-dimensional Lie group on an affine space.

Throughout this section we fix a compact Riemann surface Σ of genus
κ > 1 and let N denote the space of equivalence classes of stable holomorphic
vector bundles on Σ of a given topological type. That is, we fix a complex
vector bundle E of rank n on the surface Σ and denote by N the set of
equivalence classes of stable holomorphic structures on the bundle E. It is a
classical theorem due to Narasimhan and Seshadri [286] that the set N is in
fact a complex variety, the moduli space of stable holomorphic structures on
the bundle E.

Definition / Proposition 1.13 Let As denote the set of stable complex
structures in the complex vector bundle E. This set can be identified with
the set of partial connections ∂̄α in E. The partial connections on a complex
curve are always integrable, and they give rise to stable holomorphic structures
on the bundle E.

The gauge transformation group G(E) of the bundle E is the identity
component of the group of smooth automorphisms of the bundle E. This group
acts on the set As by gauge transformations, and the moduli space of stable
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holomorphic structures on the bundle E can be identified with the quotient
N = As/G(E).

Remark 1.14 For the bundle E of rank n over a curve of genus κ the moduli
space N has complex dimension n2(κ−1)+1. This can be computed as follows.
Let Et be a family of holomorphic bundles depending on a parameter t ∈ R

with E0 = E and let ϕij(t) denote the corresponding transition functions.
Then the functions

(

ϕ−1
ij (t)

∂

∂t
ϕij(t)

)

t=0

on Ui∩Uj define a class in the sheaf cohomology group H1(Σ,EndE). Looking
at all possible families Et through a given holomorphic bundle E, one observes
that the tangent space of N at E can be identified with the cohomology group
H1(Σ,EndE). The dimension of H1(Σ,EndE) can be computed with the
help of the Riemann–Roch theorem:

dimH0(Σ,EndE)−dimH1(Σ,EndE) = deg(EndE)+ rank(EndE)(1−κ) .

Note that deg(EndE) = deg(E∗ ⊗ E) = 0, since the nondegenerate bilinear
form on E∗⊗E delivers a nonzero section of the determinant bundle det(E∗⊗
E). Moreover, the stability of E implies that dimH0(Σ,EndE) = 1, since this
homology group consists of scalars only (see Exercise 1.11). So we obtain

dimN = n2(κ − 1) + 1 .

Remark 1.15 The cotangent bundle T ∗N admits a natural symplectic struc-
ture. We are going to describe T ∗N as a symplectic quotient, from which it
will be apparent how it becomes the phase space of an integrable system.

For this we consider the cotangent bundle T ∗As to all stable complex
structures on E. It can be identified with the set of pairs

T ∗As = {(∂̄α, φ)} ,

where ∂̄α is a point in As and φ is an (EndE)-valued (1, 0)-form on the surface
Σ. Indeed, As is an open subset of the affine space of partial connections on
the bundle E. Hence, its tangent space at any point is given by the space
of (EndE)-valued (0, 1)-forms on Σ. The pairing between an (EndE)-valued
(0, 1)-form α and an (EndE)-valued (1, 0)-form φ is given by

〈α, φ〉 =
∫

Σ

tr(α ∧ φ) . (1.1)

The form φ is called a Higgs field, and the pair (∂̄α, φ) ∈ T ∗As defines a Higgs
bundle.
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There exists a natural symplectic structure ω on the cotangent bundle
T ∗As. The evaluation of the 2-form ω on two tangent vectors (δ1∂̄α, δ1φ) and
(δ2∂̄α, δ2φ) at a point (∂̄α, φ) ∈ T ∗As is given by

ω(∂̄α,φ)

(

(δ1∂̄α, δ1φ), (δ2∂̄α, δ2φ)
)

=
∫

Σ

tr(δ1∂̄α ∧ δ2φ) −
∫

Σ

tr(δ2∂̄α ∧ δ1φ) .

The gauge transformation group G(E) of the complex vector bundle E
acts on the space T ∗As by conjugation: g : φ �→ gφg−1 and ∂̄α �→ g∂̄αg

−1.
The symplectic form ω is invariant under this action.

Exercise 1.16 The (smooth) dual of the Lie algebra of the gauge transfor-
mation group G(E) is naturally identified with the space of (EndE)-valued
2-forms on the Riemann surface Σ. Show that the G(E)-action on the space
T ∗As is Hamiltonian with moment map

Φ : T ∗As → Ω2(Σ,EndE)

given by
Φ(∂̄α, φ) = [∂̄α, φ] := ∂̄φ+ [α, φ] .

Exercise 1.17 Prove that the symplectic quotient Φ−1(0)/G(E) is naturally
identified with the cotangent bundle T ∗N . (Hint: show that if [∂̄α, φ] = 0, then
φ ∈ T ∗

αA vanishes on the tangent space to the G(E)-orbit through ∂̄α ∈ As,
where the pairing is given by formula (1.1).)

Exercise 1.17 shows that the cotangent bundle T ∗N can be described as
a symplectic quotient. Our next goal is to define an integrable system on this
quotient by finding a set of Poisson commuting Hamiltonians on T ∗N which
are functionally independent and whose number is equal to dim(N ). Let K
denote the canonical bundle on the Riemann surface Σ, and let T = K−1

be the holomorphic tangent bundle of Σ. Furthermore, fix some j ∈ N and
consider a basis νj,k of H1(Σ,K ⊗ T j). The elements νj,k ∈ H1(Σ,K ⊗ T j)
should be thought of as independent holomorphic (1 − j, 1)-differentials. The
latter means that in some local coordinate z on the complex curve Σ, such
differentials look like f(z)dz(1−j)dz̄ with a holomorphic function f .

Exercise 1.18 Use the Riemann–Roch theorem as in Remark 1.14 to show
that the dimension of H1(Σ,K⊗T j) is equal to (2j−1)(κ−1) for j > 1 and
to κ for j = 1. (Hint: the degree of the canonical bundle K is (2κ − 2).)

The (1 − j, 1)-differentials can be integrated against a (j, 0)-differential
on the complex curve. For any (EndE)-valued (1, 0)-form φ on Σ, the trace
tr(φj) of φj is a (j, 0)-differential.

Hence, one can define functions Hj,k : T ∗As → C by

Hj,k(∂̄α, φ) =
∫

Σ

νj,k tr(φj) ,
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where j = 1, . . . , n, k = 1, . . . ,κ for j = 1 and k = 1, . . . , (2j − 1)(κ − 1) for
j > 1 (recall that n = rank(E)). The functions Hj,k depend only on φ, so
they Poisson commute on T ∗As.

Exercise 1.19 Show that the functions Hj,k are gauge invariant. Therefore
they descend to the symplectic quotient and Poisson commute there.

The total number of the functions Hj,k is

κ +
n
∑

j=2

(2j − 1)(κ − 1) = n2(κ − 1) + 1 ,

which is exactly half the (complex) dimension of T ∗N . Evidently, the functions
Hj,k are functionally independent. Hence they form an integrable system on
T ∗N . This integrable system is called the Hitchin system associated to the
Riemann surface Σ and the complex vector bundle E.

1.3 Bibliographical Notes

Holomorphic vector bundles on a Riemann surface were classified by
Grothendieck [152] for genus κ = 0, Atiyah [25] in the case κ = 1, and
Narasimhan and Seshadri [286] in the case κ > 1. Their results were gener-
alized to the case of principal bundles with any reductive algebraic structure
group over C in [325]. For more details on holomorphic bundles and connec-
tions we refer to [84, 171, 209, 297]. More facts on the moduli space of stable
vector bundles on Riemann surfaces can be found in [239, 135, 136], and for
those on complex surfaces, see [170].

The Hitchin systems were introduced in [163] (see also [165]). There is a
close connection between Hitchin systems and the Calogero–Moser systems
that goes beyond the similarity in their construction. In [103, 289] it is shown
that a spin generalization of the elliptic Calogero–Moser system, the elliptic
version of the Gaudin model, and some other systems can be treated as degen-
erations of Hitchin systems. The geometry and quantization of such systems
are widely discussed in the literature; see, e.g., [169, 104].
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2 Poisson Structures on Moduli Spaces

In this section we give a comparative description of the Poisson structures
on the moduli spaces of flat connections on real surfaces and holomorphic
Poisson structures on the moduli spaces of holomorphic bundles on complex
surfaces, following [194]. Their relation is similar to that of the loop and double
loop groups described in Chapter II. It can be thought of as a “geometric
complexification” (cf. [14]), that is, a natural extension of the correspondence
between de Rham and Dolbeault complexes as follows:

d ↔ ∂̄
de Rham complex ↔ Dolbeault complex

locally constant functions or sections ↔ local holomorphic functions or sections
flat connections ↔ holomorphic bundles

The key ingredient of this “complexification” is the Cauchy–Stokes for-
mula, a complex analogue of the Stokes formula, which we describe below.

While the affine and elliptic Lie groups manifest this correspondence in di-
mension one (respectively, real and complex), in two dimensions it is provided
by the moduli spaces of flat connections and those of (stable) holomorphic
bundles on surfaces. A somewhat similar picture exists in any dimension (cf.
the discussion of the topological and holomorphic Chern–Simons action func-
tional in 3D in Section 3, or of the 4D Yang–Mills functional in [85]).

2.1 Moduli Spaces of Flat Connections on Riemann Surfaces

Here we describe Poisson structures on the spaces of flat connections on
real surfaces with boundary, which constitute the “real side” in the above-
mentioned correspondence.

In the real case, G stands for a simply connected simple compact Lie group.
On its Lie algebra g we fix a nondegenerate invariant (Killing) bilinear form,
denoted by 〈X,Y 〉 = tr(XY ). Let Σ be a compact Riemann surface, possibly
with boundary Γ = ∂Σ consisting of several components, Γ = ∪k

1Γj ; see
Figure 2.1.

Γn

Γ1

Fig. 2.1. A Riemann surface with boundary components Γ1, . . . , Γn.
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Consider a principal G-bundle E over Σ. Note that this bundle is neces-
sarily trivial, since the group G is simply connected. We denote by AΣ the
affine space of all smooth connections on the bundle E. It is convenient to
fix a trivialization of E and identify AΣ with the vector space Ω1(Σ, g) of
smooth g-valued 1-forms on the surface Σ:

AΣ = {d+A | A ∈ Ω1(Σ, g)} .

Thus the tangent space at any point of AΣ is also identified with the vector
space Ω1(Σ, g).

Definition 2.1 The space AΣ can be equipped with a natural symplectic
structure

ω(δ1A, δ2A) =
∫

Σ

tr(δ1A ∧ δ2A) , (2.2)

where δ1A and δ2A denote tangent vectors of AΣ at the point d + A, which
are g-valued 1-forms on Σ. Here tr(· ∧ ·) denotes the wedge product on Σ and
symmetric pairing in g, thus producing a (real-valued) 2-form on Σ.

Since the principal G-bundle E on the surface Σ is topologically triv-
ial, the gauge group of the bundle E is isomorphic to the current group
GΣ = C∞(Σ,G), while its Lie algebra is given by the current algebra
gΣ = C∞(Σ, g). The action of the group GΣ on the affine space AΣ of con-
nections is the usual action by gauge transformations:

g : d+A �→ d+ gAg−1 − (dg)g−1,

where g ∈ GΣ is a smooth G-valued function on the surface.

Exercise 2.2 Prove that the symplectic structure ω is invariant with respect
to gauge transformations.

The infinitesimal gauge transformations forming the Lie algebra gΣ are
generated on the symplectic manifold AΣ by certain Hamiltonian functions.

Proposition 2.3 (see, e.g., [125]) An infinitesimal gauge transformation
ε ∈ gΣ is generated by the Hamiltonian function

Hε(A) =
∫

Σ

tr (ε(dA+A ∧A)) −
∫

∂Σ

tr(εA) . (2.3)

Proof. The Hamiltonian vector field X corresponding to any function H
on AΣ is defined by its action on functions f(A) via

LXf = {H, f} =
∫

Σ

tr
(

δH

δA
∧ δf

δA

)

,
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where the latter expression is the Poisson bracket corresponding to the
symplectic structure on AΣ given by Formula (2.2). In order to determine
the Hamiltonian function Hε, it suffices to consider the coordinate function
f(A) = A:

LXA = {H,A} =
δH

δA
.

Then for the above Hamiltonian Hε from equation (2.3), we obtain

LXε
A =

δHε

δA
= ∇A ε ,

where ∇A ε := dε − [ε, A]. That is, LXε
A is the infinitesimal gauge transfor-

mation of A by ε. Indeed, for F (A) = dA+A ∧A we have

δF (A) = δ(dA+A ∧A) = dδA+ δA ∧A+A ∧ δA = δdA+ [A, δA],

by keeping only the terms linear in δA. This gives

δHε =Hε(A+ δA) −Hε(A) =
∫

Σ

tr(εδF ) −
∫

∂Σ

tr(εδA)

=
∫

Σ

tr (ε(δdA+ [A, δA])) −
∫

∂Σ

tr(εδA)

=
∫

Σ

tr (([ε, A] − dε) ∧ δA) =
∫

Σ

tr (δA ∧∇A ε) .

In the second-to-last equality we have used the Stokes formula. �

Remark 2.4 In general, the Hamiltonian function Hε corresponding to a
vector field Xε is defined only up to an additive constant. Thus, the Poisson
bracket of two Hamiltonian functions reproduces the commutation relation in
the gauge algebra gΣ only up to a 2-cocycle:

{Hε1 ,Hε2} = H[ε1,ε2] + c(ε1, ε2) .

Proposition 2.5 For the Hamiltonian functions Hε considered above, the
cocycle c is given by

c(ε1, ε2) =
∫

∂Σ

tr(ε1dε2) .

Proof. Let us calculate {Hε1 ,Hε2}. Using the expression δHε/δA = dε −
[ε, A], we get
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{Hε1 ,Hε2} =
∫

Σ

tr ((dε1 − [ε1, A]) ∧ (dε2 − [ε2, A]))

=
∫

Σ

tr(dε1 ∧ dε2) −
∫

Σ

tr(dε1 ∧ [ε2, A]) −
∫

Σ

tr([ε1, A] ∧ dε2)

+
∫

Σ

tr([ε1, A] ∧ [ε2, A])

=
∫

∂Σ

tr(ε1dε2) +
∫

Σ

tr ([ε1, ε2](dA+A ∧A)) −
∫

∂Σ

tr([ε1, ε2]A)

=
∫

∂Σ

tr(ε1dε2) +H[ε1,ε2].

We have used the Stokes formula and the invariance of the Killing form several
times. �

Remark 2.6 The cocycle c is an obstruction to the existence of a moment
map for the gauge group action on the space AΣ . Whenever the cocycle c
is nontrivial, in order to define the corresponding moment map one has to
consider the action of the centrally extended group ̂GΣ , which corresponds to
the extension of the Lie algebra gΣ by this cocycle.

Exercise 2.7 Prove nontriviality of the cocycle c from Proposition 2.5. (Hint:
restrict it to one boundary component and use the nontriviality of the cocycle
defining the universal central extension of the loop algebra Lg; see Section
II.1.1.)

Corollary 2.8 The gauge action of GΣ on AΣ extends to a Hamiltonian
action of the centrally extended group ̂GΣ.

Our next goal is to describe explicitly the corresponding moment map
of the action of the extended current group ̂GΣ on the space AΣ . The Lie
algebra ĝΣ of this group is the Lie algebra of gauge transformations centrally
extended by the cocycle c. The infinite-dimensional space ĝΣ is the space of
pairs (ε, a), where ε is a g-valued function on the surface Σ and a is a real
number:

ĝΣ = {(ε, a) | ε ∈ gΣ = C∞(Σ, g), a ∈ R} .

Definition 2.9 The smooth part (ĝΣ)∗ of the dual of the Lie algebra ĝΣ is
the space of triples

(ĝΣ)∗ = {(F,C, λ) | F ∈ Ω2(Σ, g), C ∈ Ω1(∂Σ, g), λ ∈ R} ,
where F is a g-valued 2-form on Σ, C is a g-valued 1-form on the boundary
of Σ, and λ is a real number.

The nondegenerate pairing between the spaces ĝΣ and (ĝΣ)∗ is given by

〈(F,C, λ), (ε, a)〉 :=
∫

Σ

tr(εF ) −
∫

∂Σ

tr(εC) + aλ .
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Let us consider the action of the extended group ̂GΣ on AΣ generated by
the gauge action of GΣ . We note that the center of ̂GΣ acts trivially. Now we
can sharpen Corollary 2.8 as follows.

Proposition 2.10 ([125]) The centrally extended group ̂GΣ of gauge trans-
formations acts on AΣ in a Hamiltonian way. The moment map for the action
of the corresponding gauge algebra ĝΣ is the mapping Φ : AΣ → (ĝΣ)∗, which
is given by taking the curvature F (A) = dA+A∧A of the connection and by
restricting the connection form to the boundary:

Φ : A �→ (dA+A ∧A, A|∂Σ , 1) .

Proof. The Hamiltonian functions Hε corresponding to infinitesimal gauge
transformations ε form the centrally extended algebra ĝΣ ; see Proposition 2.5.
According to Definition I.5.4 of the moment map, it remains to check that the
Hamiltonian Hε is equal to the pairing of the element ε ∈ gΣ with Φ(A):

Hε(A) = 〈Φ(A), ε〉 .

(Here we take only the nonextended part of Φ(A), i.e., we omit its third com-
ponent.) But this is exactly the explicit form of Hε given in Proposition 2.3. �

Definition 2.11 For any submanifold Γ ⊂ Σ let GΣ
Γ be the group of gauge

transformations on Σ “based on Γ” :

GΣ
Γ = {g ∈ C∞(Σ,G) | g|Γ = id ∈ G} .

Denote the corresponding Lie algebra by gΣ
Γ . In this section we always set Γ

to be the boundary of the surface Σ.

A slight modification of Proposition 2.10 gives the following corollary.

Corollary 2.12 For Γ = ∂Σ the group GΣ
Γ acts on AΣ in a Hamiltonian

way. The moment map ΦΓ for the action of the corresponding Lie algebra gΣ
Γ

is the map AΣ → (gΣ
Γ )∗ given by the curvature:

ΦΓ : A �→ dA+A ∧A .

Note that the group GΣ
Γ is not centrally extended, but we can still think

of it as a (normal) subgroup GΣ
Γ ⊂ ̂GΣ (cf. the quotient construction of the

centrally extended group ̂LG in Section II.1.3, where the surface Σ is the unit
disk).

Now we consider the symplectic quotient MΣ,Γ = AΣ//GΣ
Γ of the space

of connections AΣ with respect to the group GΣ
Γ of gauge transformations

equal to the identity on the boundary Γ = ∂Σ. This yields the space
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MΣ,Γ = Φ−1
Γ (0)/GΣ

Γ = {d+A ∈ AΣ |F (A) = 0}/GΣ
Γ

of flat connections on Σ modulo based gauge transformations from GΣ
Γ .

Remark 2.13 Since MΣ,Γ is defined via Hamiltonian reduction, it inherits
a symplectic structure from the space AΣ . However, the quotient can have
singularities. We shall be concerned only with the nonsingular part of the
moduli space MΣ,Γ .

If Σ has no boundary, we obtain that the moduli space MΣ of flat connec-
tions on Σ is a (finite-dimensional) symplectic manifold; see [28]. A point in
this manifold can be described by holonomies around the handles of the sur-
face modulo conjugation, i.e., by the equivalence class of a G-representation
of the fundamental group of the surface:

MΣ = Rep (π1(Σ) → G)/G .

If the boundary Γ = ∂Σ of the Riemann surface Σ is nonempty, the moduli
space MΣ,Γ is infinite-dimensional. It can be mapped to certain familiar
Poisson manifolds. Consider the restriction of a connection A ∈ AΣ to any
boundary component Γi of the surface Σ, which is a connection on the curve
Γi. This restriction can be viewed as an element in the dual space (ĝΓi)∗ of the
affine Lie algebra ĝΓi corresponding to the boundary component Γi. In turn,
the space (ĝΓi)∗ is naturally equipped with the linear Lie–Poisson structure
as the dual of a Lie algebra.

To summarize, we obtain the restriction map of two Poisson spaces

AΣ →
∏

i

(ĝΓi)∗ , (2.4)

where the product ranges over the set of boundary components of Σ. Further-
more, this mapping descends to that of the moduli

MΣ,Γ →
∏

i

(ĝΓi)∗ ,

since all connections are flat on the boundary and the group GΣ
Γ acts trivially

on Γ . The relation of the corresponding Poisson structures on MΣ,Γ (where
the structure is, in fact, symplectic) and on (ĝΓi)∗ is given by the following
proposition.

Proposition 2.14 The mapping from the space MΣ,Γ to the coadjoint rep-
resentation space (ĝΓi)∗ sending a flat connection on the surface Σ to its
restriction to a boundary component Γi is a Poisson mapping.

Proof. This mapping is essentially the moment map for the action of gauge
transformations on the boundary. �
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Consider the quotient of the space MΣ,Γ by the whole group ̂GΣ of centrally
extended gauge transformations. The latter group acts on MΣ,Γ , since gauge
transformations equal to the identity on the boundary form a normal subgroup
GΣ

Γ in the group ̂GΣ of all gauge transformations. The quotient space

MΣ = {d+A ∈ AΣ | dA+A ∧A = 0}/ ̂GΣ

is a finite-dimensional Poisson manifold (with singularities). As before, we
shall be interested only in the nonsingular part of it.

Exercise 2.15 Show that the quotient of any symplectic manifold by a sym-
plectic action of a group is always a Poisson manifold. For a Hamiltonian
action the symplectic leaves in this Poisson manifold are “labeled” by coad-
joint orbits in the image of the corresponding moment map. (Hint: this is
a direct generalization of the theorem on the Marsden–Weinstein reduction
discussed in Chapter I.)

We can use the above restriction map MΣ,Γ →
∏

i(ĝ
Γi)∗ to describe the

symplectic leaves of the Poisson manifold MΣ .

Proposition 2.16 ([125]) The space MΣ of flat G-connections modulo
gauge transformations on a surface Σ with holes inherits a Poisson structure
from the space AΣ of all (smooth) G-connections. The symplectic leaves of
this structure are parametrized by the conjugacy classes of holonomies around
the holes (that is, a symplectic leaf is singled out by fixing the conjugacy class
of the holonomy around each boundary component).

Proof. The symplectic leaves of MΣ are in one-to-one correspondence with
the coadjoint orbits of the (centrally extended) affine Lie algebra ĝΓ on a
circle (or the direct product of several copies of the affine algebras if the
boundary Γ of the surface Σ consists of several components). As we have
seen in Section II.1.2, these coadjoint orbits are parametrized by the conjugacy
classes of holonomies around the circle. �

Remark 2.17 The above proposition should not be understood in the sense
that the conjugacy classes of holonomies around the holes can be taken ar-
bitrarily: the holonomies of a flat connection on the surface obey certain re-
lations coming from the fundamental group π1(Σ). For example, if Σ is a
sphere with n holes then the product of all n holonomies has to be id ∈ G
(provided one has chosen the same base point and a convenient orientation
for all n loops encircling the holes).
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Remark 2.18 A beautiful purely finite-dimensional description of the Pois-
son structure on the space MΣ was obtained in [125]. Consider a triangulation
of the surface Σ. Let the graph L be the 1-skeleton of the triangulation; see
Figure 2.2. The space of flat connections on the surface Σ is replaced by the
set AL of graph connections on L. By definition, the set AL =

∏

edges of L G

Fig. 2.2. A surface Σ is “replaced” by the 1-skeleton of its triangulation.

is taken to be the product of G over all edges of the graph L and should
be viewed as the “holonomies along the (oriented) edges.” The gauge group
GL =

∏

vertices of L G acts by conjugation at the vertices. The moduli space
MΣ of flat connections is diffeomorphic to the quotient ML = AL/GL.

It turns out that one can define Poisson structures on both AL and GL

such that the action of the group GL on the space AL is Poisson (i.e., the map
GL ×AL → AL is a Poisson map with respect to the sum of the two Poisson
structures on GL×AL). In particular, the quotient ML = AL/GL is a Poisson
manifold, and one obtains an explicit description of the Poisson structure on
MΣ ; see [125]. (A bit more precisely, a flat graph connection satisfies the
condition that the monodromies around all the faces of the triangulation are
equal to id ∈ G. This restriction has to be taken into account when defining
AL. Note that for a surface Σ with at least one hole, one can always choose
a graph with all faces empty. Observe also that for a graph coming from
a triangulation, the orientation of Σ induces a cyclic order of the ends of
edges incident to each vertex.) Although the Poisson structure on AL and GL

depends on some additional choices, the Poisson structure on moduli ML,
after the reduction, does not.

2.2 Poincaré Residue and the Cauchy–Stokes Formula

In the next section we are going to develop the symplectic geometry related to
holomorphic bundles on complex surfaces in a way analogous the symplectic
geometry of flat connections on real surfaces. For this we need a complex ana-
logue of the Stokes formula, which turns out to be a simple multidimensional
generalization of the Cauchy residue formula.

Let X be a compact complex n-dimensional manifold and γ a meromor-
phic n-form on X with poles on a smooth complex hypersurface Y ⊂ X. Here
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and below we consider forms with logarithmic singularities only, i.e., forms
with first-order poles. Let z : U → C be a function defining Y in a neighbor-
hood U ⊂ X of some point p ∈ Y . Then locally in U the n-form γ can be
decomposed into the sum

γ =
dz

z
∧ α+ β ,

where α and β are, respectively, holomorphic (n− 1)-form and n-form in U .

Exercise 2.19 Show that the restriction α|Y is a well-defined holomorphic
(n − 1)-form on Y , that is, α|Y is independent of the choice of z. (Hint: use
local coordinates.)

Definition 2.20 The holomorphic (n − 1)-form α|Y on Y is called the
Poincaré residue of the meromorphic form γ and is denoted by resY γ.

Note that for the case of top-degree meromorphic forms having singular-
ities on smooth divisors, which we consider here, a logarithmic singularity is
the same as a first-order pole. In the situation of a nonsmooth divisor of poles
one should keep the formulation “γ with logarithmic singularities.”

Theorem 2.21 (Cauchy–Stokes formula, [151, 133]) Let X,Y , and γ
be as above, and let u be a smooth (n− 1)-form on X. Then the form γ ∧ du
is L1-integrable on X and

∫

X

γ ∧ du = 2πi
∫

Y

resY γ ∧ u .

Proof. This formula is proved by applying the Stokes formula to reduce the
integral to the tubular neighborhood of Y , and then by using the standard
Cauchy formula in the transversal direction to Y , whence the name.

Let z be a coordinate function locally defining Y . To see that γ ∧ du
is integrable, observe that γ ∧ du grows like 1/|z| as z → 0. Since the real
codimension of Y in X equals 2, the 2n-form γ ∧ du is indeed integrable on
X.

To calculate the integral, choose some tubular neighborhood Uε of radius
ε for the manifold Y (see Figure 2.3). Then by definition of the improper
integral we have
∫

X

γ ∧ du := lim
ε→0

∫

X\Uε

γ ∧ du = − lim
ε→0

∫

∂Uε

γ ∧ u = lim
ε→0

∫

Y

∫

|z|=ε

γ ∧ u ,

where we have used the Stokes theorem to reduce the integral over X \ Uε to
an integral over its boundary. Note that the boundary ∂(X \ Uε) is oriented
by an outer normal, which is an inner normal for the tubular neighborhood:
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∂(X \ Uε) = −∂Uε. This orientation implies the positive (counterclockwise)
orientation of the contour |z| = ε.

Finally, by decomposing γ = dz
z ∧ α + β and using the Cauchy integral

formula in the z-direction we obtain

lim
ε→0

∫

Y

∫

|z|=ε

γ ∧ u = 2πi
∫

Y

α ∧ u = 2πi
∫

Y

resY γ ∧ u ,

while the term involving β ∧ u vanishes as ε → 0. �

Y

Uε

X

Fig. 2.3. A tubular neighborhood Uε of the polar divisor Y ⊂ X.

Another way to rewrite the Cauchy–Stokes formula is to use ∂̄u instead of
du:

∫

X

γ ∧ ∂̄u = 2πi
∫

Y

resY γ ∧ u ,

since it is only the (0, n− 1)-part of the form u that is essential here.

Remark 2.22 Theorem 2.21 can be extended to the case in which the
meromorphic n-form γ has first-order poles on a normal crossing divisor
Y = ∪iYi ⊂ X. (A normal crossing divisor means that the smooth irreducible
components Yi of Y , each one appearing with multiplicity one, intersect gener-
ically.) Analogously to Definition 2.20, one can define the residue resYi

γ on
each component of Y . The resulting (n−1)-forms resYi

γ are meromorphic on
Yi and have first-order poles at the intersections Yi,j = Yi ∩ Yj . One can con-
sider the repeated Poincaré residue of γ at Yi,j . Let zi = 0 and zj = 0 be local
equations in X of the components Yi and Yj respectively. Then representing
γ as γ = dzi

zi
∧ dzj

zj
∧ α+ β, one finds that

resi,j γ := resYi,j
(resYi

γ) = reszj=0

(

reszi=0
dzi

zi
∧ dzj

zj
∧ α

)

= α|Yi,j
.

Note that the sign of the repeated residue depends on the order in which the
latter was taken:

resi,j γ = − resj,i γ .

We shall denote by res γ the collection of (n − 1)-forms resYi
γ, the residues

of γ at the components Yi of the normal crossing divisor Y = div∞ γ.
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Remark 2.23 We also note that for the Cauchy–Stokes formula above, the
polar divisor plays the role of the boundary in the usual Stokes formula. In the
same spirit, the meromorphic n-form can be seen as a “complex analogue” of
an orientation of a real manifold. We will encounter similar analogies between
notions from differential topology and complex analysis in subsequent sections.

2.3 Moduli Spaces of Holomorphic Bundles

Let S be a compact complex surface (dimC S = 2) and let G be a simply con-
nected complex reductive group (G ⊂ GL(n,C)). In this section, we describe a
Poisson structure on the moduli space of (stable) holomorphic vector bundles
on S with the structure group G.13 This will be done by analogy with our
considerations of the moduli space of flat connections on a Riemann surface in
Section 2.1. The basic idea for this analogy is to replace the “real” notions of
orientation and boundary of a Riemann surface by their “complex analogues”:
a meromorphic 2-form on the surface (thought of as a “complex orientation”
of S) and its divisor of poles (playing the role of the “boundary” of S); see
Remark 2.23.

On the complex surface S we fix some meromorphic 2-form β that has only
poles of the first order and whose polar divisor P ⊂ S is a smooth curve in
S. Let us assume additionally that β has no zeros. (The latter corresponds to
the smoothness of a real surface: we will see below that zeros of the 2-form β
on a complex manifold would correspond to singularities of a real manifold).
If it happens that β has neither zeros nor poles (i.e., S is “smooth, oriented,
without boundary”) this means that we are dealing with either a K3 or an
abelian surface S. If the 2-form β is meromorphic, then S is a complex Poisson
surface, since the bivector field dual to β defines a holomorphic Poisson struc-
ture on S.

For the meromorphic 2-form β without zeros, its polar divisor P is an
anticanonical divisor on S, and it has to be an elliptic curve or the union of
several nonintersecting elliptic curves. (Indeed, in this case, resP β defines a
nonvanishing holomorphic 1-form on P .) These elliptic curves can be seen as
the analogues of the circles constituting the boundary components of a smooth
real surface. An example of such is S = CP

2 with a smooth cubic P as an
anticanonical divisor. (As a matter of fact, many Fano surfaces admit such a
form β, i.e., fall into this class. The considerations below can also be extended
with minimal changes to the case of a nonsmooth divisor P , in particular,
to P consisting of several components intersecting transversally. Example: for
S = CP

2 with β = dx ∧ dy/xy, the divisor P is a union of three CP
1’s.)

Exercise 2.24 Prove that if a meromorphic form β is nonvanishing, so is its
residue resP β. (Hint: use local coordinates.)
13 As before, when speaking of a moduli space we shall always mean its nonsingular

part. Here under the moduli space we understand a local universal family near a
smooth point.
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Now let E be a smooth G-bundle over the surface S that can be en-
dowed with a holomorphic structure, and let EndE be the correspond-
ing bundle of endomorphisms with fiber g = Lie(G). Furthermore, let AS

denote the infinite-dimensional affine space of smooth (0, 1)-connections (or
∂̄-connections) in E. Finally, let us choose a reference holomorphic structure,
i.e., a (0, 1)-connection ∂̄ 0 such that ∂̄ 2

0 = 0. Then the space AS can be iden-
tified with the vector space Ω0,1(S,EndE) of (EndE)-valued (0, 1)-forms on
S, i.e.,

AS = {∂̄ 0 +A |A ∈ Ω0,1(S,EndE)} .
In what follows, instead of ∂̄ 0, we shall write simply ∂̄, keeping in mind that
this corresponds to a reference holomorphic structure in E when it applies to
sections of E or associated bundles.

Definition 2.25 The affine space AS possesses a natural holomorphic sym-
plectic structure given by

ωC(δ1A, δ2A) =
∫

S

β ∧ tr(δ1A ∧ δ2A) ,

where β is the meromorphic 2-form of S (i.e., the “complex orientation” on
S), δ1A and δ2A are two tangent vectors to the affine space AS at the point
∂̄+A, and tr(· ∧ ·) stands for the wedge product on S and the nondegenerate
pairing on g.

Recall that a holomorphic symplectic structure on a complex manifold is
defined by a holomorphic closed 2-form on it that is nondegenerate over C.
(Note, for instance, that the 2-form dz ∧ dw defines a holomorphic symplectic
structure in C

2, but it is not symplectic in R
4 
 C

2 as a 2-form over R, since it
is of rank 2.) In the infinite-dimensional context, the nondegeneracy is always
understood as the absence of a tangent vector skew-orthogonal to all others;
see Definition I.4.4.

Following this definition, we can appropriately “complexify” the construc-
tions for moduli of flat connections from Section 2.1 step by step. Abusing
notation, let us denote by GS the group of gauge transformations in E, i.e,
the group of automorphisms of the smooth bundle E.

Exercise 2.26 Prove that the symplectic structure ωC is invariant with re-
spect to the gauge transformations

A �→ gAg−1 − ∂̄gg−1 ,

for any g ∈ GS .

The infinitesimal gauge transformations form the Lie algebra gS =
Γ (S,EndE), where Γ denotes the space of C∞-sections. As before, they are
generated by certain Hamiltonian functions on the symplectic manifold AS .



2. Poisson Structures on Moduli Spaces 175

Proposition 2.27 An infinitesimal gauge transformation ε is generated by
the Hamiltonian function

Hε(A) =
∫

S

β ∧ tr(ε(∂̄A+A ∧A)) − 2πi
∫

P

resP β ∧ tr(εA) .

Proof. The only modification in comparison with the proof of Proposition
2.3 is that now we are going to use the Cauchy–Stokes formula instead of the
usual Stokes formula. Indeed, now we have

δHε(A) =
∫

S

β ∧ tr (ε δF (A)) − 2πi
∫

P

resP β ∧ tr(ε δA)

=
∫

S

β ∧ tr(ε∇A δA) − 2πi
∫

P

resP β ∧ tr (ε δA)

=
∫

S

β ∧ tr
(

δA ∧∇A ε
)

.

Here F (A) := ∂̄A+A∧A is the curvature, ∇A ε := ∂̄ε−[ε, A] is the infinitesimal
gauge transformation of a (0, 1)-connection ∂̄ +A by the element ε ∈ gS , and
∇A δA = ∂̄ δA− [δA,A]. �

Similarly, the commutation relations for these Hamiltonians with respect
to the holomorphic Poisson structure induced by ω become centrally extended:

{Hε1 ,Hε2} = H[ε1,ε2] + c(ε1, ε2) ,

where c is the following 2-cocycle on the Lie algebra gS :

Proposition 2.28 The value of the cocycle c on a pair of infinitesimal gauge
transformations ε1, ε2 ∈ gS is given by

c(ε1, ε2) = 2πi
∫

P

resP β ∧ tr(ε1 ∂̄ε2) .

Remark 2.29 Recall that a smooth divisor P must be an elliptic curve (or
a union of such), while the residue resP β is a holomorphic 1-form on P . In
Section II.5 we have used the same cocycle to construct a central extension
ĝP of the double loop group gP . This suggests that the centrally extended
(elliptic) Lie algebra ĝP should play a similar role in the theory of holomorphic
bundles on complex surfaces to that played by the centrally extended loop
algebras (the affine Lie algebras) in the theory of flat connections on Riemann
surfaces.

Let ĝS,β denote the Lie algebra of gauge transformations of the bundle E
over the surface S, which is centrally extended by the cocycle c from Proposi-
tion 2.28, and let ̂GS,β be the corresponding group. (One can consider any of
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the possible central extensions of the group GS : it is only the Lie algebra that
matters here.) The infinite-dimensional space ĝS,β is the space of pairs (ε, a),
where ε is a g-valued function on the surface S and a is a complex number.

Definition 2.30 The (smooth) dual (ĝS,β)∗ to the algebra ĝS,β is the space
of triples (F,C, λ), where F is an (EndE)-valued (0, 2)-form on S, C is an
(EndE)-valued (0, 1)-form on the “boundary” P of the surface S (i.e., on the
polar divisor of the 2-form β), and λ is a complex number. The nondegenerate
pairing 〈 , 〉 between the spaces ĝS,β and (ĝS,β)∗ is the following:

〈(F,C, λ), (ε, a)〉 =
∫

S

β ∧ tr(εF ) − 2πi
∫

P

resP β ∧ tr(εC) + aλ .

Let us consider the action of ̂GS,β on the affine space AS generated by the
action of GS . This is the action by gauge transformations, while the center of
̂GS,β acts trivially. The following result immediately follows from Proposition
2.27, similarly to the “real” case.

Proposition 2.31 ([194]) The centrally extended group ̂GS,β of gauge trans-
formations acts on the affine space AS in a Hamiltonian way. The moment
map for the action of the corresponding gauge algebra ĝS,β is the mapping
AS → (ĝS,β)∗ given by the (0, 2)-curvature and by the restriction of the ∂̄-
connection to the “boundary”:

A �→ (∂̄A+A ∧A, A|P , 1) .

As before, let us consider the group GS
P of gauge transformations on S

based at the polar divisor P ,

GS
P = {g ∈ GS | g|P = id} ,

and denote by gS
P the corresponding Lie algebra. The latter can be viewed as

a subalgebra of the centrally extended Lie algebra ĝS,β , since the cocycle c
is trivial on gS

P . Accordingly, the group GS
P can be viewed as a subgroup of

the centrally extended gauge group ̂GS,β , and we can restrict the action of
the large group to this subgroup. A slight modification of the last proposition
gives the following corollary.

Corollary 2.32 The group GS
P of based gauge transformations acts on the

affine space AS in a Hamiltonian way. The moment map ΦP : AS → (gS
P )∗

for this action is given by the (0, 2)-curvature:

ΦP : A �→ ∂̄A+A ∧A .

First consider the (holomorphic) Hamiltonian reduction

MS,P = AS//GS
P := Φ−1

P (0)/GS
P
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of the space of ∂̄-connections AS with respect to the group GS
P . The result

will be the space of integrable ∂̄-connections in the bundle E on S modulo
gauge transformations from GS

P . Indeed, the set Φ−1
P (0) consists of (0, 1)-

connections whose (0, 2)-curvature vanishes. Such connections are in one-to-
one correspondence with holomorphic structures in the complex bundle E.

Thus the holomorphic Hamiltonian reduction leads us to the considera-
tion of the space of all holomorphic structures in the bundle E modulo gauge
equivalences that act as the identity over P . The corresponding quotient space
MS,P , which we consider only locally, near some of its smooth points, is, by
construction, an (infinite-dimensional) symplectic manifold, since it comes
from the Hamiltonian reduction of a symplectic manifold.

Remark 2.33 Before we treat the general case with a nonempty P , let us
look at the particular situation in which the meromorphic form β has no poles,
i.e., it is actually a holomorphic 2-form without zeros. (As we mentioned, this
can happen if the surface S is K3 or abelian.) If P = ∅, the group GS

P = GS

is the group of all gauge transformations on S, while (a nonsingular part of)
the quotient MS,P recovers the (finite-dimensional) moduli space of (stable)
holomorphic G-bundles over S. This way we obtain a “visualization” of the
following theorem of Mukai:

Theorem 2.34 ([283]) Let S be a K3 or abelian surface. Then the moduli
space of stable holomorphic G-bundles over S admits a holomorphic symplectic
structure.

Returning to the case of a nonempty divisor P ⊂ S, consider now the space
of holomorphic structures in a smooth bundle over a complex one-dimensional
manifold by taking P as such a manifold and E|P as the bundle over P :

C := {∂̄ + C |C ∈ Ω0,1(P,EndE|P )} .

Here ∂̄ is understood as the restriction to P of our reference holomorphic struc-
ture. The space C of holomorphic structures in a bundle on an elliptic curve
(or a sum of such spaces if P consists of several disjoint components) is in fact
an affine subspace in a vector space dual to the elliptic Lie algebra ĝP,α. The
latter Lie algebra is defined as the central extension of gP = Γ (P,EndE|P )
by the cocycle

cα(ε1, ε2) = 2πi
∫

P

α ∧ tr(ε1∂̄ε2) ;

cf. Remark 2.29. We set α := resP β, in which case we obtain the elliptic Lie
algebra ĝP,α = ĝS,β/gS

P as the corresponding quotient. Consider the linear Lie–
Poisson structure on the dual (ĝP,α)∗ of the elliptic algebra and, consequently,
on its affine subspace C. Recall that the symplectic leaves of this structure (or
coadjoint orbits of the elliptic Lie group) correspond to isomorphism classes of
holomorphic bundles on P ; see Section II.5.2. We have obtained the restriction
map
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AS → (ĝP,α)∗

(respectively, the map to the product of the corresponding dual spaces if P
consists of several connected components), which is Poisson and which factors
through the symplectic quotient to produce the map MS,P → (ĝP,α)∗.

Proposition 2.35 The mapping from the space MS,P to the coadjoint rep-
resentation space (ĝP,α)∗, sending an integrable ∂̄-connection on the surface
S to its restriction to the divisor P , is a Poisson mapping.

Proof. This mapping is essentially the moment map for the action of gauge
transformations on the polar divisor P .

In the second step, we consider the quotient of the space MS,P by the
whole group ̂GS,β of centrally extended gauge transformations. The latter
group acts on MS,P , since gauge transformations that are equal to the identity
on P form a normal subgroup GS

P in ̂GS,β .
The quotient space

MS := MS,P / ̂G
S,β = {∂̄ +A ∈ AS | ∂̄A+A ∧A = 0}/ ̂GS,β

represents the set of isomorphism classes of holomorphic bundles on S (corre-
sponding to a given underlying topological bundle E). Then, by construction,
the local smooth moduli space MS of holomorphic bundles on S is a finite-
dimensional Poisson manifold. Its symplectic leaves are described in terms of
coadjoint orbits in

(

ĝP,α
)∗ as follows.

Proposition 2.36 (i) [55, 371] The local moduli space MS of holomor-
phic G-bundles on the Poisson surface S possesses a (holomorphic) Poisson
structure.

(ii) [194] The symplectic leaves of this structure are parametrized by the
moduli of their restrictions to the polar divisor P ⊂ S of the nonvanishing
meromorphic 2-form β on S. (That is, a symplectic leaf is singled out by
fixing the isomorphism class of the restriction to the elliptic curve P , or the
isomorphism classes of restrictions to each curve if P consists of several such
curves.)

Remark 2.37 The above proposition should not be understood in the sense
that the isomorphism classes of bundles on P can be taken arbitrarily. Rather
they have to satisfy certain conditions that come from the fact that they arise
as restrictions of bundles defined over S.

The discussion above applies with minor modifications to the case in which
the polar divisor P consists of several components intersecting transversally.
In the latter case, the corresponding group ̂GP,α is the extended current group
over the (reducible) complex curve P .
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2.4 Bibliographical Notes

The classical reference for the moduli space of flat connections on a Riemann
surface is the paper by Atiyah and Bott [28]. The case of a surface with
boundary was studied in [83, 125]. In our exposition we follow the papers
[125] and [194] for the real and complex sides of the story.

The finite-dimensional description [125] of the moduli space MΣ with the
help of connections on graphs had various extensions and generalizations (see,
e.g., [10, 184]), and it is related to recent progress in such diverse areas as [6,
71, 105, 121, 122]. For a beautiful introduction and survey of the surrounding
area we refer the reader to [29].

For other finite-dimensional constructions of the symplectic moduli space
see, e.g., [173, 183]. In [6] this space was studied by introducing the notion of a
group-valued moment map, which proved to be a powerful tool in symplectic
geometry. In Appendix A.10 we discuss torus actions and integrable systems
on such moduli spaces, after [175, 120].

The Cauchy–Stokes formula can be found, in particular, in [151]. The
approach using this formula can also be viewed as parallel to the geometric
complexification suggested by Arnold in [14].

The symplectic structure on the moduli space of stable sheaves on a K3
surface or an abelian surface was found by Mukai [283] by algebro-geometric
methods, while the holomorphic Poisson structures were discussed in [55, 371].
The description of the corresponding holomorphic symplectic leaves was
obtained in [194].
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3 Around the Chern–Simons Functional

In this section we move from surfaces to threefolds, along with connections and
bundles on them. By studying the topological Chern–Simons action functional
on the space of connections on a three-dimensional manifold with boundary,
we recover the definition of the symplectic structure on the moduli space of flat
connections on a compact Riemann surface. Similarly, the holomorphic Chern–
Simons functional on ∂̄-connections over three-dimensional Fano manifolds is
related to the holomorphic symplectic structure on the moduli spaces of stable
bundles over K3 or abelian surfaces.

Furthermore, the corresponding path integrals for these Chern–Simons
functionals in the abelian case can be used to define the Gauss linking number
of oriented curves in three-dimensional space and its holomorphic analogue,
the polar linking number of holomorphic curves.

3.1 A Reminder on the Lagrangian Formalism

A motion of a particle on a manifold can be described by the least action
principle. Consider an action functional

S[q] =
∫ t1

t0

L(q(t), q̇(t), t) dt

defined on the space C[t0, t1] of smooth maps q : [t0, t1] → M of the interval
[t0, t1] to the manifold M . Here L is a (time-dependent) Lagrangian function,
L : TM × R → R, which we assume to depend only on t, q, and its first
derivative q̇ := dq/dt.

For a path variation δq one can find the corresponding variation of the
action functional, i.e., the linear-in-δq term of the difference S[q + δq] − S[q]:

δS[q] =
∫ t1

t0

E δq dt+ p δq|t1t0 ,

where

E :=
∂L(q, q̇, t)

∂q
− d

dt

∂L(q, q̇, t)
∂q̇

and

p :=
∂L(q, q̇, t)

∂q̇
.

(Here and below we assume the summation over the coordinates q =
(q1, . . . , qd): pδq :=

∑

j pjδq
j , pj := ∂L(q, q̇, t)/∂q̇j , etc.)

Exercise 3.1 Prove the variation formula. (Hint: use integration by parts.)

This way the variation δS can be regarded as a 1-form on the infinite-
dimensional space C[t0, t1] of “virtual trajectories” of the particle.
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q(t)

δq(t)q0

M

t0 t1 t

q1

Fig. 3.1. A small variation of the path q(t) with fixed endpoints.

Definition 3.2 The least action principle states that the actual trajectories
of the particle are the critical points of this action functional: δS[q] = 0.

By confining ourselves to variations with fixed ends, δq(t0) = δq(t1) = 0,
we come to a necessary condition on the extremals. Namely, actual particle
trajectories satisfy the Euler–Lagrange equation E = 0, i.e.,

∂L(q, q̇, t)
∂q

− d

dt

∂L(q, q̇, t)
∂q̇

= 0 .

Denote by E [t0, t1] the space of all solutions to the Euler–Lagrange equation,
i.e., the space of such trajectories.

Exercise 3.3 A free particle of mass m moving in the space R
d with a po-

tential energy V : R
d → R has the Lagrangian L(q, q̇, t) = m|q̇|2/2−V (q), the

difference of its kinetic and potential energies. Prove that the Euler–Lagrange
equation for this L gives the Newton equation of motion:

mq̈ = −grad V (q) .

Now we restrict the variation 1-form δS to the space of extremals E [t0, t1],
which is singled out by the Euler–Lagrange equation. On this space of “tra-
jectories with free ends” we obtain

δS = p δq|t1t0 = σ1 − σ0 , (3.5)

where σi := p δq|ti
, i = 0, 1 are the corresponding 1-forms on C[t0, t1]. One

can regard the above as a relation between these three 1-forms: σ0, σ1, and
δS, which holds for their restrictions to the space of extremals E [t0, t1].

Now, by applying the exterior differential δ (on the infinite-dimensional
manifold C[t0, t1]) to both sides of the relation (3.5) above and using δ2 = 0,
we obtain δσ0 = δσ1, which holds on E [t0, t1]. This means that the space
E [t0, t1] turns out to be naturally equipped with a closed 2-form ω defined by

ω := δσ0 = δσ1 .

Definition 3.4 A manifold N equipped with a closed 2-form ω (not neces-
sarily nondegenerate) is called presymplectic.
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Consider the distribution of null-spaces of this 2-form in N .

Exercise 3.5 (i) Assuming that this distribution has constant rank, prove
that it is integrable, i.e., it is tangent to a foliation in N .

(ii) Assuming that this null-foliation is a fibration π : N → N ′, prove that
the base of this fibration carries a natural symplectic structure, i.e., (N ′, ω′)
is a symplectic manifold such that π∗ω′ = ω.

The above discussion shows that whenever the space of extremals E [t0, t1]
is a manifold, it is in fact a presymplectic manifold. However, the 2-form ω is
often degenerate. The phase space P of the particle can be described as the
corresponding symplectic manifold. (Here we implicitly assume that various
regularity conditions are satisfied to guarantee that both E [t0, t1] and the
phase space are smooth manifolds.)

Exercise 3.6 Check that for the above example of a particle motion in R
d

this definition of the phase space P coincides with T ∗
R

d equipped with the
natural symplectic structure.

Remark 3.7 [393, 79, 341] The discussed Lagrangian formalism can be gen-
eralized to infinite-dimensional target manifolds M or to higher-dimensional
domains instead of the interval [t0, t1]. These are the objects that a field theory
deals with. Consider, for example, a local action functional

S[ϕ] =
∫

N

L(ϕ(x), ∂ϕ(x)) dnx

describing a field theory on an n-dimensional manifold N with boundary ∂N .
Here x = (x1, . . . , xn) are local coordinates on N , ϕ is a map from N to
a target manifold M or a section of some bundle on N , ∂ϕ are the first
derivatives of ϕ, while the Lagrangian L can depend on additional structures
on N . As in the one-dimensional situation described above, one can pose a
variational problem δS[ϕ] = 0, which leads to the Euler–Lagrange equations.

Suppose first that N = I × Σ, where I is an interval and a manifold Σ
has dimension n− 1. One can consider t ∈ I as the time variable and identify
the field theory with an infinite-dimensional classical mechanics, where the
space of maps ϕ : Σ → M plays the role of the target. In particular, one has
a presymplectic manifold of extremals EN and the symplectic phase space P
associated to N (or, rather, to Σ).

Alternatively, one can associate the phase spaces P0 and P1 to the cor-
responding boundary components ∂N = Σ1 − Σ0 of N , and equip the total
phase space P0 × P1 with the product symplectic structure. There is a nat-
ural projection αN of the space EN of extremals into the product P0 × P1,
since it “tautologically” projects to each factor: one describes the extremals
via different boundary components, taking the orientation of the latter into
account. Then the relation 0 = δ2S = δσ1 − δσ0 that held on EN now reads
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that the image αN (EN ) of EN is an isotropic submanifold in the symplectic
manifold P0 × P1.

Definition 3.8 A submanifold of a symplectic manifold is isotropic if the
restriction of the symplectic form to this submanifold is zero.

Exercise 3.9 Let f : (N1, ω1) → (N2, ω2) be a diffeomorphism between two
symplectic manifolds. Prove that f is a symplectic map, i.e., ω1 = f∗ω2, if and
only if the graph of f is an isotropic submanifold in the symplectic manifold
(N1 ×N2, ω1 � ω2).

(An isotropic submanifold of maximal possible dimension, which is equal
to half the dimension of the symplectic manifold, is called a Lagrangian sub-
manifold; cf. Section I.4.5. This is the case for the graph of f .)

One can see that the image αN (EN ) is indeed isotropic in P0×P1, since the
2-form δσ1− δσ0 is exactly the restriction of the product symplectic structure
of P0 × P1 (with different orientations of the boundary components) to this
image.

The latter formulation of the presymplectic/isotropic properties of the
space of extremals EN extends naturally to the general case of a manifold
N with boundary consisting of several components Σ1, . . . , Σk. Associate the
phase space Pj to each component Σj , thinking of a neighborhood of Σj

in N as a product I × Σ. One has the relations δS = σ1 + · · · + σk and
δσ1 + · · · + δσk = 0 on the space of extremals EN , where σj stands for the
contribution of the corresponding boundary component. The latter shows that
the image αN (EN ) under the natural map αN : EN → P1 × · · · × Pk is
isotropic with respect to the product symplectic structure on the phase space
P1 × · · · × Pk. We refer to [341, 79] for more details.

Remark 3.10 The philosophy of holomorphic orientation (see Sections 2.2
and 2.3) can be applied to field-theoretic notions in the following way. Suppose
we have an action functional

S[ϕ] =
∫

M

L(ϕ, ∂ϕ) dnx

on smooth fields ϕ (e.g., functions, connections, etc.) on a real (oriented)
manifold M , and this functional is defined by an n-form Ldnx, which depends
on the fields and their derivatives.

Then one can suggest the following complex analogue SC of the action
functional S for a complex n-dimensional manifold X equipped with a “polar
orientation,” i.e., with a holomorphic or meromorphic n-form µ:

SC[ϕ] :=
∫

X

µ ∧ L(ϕ, ∂̄ϕ) dnx̄ .
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Here ϕ stands for smooth fields on a complex manifold X. Now the (0, n)-form
Ldnx̄ is integrated against the holomorphic orientation µ over X.

Furthermore, the interrelation between the extremals of the real functional
S[ϕ] (on smooth fields) on the real manifold M and the boundary values of
those fields on ∂M is replaced by the analogous interrelation for the complex
functional SC[ϕ] (still on smooth fields) on a complex manifold X (equipped
with an n-form µ) and on the polar divisor Y := div∞µ ⊂ X (equipped with
the residue (n− 1)-form ν := res µ).

The above discussion will allow us to see in the next two sections how
the symplectic structures on the moduli of flat connections and holomorphic
bundles on surfaces arise naturally from the Lagrangian formalism related to
the topological and holomorphic Chern–Simons functionals.

3.2 The Topological Chern–Simons Action Functional

Let N be a real compact oriented three-dimensional manifold with boundary
∂N = Σ. As usual in the “real case,” we take G to be a compact simply

Σ3

Σ1

Σ2

Fig. 3.2. Three-dimensional manifold N with boundary ∂N = Σ1 ∪ Σ2 ∪ Σ3.

connected simple Lie group with the corresponding Lie algebra g. Denote the
nondegenerate invariant (Killing) bilinear form on g by tr(XY ) := 〈X,Y 〉.
Fix a trivial G-bundle E over N and let A denote the space of connections in
the bundle E. Upon fixing a reference flat connection, we think of A as the
space Ω1(N, g).

Definition 3.11 The topological Chern–Simons action functional is the fol-
lowing real-valued function on the space of connections A:

CS(A) :=
∫

N

tr(A ∧ dA) +
2
3

∫

N

tr(A ∧A ∧A) ,

where a connection A ∈ A is understood as a g-valued 1-form on N .

Proposition 3.12 The set of extremals, i.e., solutions of the Euler–Lagrange
equation, for the Chern–Simons functional CS is the space of flat connections
in the G-bundle E over the manifold N .
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Proof. For a small variation δA of a connection A ∈ A the corresponding
variation of the functional is

δCS =
∫

N

tr(δA ∧ dA) +
∫

N

tr(A ∧ dδA) + 2
∫

N

tr(δA ∧A ∧A)

=
∫

N

d tr(A ∧ δA) + 2
∫

N

tr (δA ∧ (dA+A ∧A))

=
∫

∂N

tr(A ∧ δA) + 2
∫

N

tr (δA ∧ (dA+A ∧A)) ,

where at the last step we used the Stokes formula.
By imposing the boundary condition δA|∂N = 0 on variations δA, we

obtain the Euler–Lagrange equation

dA+A ∧A = 0 ,

i.e., the equation of vanishing curvature F (A) = 0 on N . Hence the space of
solutions of this equation is exactly the space of flat connections on the real
threefold N . �

The first term in the above calculation of δCS gives the boundary contri-
bution, the 1-form

∑

σj on the extremals, where the summation is taken over
the boundary components of ∂N . Take N = I×Σ to be a finite cylinder over
a closed two-dimensional surface Σ. Then the presymplectic structure on the
space of flat connections on N , i.e., on the extremals for our action functional,
is ω = δσ for

σ :=
∫

Σ

tr(a ∧ δa) ,

where a := A|Σ denotes the restriction of a flat connection A from the man-
ifold N to either of its boundary components Σ. (Here we omit the index
j = 0, 1 for σj , since ω = δσ0 = δσ1.)

Exercise 3.13 Verify that the 2-form ω = δσ is degenerate on the space of
flat connections on the surface Σ exactly along the gauge equivalence classes
of the connections {a}. (Hint: the 2-form δσ =

∫

Σ
tr(δa∧δa) is the restriction

of the canonical 2-form ω from the set of all connections to the subset of flat
connections on Σ; cf. Definition 2.1.)

Thus the moduli space of flat connections MΣ on the surface Σ appears
as the natural symplectic (or phase) space for this presymplectic space of
flat connections on Σ, and we obtain yet another definition of the symplectic
structure on MΣ from Section 2.1.

Corollary 3.14 The moduli space MΣ of flat connections on a surface Σ
is naturally symplectic as the phase space for extremals of the Chern–Simons
action functional for connections on the threefold N = I ×Σ.
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Remark 3.15 To see why this action functional is called topological we
now check the invariance property of the Chern–Simons action with re-
spect to gauge transformations of the connections. Let M be a compact
three-dimensional manifold without boundary and suppose that A and ˜A are
connections in a G-bundle over M that are sent to each other by a gauge
transformation g:

˜A = gAg−1 − dgg−1 .

Then the Chern–Simons actions for them are related as follows:

CS( ˜A) = CS(A) +
1
3

∫

M

tr
(

g−1dg ∧ g−1dg ∧ g−1dg
)

.

Recall that the 3-form 1
24π2 tr(g−1dg)∧3 is the pullback under the map g :

M → G of an integral closed 3-form η on the compact simply connected
simple Lie group G (see Proposition 2.16 in Appendix A.2; cf. Section II.1.3).
Thus the integral of this form depends only on topological properties of the
map g and can be expressed as

1
24π2

∫

M

tr(g−1dg)∧3 =
∫

M

g∗η ,

which is an integer, since the 3-form η generates H3(G,Z). The latter implies
that the exponential exp

(

i
4π CS(A)

)

is gauge invariant:

i

4π
CS( ˜A) − i

4π
CS(A) = 2πi · 1

24π2

∫

M

tr(g−1dg)∧3 ∈ 2πi · Z .

Remark 3.16 An interesting integer-valued invariant for a homology
3-sphere M was introduced by Casson and is closely related to the gauge-
theoretic constructions above [70]. Roughly speaking, the Casson invari-
ant Cas(M) is defined as the algebraic number of the conjugacy classes of
irreducible SU(2)-representations of the fundamental group π1(M). In other
words, it counts the number of irreducible flat SU(2)-connections on M mod-
ulo conjugation. The homology restriction on the threefold M is related to
the fact that if H1(M) �= 0, then the moduli space of flat connections on M
might not be zero-dimensional, and in particular, it would not consist of a
finite number of points. The reason for restricting to SU(2) is clarified in the
following exercise.

Exercise 3.17 Show that the only reducible representation ρ : π1(M) →
SU(2) is the trivial one. (Hint: Reducible representations of π1(M) in SU(2)
are necessarily abelian and hence factor through the homology H1(M). This
homology group is trivial for a homology 3-sphere.)

Now consider a Heegaard splitting of M into two handlebodies M =
M1 ∪Σ M2 glued together along their common boundary, an embedded sur-
face Σ ⊂ M . Consider the moduli space MΣ of flat connections in the trivial
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SU(2)-bundle on the surface Σ. Define two submanifolds L1 and L2 of the
symplectic manifold MΣ as those (equivalence classes of) flat connections on
the surface Σ that extend to M1 and M2 respectively. One can show that these
submanifolds are Lagrangian. Their intersection points L1 ∩L2 correspond to
flat connections extendable to the whole of M . Thus the Casson invariant is
defined as the intersection number of these submanifolds,

Cas(M) = #(L1, L2) ,

where we assume that the submanifolds intersect transversally, and exclude
the intersection corresponding to the trivial representation; see details, for
example, in [364].

3.3 The Holomorphic Chern–Simons Action Functional

A complex three-dimensional manifold X equipped with a nowhere vanish-
ing meromorphic 3-form µ can be regarded as a complex analogue of a
real oriented manifold with boundary, following the general philosophy that
we adopted in Sections 2.2 and 2.3. Accordingly, one can complexify the
Lagrangian formalism to this situation. Here we define a holomorphic analogue
of the Chern–Simons action functional for (X,µ) and relate it to Mukai’s holo-
morphic symplectic structures on moduli of holomorphic bundles over complex
surfaces, following [195, 85].

Let GC be a complex simple and simply connected Lie group and EC a
complex GC-bundle over the manifold X. As before, let us denote by AX

C
the

space of (0, 1)-connections in the bundle EC.

Definition 3.18 The holomorphic Chern–Simons action functional CSC :
AX

C
→ C is defined via

CSC(A) :=
∫

X

µ ∧
(

〈A ∧ ∂̄A〉 +
2
3
〈A ∧A ∧A〉

)

for any (0, 1)-connection A ∈ AX
C

thought of as a gC-valued (0, 1)-form on X.
As usual, we assume that the 3-form µ has only first-order poles, and hence
the integral above is well defined.

Proposition 3.19 The extremals of the holomorphic Chern–Simons func-
tional are holomorphic structures in the complex bundle EC.

Proof. Indeed, in the same way as in the real case and by using the Cauchy–
Stokes formula we come to the Euler–Lagrange equation

∂̄A+A ∧A = 0
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in the holomorphic setting. Its solutions are (0, 1)-connections A with van-
ishing (0, 2)-curvature, F 0,2(A) = 0, and each such connection defines the
corresponding holomorphic structure in the complex bundle EC. �

Consider now the “boundary term” of the variation δCSC, which now de-
scends to the polar divisor of the meromorphic 3-form µ. Denote this polar
divisor by Y := div∞µ ⊂ X. Note that the residue ν := resY µ is a nonva-
nishing 2-form on the divisor Y , since µ itself is nonvanishing (see Exercise
2.19). In particular, the canonical bundle of Y has to be trivial, so that Y is
either a K3 surface or a complex torus.

To define the presymplectic structure in the real case we considered a
cylinder M = I ×Σ over a Riemann surface Σ. Here we look at the complex
analogue of such a cylinder. Namely, let X = CP

1 × Y be the product of
CP

1 and a K3 surface or abelian surface Y . Suppose that Y is endowed
with a holomorphic (necessarily nonvanishing) 2-form ν, and consider the
meromorphic 3-form µ = (dz/z) ∧ ν on X, where dz/z is a 1-form on the
complex line CP

1. One can see that ν = resz=0 µ = − resz=∞ µ.
Now the variation of the holomorphic Chern–Simons functional satisfies

the relation δCSC = σ0,C + σ∞,C on the space of extremals, which are the
integrable (0, 1)-connections on X, i.e., the connections with vanishing (0, 2)-
curvature. Here σ0,C and σ∞,C stand for the contributions of the corresponding
components z = 0 and z = ∞ of the polar divisor of µ.

This allows us to introduce the holomorphic presymplectic structure ωC =
δσC on the “boundary values” of the extremals, i.e., on the space of integrable
connections on the surface Y . Explicitly, the holomorphic 1-form σC is

σC :=
∫

Y

ν ∧ tr(a ∧ δa) ,

where a := A|z=0 is the restriction of a (0, 1)-connection A in EC from the
threefold X to the surface Y (understood as one component {z = 0}×Y ⊂ X
of the polar divisor of µ), δa is the corresponding variation of a, and ν =
resz=0 µ is a holomorphic 2-form on Y .

One can show that, similarly to the real case, the presymplectic structure
ωC is degenerate along the orbits of the action of the complex group of gauge
transformations GY

C
on integrable (0, 1)-connections (i.e., holomorphic struc-

tures) in the bundle EC over Y . After taking the quotient with respect to the
group action, we obtain a nondegenerate holomorphic symplectic structure on
the moduli space of (stable) holomorphic bundles on the K3 or abelian sur-
face Y . (Here, as usual, we are concerned with the moduli space only locally
around a smooth point.) Thus the holomorphic Lagrangian formalism gives
an alternative approach to Mukai’s result discussed before:

Theorem 3.20 ([283]) There exists a holomorphic symplectic structure ωC

on the moduli space MY of stable holomorphic GC-bundles over a K3 or
abelian surface Y .
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Remark 3.21 It turns out that there exists a holomorphic analogue of the
Casson invariant for a Calabi–Yau manifold X; see [85, 366]. Instead of a
Heegaard splitting of a real manifold, one considers a degeneration of this CY
manifold to an intersection of two Fano manifolds. The divisor of intersection
is a K3 or abelian surface, and one counts in a special way the holomorphic
bundles over Y extendable to both of these two Fano manifolds.

We also note that the holomorphic Chern–Simons action functional has
more complicated transformation properties with respect to gauge transfor-
mations. After a “large” gauge transformation, the value of the functional
differs by a multiple of the integrals

∫

X
µ ∧ g∗η. The latter can be viewed as

the integrals of the meromorphic 3-form µ over the three-cycles in X that are
Poincaré dual to the 3-form g∗η for various maps g : X → GC. The values of
these integrals can form a lattice or even a dense set in C; hence considering
the exponential similar to exp

(

i
4πCS(A)

)

does not allow one to extract a
gauge-invariant quantity in the holomorphic setting.

3.4 A Reminder on Linking Numbers

Let M be a simply connected oriented manifold and let γ1 and γ2 be two
nonintersecting oriented closed curves in M . Pick an oriented surface D1 ⊂ M
(a Seifert surface for the curve γ1) such that the curve γ1 is the oriented
boundary of the surface D1 and such that D1 and γ2 intersect transversally.

Definition 3.22 The linking number lk(γ1, γ2) of the curves γ1 and γ2 is the
intersection number of the surface D1 and the curve γ2, i.e., the number of
intersections of the curve γ2 with the surface D1 counted with orientation (see
Figure 3.3):

lk(γ1, γ2) = #(D1, γ2).

γ2
γ1

Fig. 3.3. Linking of two oriented curves.

The sign at each intersection point is obtained by forming there a frame from
the orientation frames for D1 and γ2, and comparing it with the orientation
of the ambient manifold M .

Proposition 3.23 The linking number lk(γ1, γ2) is
(i) independent of the choice of a Seifert surface D1,
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(ii) symmetric in γ1 and γ2,
(iii) invariant with respect to isotopy of the curves, provided they do not

intersect each other,
(iv) well defined in any (not necessarily simply connected) oriented three-

dimensional manifold M , provided that both curves γ1 and γ2 are homologous
to 0 in M .

Note that if the manifold M is not simply connected and only one of the
curves is homologous to 0 in M , but the other is not, the linking number
might not be well defined. For instance, take M = T

3 and two curves, one of
which is homologous to 0, while the other is a generator in H1(T3,Z). Then
by taking different Seifert surfaces for the first curve one obtains either 0 or
1 for their linking number; see Figure 3.4.

Fig. 3.4. Two Seifert surfaces for the horizontal circle in the cube-torus T
3 = R

3/Z
3,

one “inside” and one “outside,” give linking numbers ±1 and 0, respectively, for the
intersection with the “vertical” cycle.

Exercise 3.24 Prove the above proposition. Furthermore, show also that the
linking number is actually invariant when the curve γ1 changes to a curve (or
a collection of curves) γ̃1 homologous to γ1 in the complement M \ γ2 (see
Figure 3.5).

γ1

γ̃1

γ2

Fig. 3.5. The homologous curves γ1 and γ̃1 have the same linking number with the
curve γ2.
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Needless to say, the linking number easily generalizes to manifolds of any
dimension n, provided that the linking submanifolds are homologous to zero
and have “linking dimensions”: the sum of their dimensions equals n− 1.

Remark 3.25 There exists the Gauss integral formula for the linking number
of two curves γ1 and γ2 in R

3. Recall it here in a somewhat “symbolic form,”
which we need further.

Let ∆ ⊂ M × M denote the diagonal in M × M and let δ stand for
its Poincaré dual current, a closed 3-form supported on the diagonal, [δ] ∈
H3(M ×M,R). Then we can write

lk(γ1, γ2) = #(∆,D1 × γ2) =
∫

x∈D1

∫

y∈γ2

δ(x, y) , (3.6)

where #(∆,D1 × γ2) is the intersection number of ∆ and D1 × γ2 ⊂ M ×M .
One can split the 3-form δ into the homogeneous components

δ = δ3,0 + δ2,1 + δ1,2 + δ0,3 ,

where δi,j denotes the component that is an i-form on the first factor of
M ×M , and a j-form on the second factor. Note that in equation (3.6) we
had to integrate only over the component δ2,1, since all the other integrals
vanish. This component is an exact 2-form in x on D1, which allows us to
apply the Stokes formula:

lk(γ1, γ2) =
∫

x∈D1

∫

y∈γ2

δ2,1(x, y) =
∫

x∈γ1

∫

y∈γ2

d−1
x δ2,1(x, y) .

For R
3 the (1, 1)-form d−1

x δ2,1(x, y) on the torus γ1×γ2 assumes the standard
Gauss form

1
4π

· (−−−→x− y,
−→
dx,

−→
dy)

‖−−−→x− y‖3
,

where (·, ·, ·) is the mixed product of three vectors in R
3.

Remark 3.26 In what follows we need a bit of calculus of such δ-type forms.
Let δγ be the Dirac δ-type 2-form supported on a closed oriented curve γ in
a simply connected threefold M . (Alternatively, the curve γ can be regarded
as a de Rham current, a linear functional on 1-forms on M , whose value is
the integral of the 1-form over γ.) The integral of this 2-form δγ over a two-
dimensional surface counts the intersection number of this surface with the
curve γ. Then by using the decomposition of the diagonal 3-form δ into the
homogeneous components, we can express

δγ(x) =
∫

y∈γ

δ2,1(x, y) ,
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where we denote the coordinates on the first and the second factors of M×M
by x and y respectively. Choose a surface D ⊂ M whose boundary is γ = ∂D.
Similarly, we can define the δ-type 1-form supported on the surface D by

δD(x) =
∫

y∈D

δ1,2(x, y) .

The relation ∂D = γ is equivalent to the relation between the corresponding
δ-forms: dxδD(x) = δγ(x), due to the Stokes theorem, or more explicitly,

δγ(x) =
∫

y∈D

dx(δ1,2)(x, y) ,

where dx denotes the exterior derivative applied to the x-coordinates only.
Finally, if γ1 and γ2 are two nonintersecting curves, we have

lk(γ1, γ2) =
∫

x∈D1

δγ2(x) =
∫

M

δD1(x) ∧ δγ2(x) =
∫

M

δD1 ∧ dδD2 , (3.7)

where ∂D2 = γ2. The latter form suggests a common nature of the linking
number and the A ∧ dA-part of the Chern–Simons functional, which we are
going to study below.

3.5 The Abelian Chern–Simons Path Integral and Linking
Numbers

We start with a reminder on finite-dimensional Gaussian integrals. Let (x,Qx)
be a symmetric negative-definite form in the Euclidean R

n. The classical
Gauss integral

∫

R

exp(−qx2/2)dx =
√

2π/q

has the multidimensional analogue

∫

Rn

e
1
2 (x,Qx) dnx =

(

(2π)n

det(−Q)

)
1
2

.

Now fix a vector J ∈ R
n and consider the integral

ZQ(J) :=
∫

Rn

e
1
2 (x,Qx)+(x,J) dnx =

∫

Rn

eSJ (x) dnx

corresponding to the shift SJ(x) := 1
2 (x,Qx) + (x, J) of the quadratic form

by a linear term. (The initial integral is ZQ(0).) This integral can easily be
solved by completing the square. Indeed, let x0 be a solution of the equation
Qx0 + J = 0, i.e., x0 = −Q−1J . Then by introducing a shifted variable
x̃ = x−x0 and using the translation invariance of the measure dnx, we obtain
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ZQ(J) =
∫

Rn

eSJ (x̃+x0) dnx

=
∫

Rn

exp
{1

2
(x̃+ x0, Q(x̃+ x0)) + (x̃+ x0, J)

}

dnx

=
∫

Rn

exp
{1

2
(x̃, Qx̃) +

1
2
(x0, Qx0) + (x0, J)

}

dnx̃

= eSJ (x0)

∫

Rn

e
1
2 (x̃,Qx̃) dnx̃ = e

1
2 (x0,J) ZQ(0) .

Thus, we have

ZQ(J)
ZQ(0)

= eSJ (x0) = e
1
2 (x0,J) = e−

1
2 (Q−1J,J) . (3.8)

Remark 3.27 When the space R
n is replaced by some infinite-dimensional

vector space, the integrals defining ZQ(0) and ZQ(J) usually do not make
sense. However, one can “calculate” their ratio, which often turns out to
be well defined. Note that the second of the equivalent expressions for
the ratio ZQ(J)/ZQ(0) in formula (3.8) has the form exp(1

2 (x0, J)) =
exp(− 1

2 (x0, Qx0)), which allows us to avoid looking for the inverse Q−1 of
the corresponding operator in the infinite-dimensional space.

Consider an application of this idea to the abelian Chern–Simons path
integral. Let A be the space of connections in a U(1)-bundle over a real three-
dimensional simply connected manifold M without boundary. We can think
of such connections as real-valued 1-forms on M . Denote by CS : A → R

the Chern–Simons action functional on A = Ω1(M,R), which now becomes a
quadratic form

CS(A) =
∫

M

A ∧ dA ,

since the group U(1) is abelian and the cubic term A ∧A ∧A vanishes. Note
that the kernel of this quadratic form is the space of exact 1-forms dΩ0 ⊂
Ω1(M,R).

Fix some linear functional J on Ω1(M,R), i.e., a de Rham current on this
space, and define

SJ(A) :=
1
2

∫

M

A ∧ dA+
∫

M

A ∧ J .

for A ∈ Ω1(M,R). We also impose the condition dJ = 0, so that the linear
term

∫

M
A ∧ J is well defined on the quotient Ω1(M)/dΩ0(M). Now make

the following “formal” definition.

Definition 3.28 The abelian Chern–Simons path integral is the expression
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ZCS(J) :=
∫

Ω1/dΩ0
eSJ (A) DA ,

where DA stands for a translation-invariant measure on the infinite-
dimensional space Ω1(M)/dΩ0(M).

Rather than trying to define the measure and the path integral precisely,
we are going to see what the above formal manipulations with Gaussian inte-
grals give us in this situation, where, in a sense, the operator Q is replaced by
the outer derivative d. By formula (3.8) for the ratio ZQ(J)/ZQ(0) we obtain

ZCS(J)
ZCS(0)

= eSJ (A0) = e
1
2

∫

M
A0∧J ,

where A0 is a solution of the equation dA0 + J = 0. (Recall that J is a closed
current on a simply connected M , and hence it is exact, i.e., this equation
formally has a solution.)

Now we would like to specify the functional J on 1-forms A ∈ Ω1(M,R) to
be the integral of the form over a collection of curves in the simply connected
manifold M . Let γi, i = 1, . . . , k, be closed oriented nonintersecting curves
in the manifold M . We set J =

∑

i qi δγi
, where δγi

is the δ-type 2-form on
M supported on the curve γi, while qi are real parameters. By applying the
calculus of δ-forms (see Remark 3.26) we obtain that the ratio ZCS(J)/ZCS(0)
assumes the following explicit form:

ZCS(J)
ZCS(0)

= exp
{1

2

∫

M

A0 ∧ J
}

= exp
{1

2

∫

M

A0 ∧
∑

i

qi

∫

y∈γi

δ2,1(x, y)
}

= exp
{1

2

∫

M

A0 ∧
∑

i

qi

∫

y∈Di

dxδ
1,2(x, y)

}

= exp
{1

2

∫

M

−dA0 ∧
∑

i

qi

∫

y∈Di

δ1,2(x, y)
}

= exp
{1

2

∫

M

⎛

⎝

∑

j

qj

∫

z∈γj

δ2,1(x, z)

⎞

⎠ ∧
(

∑

i

qi

∫

y∈Di

δ1,2(x, y)

)

}

= exp
{1

2

∑

i,j

qiqj

∫

M

δγj
(x) ∧ δDi

(x)
}

= exp
{1

2

∑

i,j

qiqj lk(γj , γi)
}

Here we have used the Stokes theorem, as well as the definition of A0 as a
solution of the equation dA0 + J = 0.

Corollary 3.29 ([340, 318]) For the functional J defined as the integral of
1-forms over a collection of curves in a threefold, the ratio ZCS(J)/ZCS(0)
counts the pairwise linking numbers of these curves.
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Note also that above, in the latter sum, we had to assume that i �= j, so
that the linking number was defined. The case of self-linking is much more
subtle. It leads to divergences of the path integral and requires some additional
specifications, such as framing, for its normalization; see [54]. The value ZCS(0)
in the case without any curve corresponds to the Ray–Singer torsion of the
manifold M [340].

The topological Chern–Simons path integral has a holomorphic analogue.

Definition 3.30 (cf. [390]) For a three-dimensional Calabi–Yau manifold
X with a holomorphic 3-form µ the holomorphic abelian Chern–Simons path
integral is the expression

ZCS(J) :=
∫

Ω0,1/∂̄Ω0,0
eSCJ (A) DA ,

where
SCJ(A) :=

1
2

∫

X

µ ∧A ∧ ∂̄A+ 〈CJ,A〉

is the quadratic form shifted by the linear functional CJ on the space of
(0, 1)-connections A ∈ Ω0,1(X,C).

Remark 3.31 For a complex curve C ⊂ X equipped with a holomorphic
1-form α define the linear functional on (0, 1)-connections A by assigning
〈CJC , A〉 :=

∫

C
α ∧ A. Similarly to the topological case, if such a functional

CJ corresponds to a collection of complex curves, the holomorphic abelian
Chern–Simons path integral can be described in terms of the polar linking
number, a holomorphic analogue of the Gauss linking number, which we define
in Section 4.3. The relation of this functional with the holomorphic analogue
of linking was established in [134, 195, 366].

The abelian theory is a particular case of the general Chern–Simons path
integral. In the topological case we consider a link L = ∪iγi in a compact
real threefold M . Let A be the affine space of all connections in the (trivial)
G-bundle over M for a compact simply connected simple Lie group G. We
identify A with the space Ω1(M, g) of 1-forms on M with values in the Lie
algebra g of G. Finally, let GM = C∞(M,G) be the group of gauge transfor-
mations in the bundle.

Definition 3.32 The nonabelian Chern–Simons path integral for a link L ⊂
M is the following function of a parameter k:

ZCS(L; k) =
∫

A/GM

{

exp
{

ik

∫

M

tr
(

A ∧ dA+
2
3
A ∧A ∧A

)

}

×
∏

γi⊂L

tr
(

P exp
∫

γi

A

)

}

DA,
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where P exp is the path-ordered exponential integral of a nonabelian connec-
tion A over γi, and DA is an appropriate measure on the moduli space of the
connections A/GM .

Remark 3.33 Witten showed in [389] that for M = S3 and G = SU(2) this
path integral leads to the Jones polynomial for the link L. Other link or knot
invariants can be obtained by changing the group. Note that they are always
Vassiliev-type invariants of finite order [35, 36]. There are various ways to give
ZCS(L; k) and the corresponding link invariants rigorous definitions (see, e.g.,
the combinatorial [327] or probabilistic [5] approaches).

The extension of these results to a holomorphic version of the nonabelian
Chern–Simons path integral is an intriguing open problem. The more compli-
cated gauge transformation property of the holomorphic Chern–Simons action
functional already makes the first step, writing out the corresponding path in-
tegral for an arbitrary collection of complex curves in a Calabi–Yau threefold,
a serious problem; see some discussion in [391, 134, 366].

3.6 Bibliographical Notes

The Chern–Simons functional was introduced in [72]. For the relation of the
abelian Chern–Simons functional to linking numbers we refer to [340, 318].
The appearance of the Jones polynomial and other knot invariants from the
Chern–Simons functional was discovered by Witten [389]; see more details
in [35, 210]. An excellent account of the relation between this functional to
knot theory is contained in the book by Atiyah [27]. The relation between
the Chern–Simons functional and the Vassiliev knot invariants is described in
[36, 210].

The holomorphic Chern–Simons functional was introduced in [390] and
studied in a number of papers [85, 134, 195, 196, 367]. For a higher-dimensional
version of the Chern–Simons functional and its relation to linking numbers of
several submanifolds see [124].

The classical Lagrangian formalism can be found, for example, in [18]. The
formalism of the Lagrangian field theory was described in [393]; see also the
presentations in [79, 341] for more details and examples. For preliminaries on
linking numbers one can look at any book on differential topology, e.g., [162].
The question of when the space of extremals (more precisely, geodesics on a
manifold) is a smooth manifold by itself is addressed, for example, in [38, 39].
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4 Polar Homology

In the preceding sections we have encountered several analogies between no-
tions from differential topology and complex algebraic geometry, which we list
in the following “complexification table”:

Real Complex

real n-dimensional manifold complex n-dimensional manifold
orientation of the manifold nonvanishing meromorphic n-form

manifold’s boundary form’s divisor of poles
orientation of the boundary residue of the form

manifold’s singularity or infinity form’s divisor of zeros
flat connection holomorphic bundle

affine Lie algebra elliptic Lie algebra
topological Chern–Simons functional holomorphic Chern–Simons functional

Stokes formula Cauchy–Stokes formula
singular homology polar homology

The last analogy of this table is the subject of the present section. We begin
with an informal introduction to polar homology, which is followed by the
precise definition [195, 196]. Then we treat polar analogues of the intersection
and linking numbers, and finally, we briefly introduce polar homology of affine
curves.

4.1 Introduction to Polar Homology

In this section we discuss the naturality of the correspondence between the
notions of an orientation of a real manifold and a meromorphic form on a
complex manifold. As we show below, this correspondence can be thought
of as an extension of the analogy between de Rham and Dolbeault cochains
( d ↔ ∂̄ ) to an analogy at the level of the corresponding chain complexes.

Consider a compact complex (ambient) manifold X. Let W ⊂ X be a
k-dimensional submanifold equipped with a holomorphic k-form ω. We are
going to regard the top-degree holomorphic form ω on a complex submanifold
as the submanifold’s “holomorphic orientation.”

More generally, assume that the form ω is allowed to have first-order poles
on a smooth hypersurface V ⊂ W . A pair (W,ω), which consists of a k-
dimensional submanifold W equipped with such a meromorphic top-degree
form ω, will be thought of as an analogue of a compact oriented submanifold
with boundary.

In the polar homology theory the pairs (W,ω) will play the role of k-
chains. The corresponding boundary operator ∂ assumes the form ∂ (W,ω) =
2πi(V, resω), where V is the polar set of the k-form ω, while resω is the
Poincaré residue of ω, which is a (k − 1)-form on V . Note that in the situ-
ation under consideration, when the polar set V of the form ω is a smooth
(k − 1)-dimensional submanifold in a smooth k-dimensional W , the induced
“orientation” on V is given by a regular (k − 1)-form resω. This means that
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∂ (V, resω) = 0, or the boundary of a boundary is zero. The latter is the
source of the identity ∂2 = 0, which allows one to define polar homology
groups HPk(X) = ker ∂/ im ∂.

Example 4.1 To illustrate the identity ∂2 = 0 consider the example ω =
dx ∧ dy/xy in C

2. Then we have

res |y=0 res |x=0 ω = res |y=0 dy/y = 1
= − res |x=0 (−dx/x) = − res |x=0 res |y=0 ω .

Thus, the iterated residues differ by the sign corresponding to the order in
which they are taken. Hence, the total second residue on the polar divisor of
the form ω equals 0.

Note that the example of the polar divisor {xy = 0} for the form ω =
dx ∧ dy/xy in C

2 should be viewed as a complexification of a vertex of a
polygon in R

2. Indeed, the cancellation of the repeated residues on different
components of the divisor is mimicking the calculation of the boundary of
a boundary of a polygon: every vertex of the polygon appears twice with
different signs as a boundary point of two sides (see Figure 4.1).

+ −

+ −
dy
y

−dx
x0

y

x

Fig. 4.1. The relation ∂2 = 0 in polar homology is a complex analogue of the
relation ∂2 = 0 in singular homology: in the boundary of the boundary every vertex
of a polygon appears twice with opposite signs.

Example 4.2 Let us find the polar homology groups HPk(Z) of a complex
projective curve Z. In this (and in any) case, all the 0-chains are cycles. Let
(P, a) and (Q, b) be two 0-cycles, where P,Q are points on Z and a, b ∈ C

(see Figure 4.2). These two 0-cycles are polar homologically equivalent if and
only if a = b. Indeed, a = b is necessary and sufficient for the existence of
a meromorphic 1-form α on Z such that div∞ α = P + Q and resP α =
2πi a, resQ α = −2πi b. (The sum of all residues of a meromorphic differential
on a projective curve is zero by the Cauchy residue theorem.) Then, in terms
of the polar chain complex (to be formally defined in the next section) one
can write that (P, a) − (Q, a) = ∂ (Z,α). Thus, HP0(Z) = C .
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Z
(Q, b)

(P, a)

Fig. 4.2. A complex curve Z with two polar 0-chains.

Polar 1-cycles correspond to all possible holomorphic 1-forms on Z. On
the other hand, there are no 1-boundaries, since there are no polar 2-chains
in Z. Hence HP1(Z) = C

κ , where κ is the genus of the curve Z. The absence
of polar 2-chains in Z also gives HPk(Z) = 0 for k ≥ 2.

Remark 4.3 Polar homology is an analogue of singular homology with co-
efficients in R. Consider real analogues of complex curves, i.e., real manifolds
whose singular homology groups have the same dimensions over R as the polar
homology groups of complex curves over C. For a curve Z of genus κ its real
analogue is a wedge of κ circles if κ ≥ 1 and a closed interval (i.e., homotopic
to a point) if κ = 0. These manifolds can be drawn as graphs as in Figure 4.3.
We would like to emphasize that CP

1 is a complex analogue of a real interval,
while an elliptic curve E is a complex counterpart of a circle in this precise
sense. We exploited this analogy in the previous chapters.

We also note that the number of trivalent points (i.e., points of nonsmooth-
ness) for such graphs is equal to 2κ − 2. This is exactly the number of zeros
of a holomorphic differential on the curve Z of genus κ. We obtain yet an-
other line in the complexification dictionary we started with: the divisor of
zeros of a holomorphic (or meromorphic) volume form on a complex manifold
correspond to nonsmoothness points of real manifolds.

Remark 4.4 There is a natural pairing between polar chains and smooth
differential forms on a manifold: For a polar k-chain (W,ω) and any (0, k)-
form u this pairing is given by the integral

〈(W,ω) , u〉 =
∫

W

ω ∧ u .

In other words, the polar k-chain (W,ω) defines a de Rham current on X of
degree (n, n− k), where n = dimX.

This pairing descends to (co)homology classes by virtue of the Cauchy–
Stokes formula. Indeed, recall that for a meromorphic k-form ω on W having
first-order poles on a smooth hypersurface V ⊂ W , the Cauchy–Stokes formula
(see Theorem 2.21) states that

∫

W

ω ∧ ∂̄ v = 2πi
∫

V

resω ∧ v ,
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κ = 0

� �

Z is polar smooth (with po-
lar boundary): there exists a
1-form with two simple poles
and without zeros,

dim HP0(Z) = 1 ,

dim HP1(Z) = 0 .

κ = 1

��

��

Z is polar smooth (without
a polar boundary): there ex-
ists a 1-form without zeros
or poles,

dim HP0(Z) = 1 ,

dim HP1(Z) = 1 .

κ > 1
� � �

� � �

�

�

	




� � �

� � � �

�

Z is polar nonsmooth: a
generic holomorphic 1-form
has 2κ − 2 zeros,

dim HP0(Z) = 1 ,

dim HP1(Z) = κ .

Fig. 4.3. The real analogue of a smooth projective curve Z of genus κ.

where v is any smooth (0, k− 1)-form on X. Using the definition of the polar
boundary operator, the latter can be rewritten as

〈(W, ω) , ∂̄v〉 = 〈 ∂(W, ω) , v〉 .

In this way, the Cauchy–Stokes formula defines the pairing between the polar
homology groups of a complex manifold X and the Dolbeault cohomology
groups H0,k

∂̄
(X).

Remark 4.5 One can define polar (k, p)-chains as pairs (A,α), where A ⊂
X is a k-dimensional subvariety and α is a meromorphic p-form on A. The
relation ∂2 = 0 still holds in this more general setup, and one obtains polar
homology groups HPk,p. Above, we have been considering the groups HPk =
HPk,k. Another interesting case is the case p = 0, in which we consider pairs
(A, a), where a ∈ C. Two pairs (A1, a1) and (A2, a2) are equivalent if there
exists a 1-form α on X that has opposite residues on A1 and A2.
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We also note that the intuitive definition of polar homology above has
to be made more precise, since one cannot restrict to the case of smooth
complex submanifolds only: the divisor of poles is already not necessarily
smooth. Instead of considering submanifolds, we will define polar chains as
smooth varieties along with their maps to our manifold. This is similar to
the definition of singular homology in topology, where one considers maps of
abstract simplices into a manifold. We give a formal definition of the polar
homology groups in the next section. Below we recall the construction of the
pushforward of a differential form, which we need for that definition.

Definition 4.6 For a finite covering f : X → Y and a function u on X one
can define its pushforward, or the trace, f∗u as a function on Y whose value at
a point is calculated by summing over the preimages taken with multiplicities.
The operation f∗ can be generalized to p-forms and to the maps f that are
only generically finite.

Suppose that f : X → Y is a proper, surjective holomorphic mapping
where both X and Y are smooth complex manifolds of the same dimension n.
The pushforward map is a mapping

f∗ : Γ (X,Ωp
X) → Γ (Y,Ωp

Y ) .

The pushforward map is also defined for meromorphic forms, f∗ :
Γ (X,Mp) → Γ (Y,Mp).

Its construction is as follows. First note that f is generically finite, i.e.,
there is an analytic hypersurface D ⊂ Y such that f is a finite unramified
covering off this hypersurface D. Hence, for a sufficiently small open neighbor-
hood U of any point in Y ∗ := Y �D, the inverse image f−1(U) = U1�· · ·�Ud

is a disjoint union of d open sets Uj , such that f |Uj
is an isomorphism with

the inverse sj : U → Uj . Given a form ω on X, one defines its pushforward

f∗ ω := s∗1 ω + · · · + s∗d ω

in U , and therefore in Y ∗. One can check that the form f∗ ω extends across
the smooth points of D and hence to the whole of the manifold Y , since the
remaining part of D has codimension at least two. The resulting form f∗ ω
is holomorphic (respectively, meromorphic) on Y provided the form ω was
holomorphic (respectively, meromorphic) on X; see details, e.g., in [149].

Furthermore, the operations of pushforward and residue commute:

Proposition 4.7 Let f : X → Y be a proper surjective holomorphic map
between complex manifolds of the same dimension. Let ω be a meromorphic
form on X with only first-order poles on a smooth hypersurface V ⊂ X.
Suppose that f(V ) is a smooth hypersurface in Y . Then f∗ω has first-order
poles on f(V ), and

res f∗ω = ˜f∗ resω ,

where ˜f : V → f(V ) is the restriction to V of the map f .
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Example 4.8 To visualize how f∗ω extends across the smooth points of D,
consider the following one-dimensional example. Let f : C → C be defined as
f : x �→ y = xm. Then any holomorphic 1-form ω = ψ(x)dx has a holomorphic
pushforward 1-form f∗ω = ϕ(y)dy. Indeed, by definition of the pushforward,
for any y �= 0, we obtain

ϕ(y)dy :=
m
∑

j=1

ψ(xj) dx =
1
m

m
∑

j=1

xjψ(xj)
y

dy ,

where xj are all mth roots of y, and in the last equality we used the relation
dy/y = mdx/x for y = xm. This form ϕ(y)dy is well defined for y �= 0 and we
need to check that ϕ(y) can be extended to y = 0. Expanding ψ into a power
series

ψ(x) =
∑

l≥0

alx
l ,

we obtain

ϕ(y) =
1
my

m
∑

j=1

xjψ(xj) =
1
my

∑

l≥0

al

m
∑

j=1

xl+1
j

=
1
my

∑

k≥1

akm−1(myk) =
∑

k≥1

akm−1y
k−1 ,

where we have used that
∑m

j=1 x
n
j = 0, unless n = km. This power expansion

in y proves that ϕ(y) is holomorphic at 0, and hence over C.

4.2 Polar Homology of Projective Varieties

In this section we deal with complex projective varieties, i.e., closed subva-
rieties of a complex projective space. For a smooth variety X, we denote by
Ωp

X the sheaf of holomorphic p-forms on X.
The space of polar k-chains for a complex projective varietyX of dimension

n is defined as a C-vector space with certain generators and relations.

Definition 4.9 The space of polar k-chains Ck(X) is a vector space over C

defined as the quotient Ck(X) = Ĉk(X)/Rk, where the vector space Ĉk(X) is
freely generated by the triples (A, f, α) described in (i), (ii), (iii) and Rk is
defined as relations (R1), (R2), (R3) imposed on the triples:

(i) A is a smooth complex projective variety, dimA = k;
(ii) f : A → X is a holomorphic map of projective varieties;
(iii) α is a rational k-form on A with first-order poles on V ⊂ A,

where V is a normal crossing divisor in A, i.e., α ∈ Γ (A,Ωk
A(V )).

The relations are:
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(R1) λ(A, f, α) = (A, f, λα) for λ ∈ C .
(R2)

∑

i(Ai, fi, αi) = 0 provided that
∑

i fi∗αi ≡ 0, where dim fi(Ai) = k
for all i and the pushforwards fi∗αi are considered on the smooth
part of ∪ifi(Ai).

(R3) (A, f, α) = 0 if dim f(A) < k.

Remark 4.10 The relation (R3) implies that Ck(X) = 0 for k > dimX. Also
by definition, Ck(X) = 0 for k < 0.

The relation (R2) in particular represents additivity with respect to α,
that is,

(A, f, α1) + (A, f, α2) = (A, f, α1 + α2).

Here we make no distinction between a triple and its equivalence class. In
particular, if the polar divisor div∞(α1 + α2) is not normal crossing, one can
replace A by an appropriate blowup, by the Hironaka theorem, where the
pullback of α1 + α2 already has a normal crossing polar divisor.

In this way, the relation (R2) allows us to deal with polar chains as pairs
replacing a triple (A, f, α) by a pair (Â, α̂), where Â = f(A) ⊂ X, α̂ is defined
only on the smooth part of Â and α̂ = f∗α there. Due to the relation (R2),
such a pair (Â, α̂) carries precisely the same information as (A, f, α). (Note,
however, that such pairs cannot be arbitrary. In fact, by the Hironaka theorem
on resolution of singularities, any subvariety Â ⊂ X can be the image of some
regular A, but the form α̂ on the smooth part of Â cannot be arbitrary.)

(A, α)

(V, resV α)

f

( ̂A, α̂)

X

Fig. 4.4. A polar chain given by the triple (A, f, α) can be thought of as a pair
(Â, α̂). Here V = div∞α.

We also note that the consideration of triples (A, f, α) instead of pairs
(Â, α̂), which we used in the introduction, is similar to the definition of chains
in singular homology theory. Indeed, in topology one considers the mappings
of abstract simplices into the manifold, but one is interested only in the images
of simplices. Here also comes a distinction: in contrast to topological homology,
where in each dimension k one uses all continuous maps of one standard object
(the standard k-simplex or the standard k-cell) to a given topological space,
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in polar homology we deal with complex analytic maps of a large class of
k-dimensional varieties to a given one.

Definition 4.11 The boundary operator ∂ : Ck(X) → Ck−1(X) is defined by

∂(A, f, α) = 2πi
∑

i

(Vi, fi, resVi
α) ,

where Vi are the components of the polar divisor of α, div∞ α = ∪iVi, and
the maps fi = f |Vi

are restrictions of the map f to each component of the
divisor.

Theorem 4.12 ([195]) The boundary operator ∂ is well defined, i.e., it is
compatible with the relations (R1), (R2), and (R3). Furthermore, ∂2 = 0 .

Proof. We have to show that ∂ maps equivalent sums of triples to equivalent
ones. It is trivial with (R1). For (R2) this follows from the commutativity of
taking residue and pushforward.

To prove the compatibility of ∂ with (R3), consider first the case of a
polar 1-chain, a complex curve with a meromorphic 1-form, that is mapped
to a point. Then the image of the boundary of this 1-chain is zero. Indeed,
this image must be the same point whose coefficient is equal to the sum of all
residues of the meromorphic 1-form on the curve, i.e., zero. The general case
is similar: the same phenomenon occurs along one of the coordinates. (We
refer the interested reader to [195] for more details.)

As to the second part of the statement, we need to prove ∂2 = 0 for
triples (A, f, α) ∈ Ck(X), i.e., for forms α with normal crossing divisors
of poles. The repeated residue at pairwise intersections differs by the sign
according to the order of taking the residues; see Remark 2.22. Thus the
contributions to the repeated residue from different components cancel out
(or, equivalently, the residue of a residue is zero). �

Definition 4.13 For a smooth complex n-dimensional projective variety X,
the chain complex

0 → Cn(X) ∂−→ Cn−1(X) ∂−→ · · · ∂−→ C0(X) → 0

is called the polar chain complex of X. Its homology groups, HPk(X), k =
0, . . . , n, are called the polar homology groups of X.

We found in Section 4.1 that the polar homology groups of a complex
projective curve Z of genus κ are HP0(Z) = C and HP1(Z) = C

κ .

Exercise 4.14 Prove that for any n-dimensional X we have HPn(X) =
H0(X,Ωn

X) and, if X is connected, also HP0(X) = C .
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Exercise 4.15 Prove the functoriality of polar homology, i.e., that a regular
morphism of projective varieties h : X → Y defines a homomorphism h∗ :
HPk(X) → HPk(Y ).

After the formal definitions have been given, we would like to show why
the Dolbeault complex of (0, k)-forms should be related to the polar homol-
ogy in the same way as the de Rham complex of smooth forms is related to
the singular homology. First we show how the space of polar chains Ck(X)
for a smooth projective variety X can be viewed as a subspace of currents,
functionals on smooth differential forms on X.

Definition 4.16 A polar k-chain represented by a triple a = (A, f, α) defines
the following linear functional on smooth (0, k)-forms. Its value on a smooth
(0, k)-form u on X is given by the pairing

〈a , u〉 :=
∫

A

α ∧ f∗u . (4.9)

The integral is well defined, since the meromorphic k-form α has only first-
order poles on a normal crossing divisor.

Remark 4.17 It is straightforward to show that the pairing 〈 , 〉 descends to
the space Ck(X) of equivalence classes of triples, i.e., that it is compatible with
the relations (R1), (R2), (R3) of Definition 4.9. Indeed, (R1) is obvious, the
compatibility with (R3) is a consequence of the equality f∗u = 0 if dim f(A) <
k, and the compatibility with (R2) follows from the relation

∫

A
α ∧ f∗u =

∫

f(A)
f∗α∧u if dim f(A) = k, where the last integral is taken over the smooth

part of f(A).

Proposition 4.18 The pairing (4.9) defines the following homomorphism in
(co)homology:

ρ : HPk(X) → Hn,n−k

∂̄
,

where n = dimX.

Proof. By Serre duality, ρ is a map HPk(X) → (H0,k

∂̄
(X))∗, and it is

sufficient to verify that the pairing vanishes if ∂a = 0 and u = ∂̄v, or if
∂̄u = 0 and a = ∂b. This follows immediately from the Cauchy–Stokes formula
(Theorem 2.21):

∫

A

α ∧ f∗(∂̄u) = 2πi
∫

div∞ α

(resα) ∧ f∗(u) ,

that is, 〈a , ∂̄u〉 = 〈∂a , u〉. �

One can prove that for smooth projective manifolds the homomorphism ρ
is in fact an isomorphism:
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Theorem 4.19 (Polar de Rham Theorem, [197]) For a smooth projec-
tive manifold X the map ρ : HPk(X) → Hn,n−k

∂̄
is an isomorphism of the polar

homology and Dolbeault cohomology groups. Equivalently, HPk(X) ∼= H0,k

∂̄
(X)

in terms of dual cohomology groups.

Example 4.20 For a complex curve Z of genus κ one has HP0(Z) ∼= C ∼=
H1,1

∂̄
(Z) and HP1(Z) ∼= C

κ ∼= H1,0

∂̄
(Z).

Remark 4.21 As we mentioned in the introduction, one could consider more
general polar (k, p)-chains (A, f, α), where α is a meromorphic p-form on A
of not necessarily maximal degree, p � k, that can have only logarithmic sin-
gularities on a normal crossing divisor. The requirement of log-singularities is
needed to have a convenient definition of the residue and hence the boundary
operator ∂. The Cauchy–Stokes formula, the property ∂2 = 0, and the def-
inition of the polar homology groups HPk,p(M) can be carried over to this,
more general, situation.

As a consequence, the natural pairing between polar (k, p)-chains and
smooth (k − p, k)-forms on X gives us the homomorphism

ρ : HPk,p(X) → Hn−k+p,n−k

∂̄
(X) .

However, unlike the case p = k, the map ρ is not, in general, an isomorphism
for other values of p, 0 � p < k. For instance, in the case of p = 0, the
image consists of algebraic k-cycles (tensored with C), while the full space
Hn−k,n−k

∂̄
(X) can be much larger. It would be interesting to find an ad-

justment of the groups HPk,p(M) to provide the isomorphism and hence to
obtain a description of the chain complex for the Dolbeault cochains in all
dimensions.

4.3 Polar Intersections and Linkings

We start by defining a polar analogue for the topological intersection number.
Recall that in topology one considers a smooth oriented closed manifoldM and
two oriented closed submanifolds A,B ⊂ M of complementary dimensions,
i.e., dimA + dimB = dimM . Suppose A and B intersect transversally at a
finite number of points. Then to each intersection point P one assigns the
local intersection index equal to ±1 by comparing the mutual orientations of
the tangent vector spaces TPA, TPB, and TPM .

Now let X be a complex compact manifold of dimension n equipped with
a nowhere-vanishing holomorphic n-form µ. Such a pair (X,µ) can be thought
of as a polar analogue of an oriented closed manifold. (Recall that if µ were
nonvanishing and meromorphic with first-order poles, this would be a polar
analogue of an oriented manifold with boundary, while zeros of the n-form µ
could be regarded as a complex analogue of singularities of a real manifold.)
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Note that the existence of such a form requires the canonical bundle of the
complex manifold X to be trivial, i.e., X can be a Calabi–Yau manifold, an
abelian one, or a product of such.

Definition 4.22 Consider two polar cycles (A,α) and (B, β) of complemen-
tary dimensions that intersect transversally in the polar oriented complex
manifold (X,µ). The polar intersection number of the cycles (A,α) and (B, β)
is given by the following sum over the set of points in A ∩B:

(A,α) · (B, β) =
∑

P∈A∩B

α(P ) ∧ β(P )
µ(P )

.

Here α(P ) and β(P ) are understood as exterior forms on TPM = TPA×TPB
obtained by the pullback from the corresponding factors.

Remark 4.23 At every intersection point P , the ratio in the right-hand side
can be regarded as the comparison of the polar orientations of the cycles at
that point with the orientation of the ambient manifold. Note that in the
polar case, the intersection number does not have to be an integer. Rather, it
should be viewed as a function of the “parameters” (A,α), (B, β), and (X,µ).

Remark 4.24 Essentially the same formula defines the intersection product
of transversal polar cycles when they intersect over a manifold of positive
dimension. Namely, for polar cycles (A,α) and (B, β) of dimensions p and q
such that p+ q ≥ n and transversal to each other, their intersection is a polar
(p+q−n)-cycle (C, γ) := (A,α) ·(B, β), where C = A∩B and γ := (α ∧ β)/µ.
In this way, one obtains the map

HPp(M) ⊗ HPq(M) → HPp+q−n(M) ,

upon finding smooth transverse representatives for every pair of homology
classes. This map is well defined, as follows from the polar de Rham theorem;
see [194] for more details.

Exercise 4.25 Check that the (p+ q− n)-form γ = (α ∧ β)/µ is indeed well
defined on the complex manifold C. (Hint: this is a problem in linear algebra.)

A similar construction allows one to define a polar analogue of a linking
number. Recall that the Gauss linking number of two oriented closed curves
in R

3 is an integer topological invariant equal to the algebraic number of
crossings of one curve with a two-dimensional oriented surface bounded by
the other curve; see Section 3.4. The linking number is a homology invariant
in the following sense: it does not change if one of the curves is replaced
by a homologically equivalent cycle in the complement to the other curve.
More generally, the linking number can be defined for two oriented closed
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submanifolds of linking dimensions in any oriented (but not necessarily simply
connected) manifold, provided that both submanifolds are homologous to zero.

To define the polar linking number we will “translate” the classical def-
inition into the polar language. Let (A,α) and (B, β) be two polar smooth
nonintersecting cycles of dimensions p and q in a polar oriented closed n-
manifold (M,µ). Suppose that these cycles are polar boundaries (i.e., they
are polar homologous to 0) and are of linking dimensions: p+ q = n− 1.

Definition 4.26 The polar linking number of cycles (A,α) and (B, β) in
(M,µ) is

lkpol ((A,α), (B, β)) :=
∑

P∈A∩S

α(P ) ∧ σ(P )
µ(P )

,

where a chain (S, σ) has the polar boundary (B, β) = ∂(S, σ). In other words,
lkpol ((A,α), (B, β)) is the intersection of the polar cycle (A,α) and the polar
chain (S, σ), provided they intersect transversely.

Theorem 4.27 ([195, 196]) The polar linking number lkpol((A,α), (B, β))
is

(i) well defined, i.e., lkpol does not depend on the choice of the polar chain
(S, σ), provided that ∂(S, σ) = (B, β);

(ii) (anti-)symmetric:

lkpol ((A,α), (B, β)) = (−1)(n−p)(n−q) lkpol ((B, β), (A,α)) ;

(iii) invariant when (A,α) is replaced by a cycle (A′, α′) polar homologous
to (A,α) in the complement of B ⊂ X.

Remark 4.28 In particular, for p = q = 1 we have defined a polar linking of
complex curves in a complex threefold, all equipped with volume forms. The
polar linking number is symmetric in this dimension. The simplest curves
that can have nontrivial linking are elliptic curves: the linking number of a
rational curve with any other curve is zero, since any holomorphic differential
on a rational curve must vanish.

Exactly this polar linking number of complex curves appears from the
holomorphic abelian Chern–Simons path integral, in the same way as the usual
linking number comes out of the topological Chern–Simons path integral (see
Section 3.4 and [134, 195, 366]).

The polar linking number is also closely related to the Weil pairing of func-
tions on a complex curve and to the Parshin symbols, the higher-dimensional
generalizations of the latter; see [309]. One intriguing open question in the
area is to find a polar analogue of the self-linking number of a framed knot.
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4.4 Polar Homology for Affine Curves

So far, we have studied polar homology of projective varieties, which play the
role of compact manifolds in usual topology. It is natural to expect that the
role of noncompact manifolds should be played by quasi-projective varieties,
i.e., Zariski open subsets in projective varieties. In this section, following [195],
we indicate how the polar homology theory can be extended to affine curves,
one-dimensional quasi-projective varieties.

Let X be an affine curve and let X̄ be its projective closure, i.e., X is
Zariski open in X̄. Denote by D := X̄ � X the compactification divisor. We
shall define the polar chains for the quasi-projective variety X as a certain
subset of polar chains for X̄.

Definition 4.29 The space Ck(X) of polar k-chains in X is defined as the
subspace in Ck(X̄) such that the corresponding k-forms vanish on D:

Ck(X) = {(A, f, α) ∈ Ck(X̄) | α(x) = 0 for all x ∈ f−1(D) ⊂ A} .

In particular, for an affine curve X the space C0(X) of polar 0-chains is
the vector space formed by complex linear combinations of points in X, while
for C1(X) we consider smooth projective curves A and logarithmic 1-forms α
that vanish at f−1(D) ⊂ A.

Definition / Proposition 4.30 For the affine curve X the spaces
Ck(X), k = 0, 1, form a subcomplex in the polar chain complex (C•(X̄), ∂),
which depends only on X and not on the choice of its compactification, the
projective curve X̄.

The resulting homology groups of the chain complex (C•(X), ∂) are denoted,
as before, by HPk(X) and are called polar homology groups of X.

Example 4.31 Consider the case X = X̄ \ {P} of a smooth projective curve
of genus κ with one point removed. Then dim HP1(X) = κ − 1 if κ ≥ 1
and dim HP1(X) = 0 if κ = 0. Indeed, the space HP1(X) is the space of
holomorphic 1-forms on X̄ that vanish at P .

To calculate HP0(X) in the case κ ≥ 1 it is sufficient to notice that for any
two points Q1, Q2 ∈ X̄ \ {P}, the 0-cycle (Q1, q1) + (Q2, q2) is homologically
equivalent to zero if and only if q1 + q2 = 0 (the same condition as in the
case of a nonpunctured curve, which we discussed in the introduction). In the
case of κ = 0 an analogous statement requires three points to be involved
(unlike the case of a nonpunctured projective line): the corresponding 1-form
on CP

1 has to have at least one zero, and hence at least three poles. Hence
dim HP0(X) = 1 if κ ≥ 1 and dim HP0(X) = 2 if κ = 0.

We collect the results about the curves in Figure 4.5, where we depict
the complex curves by graphs such that polar homology groups of the curves
coincide with singular homology groups of the corresponding graphs.
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This way the divisor of zeros of a meromorphic form becomes a counter-
part of punctures (or infinity) in an open real manifold. (Recall that in the
introduction we also observed that the divisor of zeros can also stand for the
points of nonsmoothness. These two points of view are consistent, since one
can “puncture” a closed singular real variety at its singularities and make it
smooth, but open.)

κ = 0

� �

dim HP0(X) = 2 ,

dim HP1(X) = 0 .

κ = 1

dim HP0(X) = 1 ,

dim HP1(X) = 0 .

κ > 1
� � �

� � �

�

�

	




� � �

� � � �

�

dim HP0(X) = 1 ,

dim HP1(X) = κ − 1 .

Fig. 4.5. A smooth projective curve with one point removed, X = X̄ � {P}.

Example 4.32 In a similar way, one can deal with the case X = X̄ � {P,Q}
of a smooth projective curve with two points removed. We summarize the
results in Figure 4.6. Here, one has to distinguish between the case of generic
points P and Q and the case that P +Q is a special divisor. In the latter case
there exist more 1-differentials with zeros at P,Q than generically.

The consistency of the definitions of polar homology in the projective and
quasi-projective cases is provided by the following Mayer–Vietoris sequence:
the corresponding groups behave like ordinary homology groups with respect
to taking unions of Zariski open subsets in the curve X̄.

Theorem 4.33 Let a complex curve X = U1 ∪ U2 (either affine or projec-
tive) be the union of two Zariski open subsets U1 and U2 . Then the following
Mayer–Vietoris sequence of chains is exact:

0 → Ck(U1 ∩ U2)
i−→ Ck(U1) ⊕ Ck(U2)

σ−→ Ck(X) → 0.
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κ = 0

κ = 1

κ > 1 ,

P, Q are generic

κ > 1 ,

P + Q is special

� �

� � �

� � �

�

�

	




� � �

� � � �

�

� � �

� � �

�

�

	




� � �

� � � �

�

dim HP0(X) = 3 ,

dim HP1(X) = 0 .

dim HP0(X) = 2 ,

dim HP1(X) = 0 .

dim HP0(X) = 1 ,

dim HP1(X) = κ − 2 .

dim HP0(X) = 2 ,

dim HP1(X) = κ − 1 .

Fig. 4.6. A smooth projective curve with two points removed, Z � {P, Q}.

Here the map σ represents the sum of chains,

σ : a⊕ b �→ a+ b,

and the map i is the embedding of the chain lying in the intersection U1 ∩ U2

as a chain in each subset U1 and U2 :

i : c �→ (c) ⊕ (−c).

This implies the following exact Mayer–Vietoris sequence in polar homology:

· · · → HPk(U1 ∩ U2)
i−→ HPk(U1) ⊕ HPk(U2)
σ−→ HPk(X) → HPk−1(U1 ∩ U2) → · · ·

Some of the properties of polar homology discussed above can be gener-
alized from affine curves to higher-dimensional quasi-projective varieties, cf.
[195], but most of the main features of the theory remain widely open problems
in the general case.

4.5 Bibliographical Notes

In our exposition we follow the papers [195, 196]. The de Rham-type theorem
for polar homology was proved in [197]. Related results on complex analogues
of intersection and linking numbers can be found in [134] and [85], while the
paper [26] was a motivation for considering the holomorphic linkings of this
type.
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The definition of polar chains and the boundary operator has similar fea-
tures with Abel’s theorem [149] and with Ishida’s complexes for toric varieties
[296].

For a thorough treatment of logarithmic forms see [78], while for multidi-
mensional residues we refer the reader to the detailed monograph [369]; see
also [150].

The term “polar homology” was coined in [195], and it originated from
consideration of polar divisors of differential forms. One may think that the
launch of the Antarctica Journal of Mathematics in 2004, soon after the ap-
pearance of the polar theory, was not a simple coincidence.



Appendices

A.1 Root Systems

1.1 Finite Root Systems

Let V be a finite-dimensional real vector space and let ( , ) be a positive
definite symmetric bilinear form on V . For an element α ∈ V we denote by
rα the reflection in the hyperplane orthogonal to α:

rα(β) = β − 2(β, α)
(α, α)

α

for any point β ∈ V .

Definition 1.1 A subset R of V is called a (finite) root system if the following
axioms are satisfied:

(R1a) The set R is finite and it spans the vector space V .
(R1b) 0 �∈ R .
(R2) For any α ∈ R the reflection rα maps the set R to itself.
(R3) If α, β ∈ R, then 2(β, α)/(α, α) ∈ Z.
(R4) If α ∈ R, then 2α �∈ R.14

The elements of a root system R are called roots. Two root systems R and R′

are called isomorphic if there exists an isomorphism ϕ of the corresponding
vector spaces V and V ′ mapping R to R′ and such that

(ϕ(β), ϕ(α))/(ϕ(α), ϕ(α)) = (β, α)/(α, α)

for all α , β ∈ R.
14 Sometimes this is called a reduced root system, as opposed to a nonreduced one,

for which the axiom (R4) is dropped.
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Definition 1.2 A root system R is called irreducible if it cannot be decom-
posed into two nonempty subsets R1 and R2 such that R1 is orthogonal to
R2 and R = R1 ∪R2.

Axioms (R2) and (R3) restrict the relative lengths of and the angles be-
tween the roots. For example, in an irreducible root system, only roots of
two different lengths can occur, and they are called the short and long roots
respectively. Irreducible root systems can be classified. There are four infinite
series (the root systems of types An, Bn, Cn, Dn) and five exceptional root
systems (the root systems of types E6, E7, E8, F4, and G2). Here the index
denotes the dimension of the ambient vector space V . Figure 1.1 shows all
two-dimensional root systems (note that the root system of type A1×A1 is
not irreducible).

B2
∼=C2A1×A1 A2 G2

Fig. 1.1. The two-dimensional root systems.

Definition 1.3 Let R ⊂ V be a root system. The subgroup W ⊂ GL(V )
generated by the reflections rα for all α ∈ R is called the Weyl group of the
root system R.

Definition 1.4 A subset Π ⊂ R of a root system R ⊂ V is called a basis of
R if Π is a basis of the vector space V and if every element β ∈ R can be
expressed as β =

∑

α∈Π mαα such that either all mα are nonnegative integers
or all mα are nonpositive integers.

Proposition 1.5 Every root system has a basis. For a given root system R,
the Weyl group of R permutes the set of all bases of R.

After having fixed a basis Π of the root system R, we can decompose R into
R = R+ ∪R−, where R+ = {β ∈ R |β =

∑

α∈Π mαα with mα ≥ 0} is the set
of positive roots of R and R− = −R+ is the set of negative roots of R.

Example 1.6 Let V = {x = (x1, . . . , xn+1) ∈ R
n+1 |x1 + · · · + xn+1 = 0}

with the inner product induced from the standard inner product on R
n+1.

Then the set
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R = {x ∈ Z
n+1 |x ∈ V and (x, x) = 2}

is a root system of type An. The Weyl group of this root system is given by
the symmetric group Sn+1, which acts on the entries of the vectors in V by
permutation. A basis of R is given by the set Π = {e1−e2, e2−e3, . . . , en−1−
en}, where the vector ei = (0, . . . , 0, 1, 0, . . . , 0) has 1 at the ith entry and 0’s
everywhere else.

1.2 Semisimple Complex Lie Algebras

Here we shall briefly indicate how the finite root systems appear in the theory
of semisimple Lie algebras.

Definition 1.7 A nonabelian Lie algebra g is called simple if it does not
have any nonzero ideals other than g itself. A finite-dimensional semisimple
Lie algebra g is a direct sum of nonabelian simple Lie algebras; cf. Definition
I.1.31.

Let g be a complex finite-dimensional semisimple Lie algebra, and let h ⊂ g

be its Cartan subalgebra, that is, a maximal abelian subalgebra all of whose
elements are diagonalizable by the adjoint action. Such subalgebras exist for
dimensional reasons. Since the elements of h commute, one can diagonalize
their adjoint action on g simultaneously. The latter allows one to write

g =
⊕

α∈h∗

gα (1.10)

with
gα = {X ∈ g | [H,X] = α(H)X for all H ∈ h} .

One can show that g0 = h and that for α �= 0, each nonzero gα is one-
dimensional. The set R of all α ∈ h∗ with α �= 0 and gα �= {0} is called the
root system of the Lie algebra g. Hence, decomposition (1.10) is, in fact, as
follows:

g = h ⊕
⊕

α∈R

gα . (1.11)

It is called the root space decomposition of the semisimple Lie algebra g.

Example 1.8 For the Lie algebra sl(2,C) the root space decomposition is as
follows:

sl(2,C) = 〈e〉 ⊕ 〈h〉 ⊕ 〈f〉.
Here the Cartan subalgebra h = 〈h〉 is one-dimensional, and the two roots
corresponding to the subspaces 〈e〉 and 〈f〉 are opposite in sign: [h, e] = 2h =
−[h, f ] and [e, f ] = h.
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It turns out that the root system R is a finite root system in the sense of
Definition 1.1. Furthermore, the root system R of the Lie algebra g determines
the semisimple Lie algebra g up to an isomorphism: given a root system R,
one can construct a finite-dimensional complex semisimple Lie algebra g with
this root system. Finally, the Lie algebra g is simple exactly if its root system
is irreducible. So there is a one-to-one correspondence between complex finite-
dimensional simple Lie algebras and irreducible root systems of types An, Bn,
Cn, Dn, E6, E7, E8, F4, and G2.

Example 1.9 Consider the Lie algebra g = sl(n+ 1,C) with the Cartan
subalgebra of diagonal matrices. For i �= j we define αij ∈ h∗ by
αij(diag(q1, . . . , qn)) = qi − qj . Furthermore, let gαij

denote the subspace
spanned by the matrix with 1 at the (i, j)th entry and 0’s everywhere else.
Then the root space decomposition of the Lie algebra sl(n+ 1,C) is given by

sl(n+ 1,C) = h ⊕
⊕

αij∈R

gαij
,

where the root system R is of type An.
The root system of type Bn corresponds to the Lie algebra so(2n+ 1,C),

the root system Cn is related to the Lie algebra sp(2n,C), while Dn corre-
sponds to the algebra so(2n,C).

1.3 Affine and Elliptic Root Systems

Let V be a real finite-dimensional vector space with a positive semidefinite
symmetric bilinear form ( , ) and let α ∈ V be a vector for which (α, α) �= 0.
Similarly to the positive definite case, the reflection rα can be defined via

rα(β) := β − 2(α, β)
(α, α)

α .

Definition 1.10 A subset R ⊂ V is called an extended root system if R
satisfies the following axioms:

(ER1a) The additive subgroup Q(R) =
∑

α∈R Zα is a full lattice in V .
(ER1b) (α, α) �= 0 for all α ∈ R .
(ER2) For any α ∈ R the reflection rα maps the set R to itself.
(ER3) If α, β ∈ R, then 2(β, α)/(α, α) ∈ Z.
(ER4) If α ∈ R, then 2α �∈ R.

An extended root system R is called irreducible if it cannot be decomposed
into two nonempty subsets R1 and R2 such that (R1, R2) = 0.

Axiom (ER1) means that the set Q(R) is the Z-span of an R-basis of V ,
being an analogue of axiom (R1). For finite root systems, the fact that the
set Q(R) is a lattice in V is Proposition 1.5. Note, however, that unless the
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bilinear form on V is positive definite, the extended affine root systems are
never finite.

Let R be an extended root system. The dimension of the radical

V0 = {v ∈ V | (v, w) = 0 for all w ∈ V }

is called the nullity of the root system R. It turns out that the extended root
systems of nullity 0 are exactly the finite root systems. Other extended root
systems playing a role in this book are those of nullity 1 and 2.

Definition 1.11 An irreducible extended root system of nullity 1 is called an
affine root system. An extended root system of nullity 2 is called an elliptic
root system.

Remark 1.12 We note that no isotropic roots are allowed in R. Our defini-
tion of extended root systems is taken from [334]. In the literature there exists
another definition for extended root systems that includes isotropic roots (see,
e.g., [8]), which is shown to be equivalent to the one above; see [30].

The Weyl groups for affine and elliptic root systems are defined in the
same way as the Weyl groups for finite root systems.

Taking the quotient of an affine root system by the radical of the bilinear
form gives a (possibly nonreduced) finite root system. Hence, one can attempt
to classify affine root systems in terms of the underlying finite root systems.
The full list of irreducible affine root systems up to isomorphism is A(1)

n , B(1)
n ,

C(1)
n , D(1)

n , E(1)
6 , E(1)

7 , E(1)
8 , F(1)

4 , G(1)
2 , A(2)

2n+1, A(2)
2n , D(2)

n , E(2)
6 , E(2)

7 , D(3)
4 . (Here,

the notation for the root systems is the same as in [178].) The root systems of
type X(1)

n are called untwisted affine root systems; the systems of type X
(r)
n

with r > 1 are called twisted affine root systems.

Example 1.13 The untwisted affine root systems can be easily constructed
from the corresponding finite root systems: Let R ⊂ V be a finite root system
of type Xn (for example, the root system of type An from Example 1.6).
Extend the bilinear form ( , ) trivially from V to the space ˜V = V ⊕R. Then
the set

˜R = {(α, n) ∈ ˜V |α ∈ R and n ∈ Z}

is an affine root system of type X(1)
n . The construction of the twisted affine

root systems is more complicated (see, e.g., [178]).

In the theory of loop groups and affine Lie algebras, the affine root systems
play a role similar to that of the finite root systems in the theory of compact
Lie groups and semisimple Lie algebras.
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Example 1.14 Let g be the Lie algebra sl(n+ 1,C) and let h ⊂ g denote the
Cartan subalgebra of diagonal matrices. Consider the corresponding affine Lie
algebra ˜Lg (or, rather, (˜Lg)pol) whose underlying vector space is given by

˜Lg = g ⊗ C[z, z−1] ⊕ Cω ⊕ Cd ;

cf. Remark II.1.14. The Lie bracket on ˜Lg is given by

[ω,X(z)] = [ω, d] = 0, [d,X(z)] = z
d

dz
X(z),

and

[X(z), Y (z)] = [X,Y ](z) +
1

2πi

(

∫

|z|=1

〈

X(z),
d

dz
Y (z)

〉

dz

)

· ω .

Here [X,Y ](z) denotes the pointwise commutator of X and Y , and 〈 , 〉 is the
normalized Killing form on g. Now set ˜h := h⊕Cω⊕Cd and choose an element
δ ∈ (h⊕Cω⊕Cd)∗ dual to the basis element d, i.e., such that δ(d) = 1, δ(ω) =
0 and δ(X) = 0 for all X ∈ h. Then the set ˜R = {α+mδ | α ∈ R, m ∈ Z} is
an affine root system of type A(1)

n for the Lie algebra ˜Lg. In order to write out
a root space decomposition for this Lie algebra ˜Lg, it is convenient to use the
notion of an extended root system that includes isotropic roots; see details in
[178, 8].

Remark 1.15 The elliptic root systems can be classified in a way similar to
affine root systems in terms of the underlying finite root systems (see [8], [334])
and they play a similar role in the theory of double loop algebras (elliptic or
extended affine algebras) and double loop groups. Namely, consider the space
˜

˜V := V ⊕ R ⊕ R with the bilinear form ( , ) extended trivially and a finite
root system R ⊂ V . Then the set

˜

˜R = {(α, n,m) ∈ ˜

˜V |α ∈ R and n,m ∈ Z}

is an elliptic root system, usually denoted by X(1,1)
n .

Exercise 1.16 Find a root space decomposition of the sl(2,C)-elliptic Lie
algebra introduced in Definition II.5.1 of Chapter II.

1.4 Root Systems and Calogero–Moser Hamiltonians

In Section II.5.4 we considered a system of n interacting particles moving on
the real line and governed by the Hamiltonian function

H(q1, . . . , qn, p1, . . . , pn) =
1
2

n
∑

i=1

p2
i +

∑

i>j

U(qi − qj) , (1.12)
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where the coordinates qi denote the positions of the particles and pi denote
their momenta. We looked at the potentials of the form U(ξ) = 1/ξ2 (the
rational potential), U(ξ) = 1/ sin2 ξ or U(ξ) = 1/ sinh2 ξ (the trigonomet-
ric/hyperbolic potential), and, finally, the elliptic potentials U(ξ) = ℘(ξ; τ),
where ℘( . , τ) denotes the Weierstrass ℘-function with the periods 1 and τ .

It has been observed in [298] that the Hamiltonian (1.12) can be general-
ized to the Hamiltonian

H(q, p) =
1
2
(p, p) +

1
2

∑

α∈R

m|α|U(α(q)) , (1.13)

where R ⊂ V is any finite root system in the vector space V with inner
product ( , ), and m|α| is a constant that depends only on the length of the
root α. The momentum vector p is an element of the vector space V , and the
position q is an element of the dual space V ∗. The Hamiltonian systems (1.13)
are integrable for any finite irreducible root system R [298, 50].

Here we would like to stress the fact that the three types of Hamiltonians
(rational, trigonometric, and elliptic) are naturally related to the three types
of root systems (finite, affine, and elliptic) considered in this section. Indeed,
consider, for instance, the elliptic case. Let R ⊂ V be an elliptic root system,
and let V ∗ denote the dual space of the finite-dimensional vector space V . The
radical V0 of the bilinear form ( , ) has dimV0 = 2 in the elliptic case. Upon
choosing a decomposition V ∗ = h ⊕ V ∗

0 one can denote elements of the space
V ∗ by triples (q, a, b), where q ∈ h and (a, b) ∈ V ∗

0 . Now we can write down
the potential on h corresponding to the elliptic root system R as follows:

U(q) =
1
2

∑

α∈R

(

1
(α(q, 1, τ))2

− 1
(α(0, 1, τ))2

)

(1.14)

for some fixed τ ∈ C with Im τ > 0. Note that for the root system of type
A

(1,1)
n−1 from Example 1.15, the potential U defined by the expression (1.14) can

be rewritten via the Weierstrass ℘-function and coincides with the potential
of the standard elliptic Calogero–Moser system. Using the classification of
irreducible elliptic root systems, one shows that the potential (1.14) defines a
holomorphic function on the complexified vector space h ⊗ C. It is known for
many elliptic root systems (and, apparently, is the case for all of them) that
the corresponding Hamiltonian systems are integrable [51].

Exercise 1.17 Write down the potential U for the affine root system A
(1)
n−1

and verify that it coincides with the potential of the trigonometric Calogero–
Moser system.

More facts on root systems can be found in [56] and [168]. The latter is
also a good reference for finite-dimensional semisimple complex Lie algebras.
For the affine root systems and Lie algebras we refer the reader to [178], while
the extended root systems of higher nullity (and, in particular, the elliptic
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ones), along with the corresponding Lie algebras, have been studied in [8] and
[334].



A.2. Compact Lie Groups 221

A.2 Compact Lie Groups

In this appendix we recall some basic facts from the theory of compact Lie
groups (see, e.g., [60] for more details and references). Throughout this section,
G denotes a finite-dimensional compact connected Lie group with the Lie
algebra g. The compact Lie groups that are abelian are the easiest ones to
describe. Indeed, any n-dimensional compact connected abelian Lie group is
isomorphic to the torus T = R

n/Zn. The other extreme is formed by simple
Lie groups.

2.1 The Structure of Compact Groups

Definition 2.1 A compact connected Lie group G is called semisimple if its
center is finite. The group G (of dim > 1) is called simple if it does not have
any nontrivial normal connected subgroups.

Recall that any Lie group G acts on its Lie algebra by the adjoint repre-
sentation. If the group G is compact there exists a negative definite invariant
symmetric bilinear form on the Lie algebra g. This form is, in general, not
unique.

Definition / Proposition 2.2 If the compact Lie group G is simple, there
exists a unique (up to a scalar factor) symmetric and negative definite invari-
ant bilinear form on its Lie algebra g, called the Killing form.

Remark 2.3 For a finite-dimensional Lie algebra g, the Killing form is de-
fined as 〈X,Y 〉 := tr(adX ◦ adY ). The Cartan criterion states that the Killing
form is nondegenerate exactly when the Lie algebra g is semisimple. If g is
simple then any invariant symmetric bilinear form on g is a scalar multiple of
the Killing form. Furthermore, the Lie algebra g corresponds to a compact Lie
group exactly if the Killing form 〈X,Y 〉 := tr(adX ◦ adY ) is negative definite.
For matrix Lie algebras this form is a multiple of the trace form tr(XY ). For
most purposes in this book we use the trace version of the form. Often it is
convenient to change the sign and think of the positive definite Killing form
(see, for example, the discussion of roots in Appendix A.1, where the Killing
form is used to measure length of the roots).

Example 2.4 The group SU(n) is simple. Its center is isomorphic to the
cyclic group Z/nZ. The Killing form 〈X,Y 〉 := tr(adX ◦ adY ) on the Lie
algebra su(n) is given by the trace: 〈X,Y 〉 = − tr(XY ).

The importance of simple compact groups is clear from the following struc-
ture theorem.
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Theorem 2.5 Let G be a compact connected Lie group. Then G is isomorphic
to an “almost direct product”

G ∼= (G1 × · · · ×Gk × T ) /Z ,

where the Gi are simply connected simple Lie groups, T is a compact connected
abelian Lie group (i.e., a torus), and Z is a finite subgroup of the center of
G1 × · · · × Gk × T . In particular, every simply connected compact Lie group
is a direct product of simply connected simple Lie groups.

An important role in the theory of compact Lie groups is played by certain
abelian subgroups: a maximal torus of the compact connected Lie group G is
a maximal connected abelian subgroup T ⊂ G. For dimensional reasons, max-
imal tori exist. Furthermore, one can show that every element of a compact
connected Lie group G is contained in some maximal torus of G.

Theorem 2.6 Any two maximal tori of a compact connected Lie group G are
conjugate in G. In particular, every element of the group G is conjugate to an
element inside a fixed maximal torus T ⊂ G.

The exponential map for compact tori is surjective. Together with Theorem
2.6 this observation implies the following corollary.

Corollary 2.7 For any compact connected Lie group G the exponential map
exp : g → G is surjective.

Definition / Proposition 2.8 Let T ⊂ G be a maximal torus, and denote
by N(T ) its normalizer in G, i.e., the elements of G that conjugate T to itself.
Then the group W (T ) = N(T )/T is a finite group, called the Weyl group of
G with respect to T .

Theorem 2.9 Let T ⊂ G be a maximal torus of G. Then two elements t, t′ ∈
T are conjugate under G if and only if they are conjugate under W (T ). In
particular, the set of conjugacy classes of a compact connected Lie group G
can be identified with the set T/W (T ).

The quotient T/W (T ) is called the fundamental alcove of the group G.

Example 2.10 A maximal torus T of the group G = SU(n) is given by the
set of diagonal matrices. So in this case, Theorem 2.6 is merely a reformulation
of the fact that every element of the group SU(n) is diagonalizable. The Weyl
group W (T ) of SU(n) is isomorphic to the symmetric group Sn, which acts
on the torus T by permuting the elements on the diagonal. Thus, defining
t := diag(e2πia1 , . . . , e2πian), we can identify the set of conjugacy classes T/Sn

with the set {(a1, . . . , an) ∈ R
n | a1 ≥ · · · ≥ an,

∑

ai = 0 and a1 − an ≤ 1}.
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Our next goal is to describe the fundamental group of the compact Lie
group G. In view of Theorem 2.5, it is enough to consider the case of a semi-
simple group G. First we sidestep slightly and introduce the root lattice of G.
Let us fix a maximal torus T ⊂ G, and denote its Lie algebra by h; cf. Appen-
dix A.1. (The latter is called a Cartan subalgebra of the Lie algebra g.) Recall
that the group G acts on its Lie algebra g and hence on the complexification
g ⊗ C by the adjoint action. Since the maximal torus T ⊂ G is an abelian
group, we can simultaneously diagonalize its action on the complexified Lie
algebra g ⊗ C. This allows one to decompose the vector space g ⊗ C into

g ⊗ C =
⊕

α∈h∗

gα ,

where gα denotes the space

gα = {X ∈ g ⊗ C | [H,X] = α(H)X for all H ∈ h} .

Here the nonzero elements 0 �= α ∈ h∗ of the dual Cartan subalgebra h for
which gα �= {0} are called the roots of the Lie algebra g (or of the correspond-
ing Lie group G). We denote the set of roots of the group G by R. The set R
spans a subspace of the dual space h∗.

Example 2.11 The compact group G = SU(2) has the Lie algebra of skew-
Hermitian matrices g = su(2). The complexification of the latter is the Lie
algebra g ⊗ C = sl(2,C) with the decomposition sl(2,C) = 〈e〉 ⊕ 〈h〉 ⊕ 〈f〉. It
has two opposite roots; see Example A.1.8.

Proposition 2.12 If the group G is semisimple, the set R spans the whole
of the Cartan dual h∗, and R is a finite root system in the sense of Definition
A.1.1. Furthermore, in this case, the Weyl group W (T ) is isomorphic to the
Weyl group of the root system R.

Consider the roots of a semisimple group G, which span the space h∗.
Denote by Q∨ ⊂ h the co-root lattice, i.e., the set

Q∨ = {β ∈ h | 〈β, α〉 ∈ Z for all α ∈ R} .

Furthermore, let I ⊂ h denote the kernel of the exponential map exp : h → T .
This is a lattice in the vector space h. The co-root lattice Q∨ is a subset of
the lattice I, and we have the following theorem.

Theorem 2.13 Suppose the compact Lie group G is semisimple. Then the
fundamental group π1(G) is isomorphic to I/Q∨.

Theorem 2.14 (Hopf) The de Rham cohomology H∗(G,R) of a compact
semisimple Lie group G is isomorphic to the de Rham cohomology of a product
of odd-dimensional spheres. In particular, if the group G is simple we have
H2(G,R) = 0 and H3(G,R) = R.
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Note also that for a simply connected Lie group G we always have
H1(G,R) = 0.

Remark 2.15 The de Rham cohomology of the compact Lie group G is iso-
morphic to the Lie algebra cohomology of the Lie algebra g with values in the
trivial module. Actually, the Lie algebra cohomology can be defined as the
cohomology of the complex of left-invariant differential forms on the corre-
sponding group G. Note that cohomology classes of the compact group G can
be represented by left-invariant forms by averaging over the group any closed
form from a given cohomology class. We note also that any finite-dimensional
Lie group can be contracted to (and consequently it has the same cohomology
as) its maximal compact subgroup.

2.2 A Cohomology Generator for a Simple Compact Group

In Section II.1.3, the cohomology space H3(G,Z) for a simple compact Lie
group G played an important role. We used an explicit form of the generator
of H3(G,Z), which we recall below.

Proposition 2.16 Suppose G is a simple compact simply connected Lie
group. Then the integral cohomology H3(G,Z) is generated by the following
left-invariant closed 3-form η:

η =
1

24π2
tr(g−1dg)∧3 .

Proof. We use the fact that H3(G,Z) is generated by embeddings of SU(2)
into G corresponding to the roots of G (see, e.g., [52]). Furthermore, for the
long roots, the Killing form of G restricts to the Killing form on SU(2), so
it suffices to prove the proposition for SU(2). The generator of H3(SU(2),Z)
is given by the group SU(2) itself. Hence we just have to integrate the form
η over SU(2) and verify that the result is equal to 1. Let us parametrize the
group SU(2) by matrices

(

a b
−b̄ ā

)

with
a = cos θ · eiφ and b = sin θ · eiψ ,

where the parameters φ, ψ assume values in [0, 2π), and θ assumes values
in [0, π/2]. Then a (lengthy) calculation shows that in these coordinates, the
3-form η becomes

η =
1

4π2
sin(2θ)dθ ∧ dφ ∧ dψ .

Integrating this over the range of our coordinates, we obtain
∫

SU(2)
η = 1 . �
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A.3 Krichever–Novikov Algebras

The Krichever–Novikov algebras are infinite-dimensional Lie algebras gener-
alizing the Virasoro algebra and affine Lie algebras to higher-genus Riemann
surfaces. The coadjoint orbits of the affine Krichever–Novikov algebras are
related to holomorphic vector bundles on Riemann surfaces and have a de-
scription somewhat similar to the coadjoint orbits of the elliptic Lie groups
from Section II.5.2. The place of the Krichever–Novikov algebras among other
algebras discussed above is shown in the table at the end of this appendix.
In a sense, they provide an (almost) graded version of affine and Virasoro
algebras on graphs in the same way as the affine/Virasoro algebras on C

∗ are
graded versions of the corresponding algebras on S1.

3.1 Holomorphic Vector Fields on C
∗ and the Virasoro Algebra

To get started, recall the graded version of the definition of the Virasoro
algebra, which is the universal central extension of the Lie algebra of vector
fields on the circle. We restrict our attention to the algebra Vectpol(S1) of
polynomial vector fields on S1, which form a dense subset in the space of all
smooth vector fields on S1. A basis of this space is given by the set {Ln =
ieinθ d

dθ}n∈Z with the commutation relations

[Ln, Lm] = (m− n)Ln+m .

This shows that the Lie algebra of polynomial vector fields on the circle is a
Z-graded Lie algebra, i.e., it admits a decomposition

Vectpol =
⊕

n∈Z

Vn with [Vn, Vm] ⊂ Vn+m .

Furthermore, its unique central extension is given by the Gelfand–Fuchs 2-
cocycle

ω

(

f
d

dθ
, g

d

dθ

)

=
1

2πi

∫

S1
f ′(θ)g′′(θ)dθ ;

see Section II.2.1. In the basis Ln the cocycle ω reads

ω(Ln, Lm) = δn,−mn
3 .

Identify the Lie algebra Vectpol(S1) with the Lie algebra L of holomorphic
vector fields on C

∗ that have at most finite-order poles at 0 and ∞. A standard
basis for the latter Lie algebra is given by {en = zn+1 d

dz}n∈Z with the Lie
bracket [en, em] = (m − n)en+m, so that this algebra is indeed isomorphic
to the algebra of polynomial vector fields on the circle. One can view C

∗

as the Riemann sphere CP
1 with two points removed. Thus the Lie algebra

Vectpol of polynomial vector fields on C
∗ can be viewed as the Lie algebra

of meromorphic vector fields on CP
1 that are holomorphic outside the points
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0 and ∞. Krichever and Novikov [219, 220] studied the corresponding Lie
algebra of meromorphic vector fields on a higher-genus Riemann surface Σ
that are holomorphic outside two fixed points P, Q ∈ Σ. As we shall see, many
basic properties of the Virasoro algebra carry over to these more general Lie
algebras.

3.2 Definition of the Krichever–Novikov Algebras
and Almost Grading

Now we consider a compact Riemann surface Σ of genus κ ≥ 2. Let K be
the canonical bundle of Σ and let T := K∗ denote the holomorphic tangent
bundle of Σ. The sections of T are holomorphic vector fields on the surface
Σ, while the sections of the line bundle K are holomorphic differentials, i.e.,
holomorphic 1-forms on Σ. It is known that the degree of the holomorphic
tangent bundle is deg(T ) = −2κ+2, so that for κ ≥ 2 there are no holomorphic
vector fields on the surface Σ.

Definition 3.1 Let P ,Q ∈ Σ be two points in general position15 on the
surface Σ. The Krichever–Novikov algebra L is the Lie algebra of meromor-
phic vector fields on the surface Σ that are holomorphic outside the points
P, Q ∈ Σ.

The Lie algebra L admits an almost grading, which generalizes the Z-
grading of the Lie algebra of polynomial vector fields on S1. (This and many
other results for the Krichever–Novikov algebras generalize to the case of more
than two points, as well as to genus κ = 1; see, e.g., [337, 354] and references
therein.)

Definition 3.2 A Lie algebra g is called almost graded if it admits a direct
sum decomposition g =

⊕

n∈Z
gn with finite-dimensional spaces gn and there

exists a constant N ∈ N such that

[gn, gm] ⊂
n+m+N
⊕

l=n+m−N

gl for all n ,m ∈ Z .

To introduce an almost graded structure on the Lie algebra L, we set
κ0 = 3κ/2 and J = Z + κ/2 (i.e., J = Z if the genus κ of the surface is even
and J = Z + 1/2 if κ is odd). For any j ∈ J consider the line bundle

15 This is a technical condition that is used in the proof of Proposition 3.3: By “gen-
eral position,” we mean that the points P, Q should not be 2-Weierstrass points.
A point P ∈ Σ is a 2-Weierstrass point if there exists a quadratic differential (i.e.,
a section of K⊗2) with a zero of order ≥ 3κ − 3 at the point P . It is known that
there are only finitely many 2-Weierstrass points on a compact Riemann surface
of genus κ ≥ 2.
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Mj = T ⊗ L−j+κ0−1
P ⊗ Lj+κ0−1

Q ,

where LP denotes the line bundle on Σ corresponding to the point P ∈ Σ.
(Such a bundle is glued from the trivial bundles over a neighborhood U0 of
the point P and over U1 = Σ \ {P}. Then the bundle LP is defined by the
transition function g01 = z, where z is a local coordinate around P in U0.)
Since the degree of the holomorphic tangent bundle T of the surface Σ is
deg(T ) = −2κ+ 2, we obtain deg(Mj) = κ for each j ∈ J .

Proposition 3.3 For each j ∈ J the space of holomorphic sections of the
bundle Mj is one-dimensional, i.e., dimH0(Σ,Mj) = 1.

The proof of this proposition is based on a repeated application of the
Riemann–Roch theorem and it uses the fact that the points P and Q are
in general position; see [219] or [336].

A holomorphic section of the line bundles Mj corresponds to a meromor-
phic vector field ej on the surface Σ with a zero of order at least j − κ0 + 1
at the point P and a pole of order at most j + κ0 − 1 at the point Q. (As
usual, a pole of negative order is a zero and vice versa.) In a local coordinate
z around the point P , such a vector field can be written as

ej = ajz
j−κ0+1 d

dz
+ terms of higher order in z . (3.15)

Similarly, in a local coordinate w around Q, the vector field ej can be written
as

ej = bjw
−j−κ0+1 d

dw
+ terms of higher order in w . (3.16)

Fixing aj = 1 determines the section ej uniquely.

Theorem 3.4 ([219]) The meromorphic vector fields ej with j ∈ J form a
basis of the Lie algebra L. In this basis, the Lie bracket is given by

[ei, ej ] =
i+j+κ0
∑

k=i+j−κ0

cki,j ek (3.17)

for some cki,j ∈ C. In particular, the Krichever–Novikov algebra L is almost
graded.

Proof. We first prove that the vector fields ej form a basis of the Lie algebra
L. From formulas (3.15), (3.16) we note that the field ej is holomorphic at the
point P if j ≥ κ0−1 and it is holomorphic at the point Q if j ≤ −κ0 +1. Now
let v be an arbitrary meromorphic vector field with poles only at the points P
and Q. By adding a linear combination of ej with j ≥ κ0 − 1 we can achieve
that the pole of v at the point Q has order ≤ 3κ−3 without changing the pole
at P . Similarly, by adding multiples of the fields ej with j ≤ κ0 + 1 we can
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achieve that the pole of v at the point P has order ≤ 3κ−3 without changing
the pole at Q. Finally, by adding multiples of the fields ej with |j| ≤ κ0,
we can remove the pole of the field v at P , so that the order of the pole at
Q is still of order ≤ 3κ − 3. But then v has to vanish identically. Indeed,
otherwise we set n to be the order of the pole of the field v at Q and note that
n ≤ 3κ − 3. We also have n �= 0, since for κ > 1 any nonzero meromorphic
vector field on Σ has at least one pole. So v cannot be a nonzero multiple
of en−κ0+1, which has a pole at P . Finally, multiplying the vector field v by
holomorphic sections of L−n+3κ−2

P and Ln
Q, we obtain from it a holomorphic

section ṽ of Mn−κ0+1 = T ⊗ L−n+3κ−2
P ⊗ Ln

Q. But this is a contradiction to
dimH0(Σ,Mj) = 1 for all j ∈ J . This shows that the vector field v can be
written as a linear combination of the vector fields ej .

To verify equation (3.17) for the commutator of two vector fields ei and ej ,
we calculate their commutator locally at the point P . Using equation (3.15),
we get

[ei, ej ] = (j − i)z(i+j−κ0)−κ0+1 d

dz
+ terms of higher order in z ,

so that the commutator has to be a linear combination of ek with k ≥ i+j−κ0.
Similarly, at the point Q we get

[ei, ej ] = bibj(j − i)w(−i−j−κ0)−κ0+1 d

dw
+ terms of higher order in w .

Hence, the fields ek appearing in the commutator all have the indices k ≤
i+ j + κ0, which proves the theorem. �

3.3 Central Extensions

To define central extensions of the Krichever–Novikov algebras L, we note that
although there are several possible central extensions of them, essentially, just
one of them behaves nicely with respect to the almost grading of L. First we
recall the notion of a projective connection.

Definition 3.5 Let (Uα, zα) be a covering of the Riemann surface Σ by holo-
morphic coordinate charts with transition functions zβ = ϕβαzα on Uα ∩ Uβ .
A system of local holomorphic (meromorphic) functions Rα : Uα → C is called
a holomorphic (meromorphic) projective connection if it transforms according
to the rule

Rβ(zβ)(ϕ′
βα)2 = Rα(zα) + S(ϕβα) , (3.18)

where S(ϕ) denotes the Schwarzian derivative

S(ϕ) =
ϕ′′′

ϕ′ − 3
2

(

ϕ′′

ϕ′

)2

.
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It is a classical result that on any compact Riemann surface there exists
a holomorphic projective connection (see more detail in, e.g., [155]). Further-
more, equation (3.18) implies that the difference of two holomorphic projective
connections is a quadratic differential.

Now define central extensions of the Krichever–Novikov algebra as follows.
Fix a projective connection R on the Riemann surface Σ, and let C be any
differentiable contour on Σ.

Exercise 3.6 Show that the map

γC(f, g) =
1

2πi

∫

C

(

1
2
(g′′′f − f ′′′g) −R · (g′f − f ′g)

)

dz (3.19)

defines a 2-cocycle on the Lie algebra L. Prove that the cohomology class
of the 2-cocycle γC does not depend on the projective connection R. (Hint:
use the fact that the difference of two projective connections is a quadratic
differential.)

It can be shown that every 2-cocycle of the Krichever–Novikov algebra L
is cohomologous to a linear combination of the ones defined in Exercise 3.6
(see [379, 381] for the case of continuous cocycles and [359] for the general
algebraic case). In general, these cocycles are not consistent with the almost
grading of the Lie algebra L. However, among them there are local cocycles,
which respect the almost grading of L in the following sense.

Definition 3.7 Let g =
⊕

n∈Z
gn be an almost graded Lie algebra. A 2-

cocycle γ on g is called local if there exist numbers N1, N2 ∈ Z such that for
all n, m ∈ Z, γ(gn, gm) �= 0 implies N1 ≤ n+m ≤ N2.

Exercise 3.8 Verify that given a local 2-cocycle on an almost graded Lie
algebra g, the corresponding central extension ĝ = g⊕ C defined by the local
2-cocycle has an almost graded structure for degĝ(x, a) := degg(x).

Thus for local 2-cocycles the almost graded structure can be carried over
to the central extension. Krichever and Novikov showed that there exists a
unique local 2-cocycle on the Lie algebra L. In order to construct it and the cor-
responding central extension L̂, recall one more fact about differential forms
on Riemann surfaces (see [336]):

Proposition 3.9 On any compact Riemann surface Σ with two marked
points P, Q ∈ Σ, there exists a meromorphic 1-form α that has first-order
poles at the points P, Q, and whose residues at these points are resP (α) = −1
and resQ(α) = +1. Furthermore, the requirement of pure imaginary periods
for the form α over all the homology cycles of Σ fixes this form uniquely.
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Now fix a point z0 ∈ Σ different from P and Q. Then we can define a
function r on Σ by

r(z) := Re
(∫ z

z0

α

)

. (3.20)

The function r is well defined (since the periods of α are purely imaginary),
and its level sets

Cτ := {p ∈ Σ | r(p) = τ}
for τ ∈ R define a (singular) foliation of the surface Σ \ {P ,Q}.

Theorem 3.10 ([219]) Fix a regular value τ of the function r. Then the
corresponding 2-cocycle γCτ

on the Krichever–Novikov algebra L is local. Fur-
thermore, every local 2-cocycle on L is cohomologous to a scalar multiple of
the cocycle γCτ

.

Remark 3.11 For τ >> 0 sufficiently large, the contour Cτ is a simple con-
tour around the point P . One can consider the homomorphism of L to the
algebra of smooth vector fields on S1 ≈ Cτ . This map is injective and the
image is dense [219]. One can see that the cocycle γCτ

descends to (a cocy-
cle cohomologous to) the Gelfand–Fuchs cocycle on smooth vector fields on
S1. Since the latter cocycle is nontrivial, this implies the nontriviality of the
central extension L̂.

Note that nontrivial nonlocal 2-cocycles may correspond to trivial 2-
cocycles in the image under this homomorphism, and hence they might not
be reducible to the ones for smooth fields (cf. the table at the end of this
appendix).

QP

Cτ

Fig. 3.1. Level sets Cτ of the function r(z) define a foliation of the surface Σ. As
τ → ∞ the curves Cτ become simple contours around P .

Remark 3.12 In a similar way one can define Krichever–Novikov-type al-
gebras of differential operators and pseudodifferential symbols on a Riemann
surface [86]. Instead of fixing a projective structure, it is convenient to con-
sider a reference meromorphic vector field v on a surface Σ. Let Dv stand
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for the Lie derivative along the field v. In a neighborhood of the point P we
expand meromorphic pseudodifferential symbols on Σ into a power series in
Dv, similar to the case of symbols on the circle; cf. Section II.4. The coefficient
at D−1

v can be understood as a meromorphic 1-form on Σ, and let TrP be the
residue of this 1-form at the point P . Then there is a nontrivial 2-cocycle on
meromorphic pseudodifferential symbols defined by

cP (A,B) = TrP ([logDv, A] ◦B]) ,

similarly to the circle case. In particular, one recovers the 2-cocycle (3.19) of
the Krichever–Novikov algebra L of meromorphic vector fields on Σ. These
algebras of meromorphic differential operators and pseudodifferential symbols
also have an analogue of the almost grading property of L.

3.4 Affine Krichever–Novikov Algebras, Coadjoint Orbits, and
Holomorphic Bundles

To describe the affine algebras of Krichever–Novikov-type we fix a compact
Riemann surface Σ with two marked points P, Q ∈ Σ. Let F denote the
associative algebra of meromorphic functions on Σ that can have poles only at
the points P and Q. Furthermore, fix a finite-dimensional complex semisimple
Lie algebra g. The Krichever–Novikov current algebra is defined as the Lie
algebra of g-valued meromorphic functions on Σ:

KN := g ⊗F .

One can show that the Lie algebra KN admits an almost grading and there
exists a unique local 2-cocycle on the Lie algebra KN given by

γaff
Cτ

(X,Y ) =
1

2πi

∫

Cτ

tr(XdY ) ,

where the contour Cτ is a level set of the function r defined by formula (3.20).
The affine Krichever–Novikov algebra ̂KN is the central extension of the cur-
rent algebra KN defined by means of the 2-cocycle γaff

Cτ
. As a vector space it

is given by
̂KN = g ⊗F ⊕ C .

Denote by Ω the space of meromorphic 1-forms on the surface Σ that can
have poles only at the points P and Q. The pairing F ×Ω → C between the
functions and the forms is given by

〈f, ω〉 =
1

2πi

∫

Cτ

fω ,

where f ∈ F and ω ∈ Ω. It turns out to be well defined (i.e., independent of τ)
and nondegenerate. This allows one to view the space g ⊗Ω ⊕ C of g-valued
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1-forms on Σ enlarged by a cocentral direction as a “regular part” ̂KN
∗
reg of

the dual of the affine Krichever–Novikov algebra ̂KN = g ⊗ F ⊕ C. Here the
pairing between ̂KN and ̂KN

∗
reg = g ⊗Ω ⊕ C is given by the natural pairing

〈(X, c), (A, a)〉 =
1

2πi

∫

Cτ

tr(XA) + c · a ,

for X ∈ g ⊗F and A ∈ g ⊗Ω.
Let G denote the complex finite-dimensional simply connected Lie group

corresponding to the Lie algebra g. We denote by GΣ\{P,Q} the group of maps
from the Riemann surface Σ to G that are holomorphic outside the points
P and Q. The group GΣ\{P,Q} transforms elements of the space ̂KN

∗
reg =

g ⊗Ω ⊕ C by means of the gauge transformations

g : (A, a) �→ (gAg−1 + a(dg)g−1, a) .

However, the space g⊗Ω⊕C is not invariant under this action. Define an orbit
of the group GΣ\{P,Q} in the space ̂KN

∗
reg = g⊗Ω⊕C to be the intersection

of a “true” orbit of GΣ\{P,Q} with the space ̂KN
∗
reg; see [353]. Equivalently,

one could consider the subgroup of GΣ\{P,Q} that leaves the space ̂KN
∗
reg

invariant. In any case, these orbits are the analogues of the coadjoint orbits of
the centrally extended loop groups that we studied in Section II.1.2. Let [Cτ ]
denote the homotopy class of the level curve Cτ ⊂ Σ \ {P,Q} for τ >> 0.

Theorem 3.13 ([353, 354]) Generic orbits of the group GΣ\{P,Q} inside a
fixed affine hyperplane a = const �= 0 in ̂KN

∗
reg are in one-to-one correspon-

dence with equivalence classes of representations ψ : π1(Σ \ {P,Q}) → G of
the fundamental group of the punctured surface Σ \ {P,Q} such that ψ([Cτ ])
is a semisimple (i.e., diagonalizable) element of the group G.

For the proof in one direction, one associates to an element (A, a) ∈ g⊗Ω⊕C

the monodromy group of the connection A meromorphic on the Riemann sur-
face Σ and holomorphic on Σ \ {P,Q}. In the other direction, one has to
check that any monodromy representation indeed comes from such a connec-
tion. This is where the assumption on the semisimplicity of ψ([Cτ ]) comes
into play.

Theorem 3.13 links the theory of affine Krichever–Novikov algebras to
the theory of holomorphic G-bundles (or moduli of flat connections) on the
Riemann surface Σ, where a similar correspondence of symplectic leaves and
monodromy groups arises; see [354] and the references therein for more detail.

Remark 3.14 To visualize the role of the Krichever–Novikov-type algebras
among other algebras discussed in the book, we will allow nonlocal 2-cocycles.
They can be defined as cocycles γC associated to arbitrary contours C on the
Riemann surface Σ, not necessarily from the Cτ family. Independent cycles
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in H1(Σ \ {P,Q}) lead to independent 2-cocycles γC . Note that all cycles Cτ

define a one-dimensional subspace in the homology group H1(Σ \ {P,Q}).
While the affine/Virasoro algebras on C

∗ are graded versions of the corre-
sponding smooth affine/Virasoro algebras on S1, the Krichever–Novikov type
algebras provide an almost graded version of affine and Virasoro algebras on
arbitrary graphs on Riemann surfaces. Different cycles in the graphs define
non-cohomologous 2-cocycles of the corresponding current algebras on those
graphs, similar to different 2-cocycles γC .

In this way, both the affine/Virasoro and the Krichever–Novikov-type al-
gebras are Lie algebras of currents or vector fields on one-dimensional objects
(either in the smooth or in the (almost) graded versions). These objects cor-
respond to the R-part in our complexification table (see Section III.4), since
these currents depend on one variable (either real or complex). Meanwhile,
the C-part of the table corresponds to the Etingof–Frenkel-type algebras on
an elliptic curve or on complex curves of higher genus. Here an elliptic curve is
a complexification of a circle, while arbitrary complex curves of higher genus
can be regarded as complexifications of graphs. In the Etingof–Frenkel alge-
bras their elements, i.e., currents, depend on two independent variables. This
discussion is summarized in the following table:

“Real” (almost) Real smooth Complex smooth
graded version version version

Graded affine algebras Smooth affine Etingof–Frenkel algebras
on C

∗ = CP
1 \ {P,Q} algebras on S1 on elliptic curves E

Krichever–Novikov current Smooth affine Etingof–Frenkel
algebras on Riemann algebras algebras

surfaces Σ \ {P1, . . . , Pn} on graphs Γ on complex curves C

The affine algebras on graphs and their relation to the Etingof–Frenkel
algebras on curves of higher genus seem to be very interesting objects of
study, where still most of the work is yet to be done.

For more facts on Krichever–Novikov algebras and the proofs of the theo-
rems in this section we refer to the original papers by Krichever and Novikov
[219, 220], the works [336, 337, 353, 354, 379], and the references therein.
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A.4 Kähler Structures on the Virasoro and Loop Group
Coadjoint Orbits

4.1 The Kähler Geometry of the Homogeneous Space Diff(S1)/S1

Symplectic Structures

Consider the group Diff(S1) of orientation-preserving diffeomorphisms of the
circle S1, and identify S1 with the subgroup of rigid rotations Rot(S1). In
this section we study geometric structures on the quotient

S = Diff(S1)/S1

that are invariant under the natural (left) action of the group Diff(S1) on S.
The invariant structures are determined by their values at the point e ∈ S.

The tangent space at this point can be identified with the space of vector fields
on S1 with zero mean:

TeS ∼= Vect0(S1) =
{

ξ(θ)∂θ ∈ Vect(S1)
∣

∣

∣

∫

S1
ξ(θ) dθ = 0

}

.

(As usual, we denote a coordinate on S1 by θ and ∂θ stands for ∂
∂θ .) Regard

the vector field ξ as an element of the complexified tangent space TeS ⊗ C

and expand ξ into the Fourier series

ξ =
∑

n�=0

ξnLn ,

where {Ln}n∈Z denotes the standard basis of VectC(S1), i.e., Ln = ieinθ∂θ.
The real Lie algebra Vect(S1) ⊂ VectC(S1) is singled out by the relations
−ξ̄n = ξ−n.

Any invariant symplectic structure on the space S is also determined by
its values at e ∈ S. In particular, it is defined by a continuous 2-cocycle ω on
the Lie algebra VectC(S1) that is invariant under rotations. More generally,
invariant closed 2-forms on coadjoint orbits of a Lie group are related to 2-
cocycles on the corresponding Lie algebra in the following way.

Exercise 4.1 Let G be a Lie group with Lie algebra g, and O ⊂ g∗ is a group
coadjoint orbit. Given a point a ∈ O of the orbit, show that G-invariant closed
2-forms ω on the orbit O are in one-to-one correspondence with 2-cocycles on
the Lie algebra g that vanish on the stabilizer of the point a. (Hint: Identify
the tangent space TaO for a ∈ O with a quotient of g. Use this to lift the
G-invariant 2-form ω on O to a bilinear form on g. The closedness of ω on O
is equivalent to the cocycle identity of this bilinear form on g.)
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In the case of the algebra Vect(S1), the proof of Proposition II.2.3 shows
that any invariant 2-cocycle has the form

ωα,β(Lm, Ln) := (αm3 + βm)δm,−n

for some constants α, β ∈ R.

Exercise 4.2 Show that the 2-cocycle ωα,β is nondegenerate on Vect0(S1)
provided that either α = 0 and β �= 0, or −β/α �= k2 for some k ∈ N.

As we have seen in the proof of Proposition II.2.3, the cocycle ω0,β is exact,
i.e., it is a coboundary. So to describe nontrivial 2-cocycles we can assume that
α �= 0, and that −β/α is not an integer square.

The two-parameter family of symplectic structures on the space S defined
by the 2-forms ωα,β has a natural interpretation in terms of coadjoint orbits of
the Virasoro–Bott group. Indeed, the Virasoro–Bott coadjoint orbit containing
the point (p(dθ)2, a) ∈ vir

∗ is isomorphic to Diff(S1)/S1 if 0 < 4p/a is not an
integer square; see Section II.2.2. (If 4p/a = n2 for some n ∈ Z, the stabilizer of
the point (p(dθ)2, a) is a three-dimensional subgroup of Diff(S1).) One can see
that the two-parameter family of symplectic structures on the space S comes
from the identification of S with any coadjoint orbit from the two-parameter
family of those in the Virasoro–Bott group. The natural symplectic structure
of the coadjoint orbit through the point (p(dθ)2, a) ∈ vir

∗ with a �= 0 and
0 < 4p/a �= n2 has two parameters: p and a.

The Complex Structure

A Diff(S1)-invariant almost complex structure on the space S = Diff(S1)/S1

is given by an S1-invariant automorphism Ie of the tangent space TeS ∼=
Vect0(S1) such that I2

e = − id. Such an automorphism can be described using
the Fourier expansion of an element ξ ∈ Vect0(S1): for

ξ =
∑

n�=0

ξnLn

we set
Ie(ξ) = −i

∑

n>0

ξnLn + i
∑

n<0

ξnLn .

Exercise 4.3 Show that the almost complex structure I on the space S is
compatible with the symplectic structure ωα,β in the sense that ωα,β is I-
invariant, i.e., ωα,β(Ieξ, Ieη) = ωα,β(ξ, η) at e ∈ S, and the symmetric bilinear
form gα,β defined on the tangent space TeS by gα,β(ξ, η) := ωα,β(ξ, Ieη) is
positive definite.
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One can easily see that the almost complex structure I on the space S is
“formally integrable”: the bracket of two vector fields in the +i, respectively
−i, eigenspace of the automorphism I is again in the +i, respectively −i,
eigenspace [57]. In principle, this does not guarantee the existence of a complex
structure in the infinite-dimensional context, since here the finite-dimensional
Newlander–Nirenberg theorem does not work. The following theorem of Kir-
illov shows that the complex structure does exist in this infinite-dimensional
case.

Theorem 4.4 ([204]) There is a complex structure on the space S =
Diff(S1)/S1 invariant with respect to the Diff(S1)-action.

Sketch of proof. To show that the almost complex structure on S is, in
fact, integrable, one can give a different realization of the space S in terms
of univalent functions on the unit disk. Namely, let D ⊂ C be the unit disk,
and set F to be the space of holomorphic univalent functions on D that are
continuous up to the boundary and normalized by the conditions at the origin:

F = {f : D →C | f holomorphic and continuous up to the boundary,
f(0) = 0, f ′(0) = 1, and f(z1) �= f(z2) whenever z1 �= z2} .

This is an infinite-dimensional complex manifold. By expanding f in a series

f(z) = z + c2z
2 + c3z

3 + · · ·

one obtains a natural coordinate system on the space F . De Brange’s theorem
(formerly the Bieberbach conjecture, [212]) implies that |ck| < k, so that F
can be regarded as an infinite-dimensional analogue of a bounded domain in
C

n, see [204].
The identification of F with the quotient S = Diff(S1)/S1 is implemented

by means of the following geometric realization. Identify F with the space
K of all simple contours around the origin that have conformal radius 1 with
respect to the origin. Namely, a univalent function f ∈ F uniquely determines
such a contour as the image f(S1) of the boundary S1 = ∂D. Conversely, for
any such contour K ∈ K there is a function fK mapping its interior to the
unit disk (the Riemann mapping theorem), which can be normalized so that
fK ∈ F .

To see how one can associate a coset from Diff(S1)/S1 to a function fK ,
consider a function gK mapping the exterior of the unit disk D to the exterior
of the contour K and normalized by the condition gK(∞) = ∞. This function
is defined modulo the rotation change of the variable z �→ eiαz. Then the map
φK = f−1

K ◦ gK defines a diffeomorphism of the unit circle S1 = ∂D modulo
rotations, i.e., an element of S = Diff(S1)/S1.

This map is a bijection, and the definition of the inverse map from S to F is
as follows. Given a circle diffeomorphism φ ∈ Diff(S1) construct a 2-sphere S2

φ
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by glueing together the boundaries of the two unit disks D− and D+ accord-
ing to that diffeomorphism. There is a unique complex structure on S2

φ that
coincides with the standard ones on D− and D+. Since all complex structures
on S2 are equivalent, there exists a holomorphic map F : S2

φ → S2 = CP
1

that can be normalized by the conditions F (0) = 0, F ′(0) = 1, F (∞) = ∞. In
turn, the map F can be thought of as a pair of functions F = (f, g) defined
on D− and D+ (here 0 ∈ D− and ∞ ∈ D+), and one can see that f ∈ F . The
corresponding contour K ∈ K is the image of the unit circle f(S1).

The group Diff(S1) acts on the space of contours and hence on the space F
by holomorphic transformations, and the stabilizer of the function f(z) = z
under this action is given by the group of rigid rotations S1 = Rot(S1) ⊂
Diff(S1). This identification F ∼= S ∼= K fixes the complex structure on the
space S invariant with respect to the Diff(S1)-action. �

The following theorem details and summarizes this section.

Theorem 4.5 ([204, 208]) The space S = Diff(S1)/S1 is a Kähler Fréchet
manifold with a two-parameter family of Diff(S1)-invariant Kähler metrics
gα,β. These Kähler metrics originate from one invariant complex structure
and a two-parameter family of invariant symplectic structures on S.

Note that the Virasoro group can be viewed as a holomorphic C
∗-bundle

over S [236].

4.2 The Action of Diff(S1) and Kähler Geometry on the Based
Loop Spaces

Symplectic Structures

Let G be a simple compact simply connected Lie group with the Lie algebra
g. The loop group of G is the group LG = C∞(S1, G) of smooth maps from
the circle S1 to G. The based loop group ΩG is the subgroup

ΩG = {g ∈ LG | g(0) = e}

for a fixed point 0 ∈ S1. As a manifold, ΩG can be identified with the quotient
LG/G, where G is thought of as the subgroup in LG consisting of constant
loops in G. Note, however, that this identification is not canonical, since G is
not a normal subgroup in LG.

An LG-invariant closed 2-form on the space ΩG is determined by its values
on the tangent space TeΩG ∼= Lg/g or, equivalently, by a G-invariant 2-cocycle
ω on the Lie algebra Lg that also satisfies g ⊂ kerω. Proposition II.1.6 shows
that any continuous G-invariant 2-cocycle on Lg has the form

ω(X,Y ) =
∫

S1
〈X(θ), Y ′(θ)〉 dθ ,
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where 〈 , 〉 is an invariant inner product on the Lie algebra g. Also, ω satisfies
the condition g ⊂ kerω, since it vanishes on constant loops. The fact that the
2-form ω is nondegenerate, i.e., it defines a symplectic structure on ΩG, is
equivalent to the nondegeneracy of the inner product 〈 , 〉.

For a simple Lie group G there is the Killing form, the unique (up to a
scalar factor) invariant inner product on g. Hence, in this case there exists
a one-parameter family of LG-invariant symplectic forms on the space ΩG.
This family appears naturally from the identification of the quotient LG/G
with the coadjoint orbits of the affine (i.e., centrally extended loop) group
̂LG that contain the points (0, a) ∈ (̂Lg)∗: the parameter in this family is the
cocentral value a �= 0; see Section II.1.2.

Exercise 4.6 The group Diff(S1) acts on the space LG/G by symplecto-
morphisms. (Hint: the cocycle ω, and hence the corresponding symplectic
structure, is invariant with respect to reparametrizations of S1.)

Complex Structures

Any LG-invariant almost complex structure on the based loop group ΩG
is given by fixing an automorphism Je of the tangent space TeΩG such that
(Je)2 = −1. In the complexification TC

e ΩG consider the set of Laurent polyno-
mials (without the constant term) with values in the complexified Lie algebra
gC:

X(z) =
∑

n�=0

Xnz
n .

Now we define an LG-invariant almost complex structure J0 on ΩG by as-
signing its value on such polynomials to be

J0
eX(z) = −i

∑

n>0

Xnz
n + i

∑

n<0

Xnz
n

and extending it to an automorphism of TeΩG by continuity.
One can see that this almost complex structure is integrable by identifying

the based loop group ΩG with the quotient LGC/L+GC. Here, LGC denotes
the group of smooth maps from the circle S1 to the complexified Lie group GC,
and L+GC denotes the subgroup of those maps that extend to holomorphic
maps from the unit diskD, the interior of the circle, to the groupGC. To obtain
this identification one employs the fact that any loop h ∈ LGC can be uniquely
factorized into a product h = hb · h+ with hb ∈ ΩG and h+ ∈ L+GC; see
[322]. Therefore the quotient LGC/L+GC carries an LGC-invariant complex
structure that coincides with J0

e at the identity.
A diffeomorphism ϕ ∈ Diff(S1) sends the complex structure J0 to J =

ϕ∗ ◦ J0 ◦ ϕ−1
∗ , where ϕ∗ denotes the action of the diffeomorphism ϕ on the

corresponding tangent space.
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Proposition 4.7 The complex structure J = ϕ∗ ◦ J0 ◦ϕ−1
∗ coincides with J0

if and only if the diffeomorphism ϕ ∈ Diff(S1) is a rotation.

Sketch of proof. Evidently, if ϕ is a rotation, then J = J0. Conversely,
assume that J = J0. Recall that the complex structure J0 on ΩG is defined by
means of the identification of the latter with the quotient ΩG = LGC/L+GC.
Then the action of the diffeomorphism ϕ preserves the representation of ΩG =
LGC/L+GC as a quotient, i.e., it sends the subgroup L+GC into itself.

Denote by L−
1 G

C the subset of LGC consisting of loops in GC that extend
to holomorphic maps h from the exterior of the unit disk to GC and that
are normalized by the condition h(∞) = id ∈ GC. The multiplication map
L−

1 G
C×L+GC → LGC is a diffeomorphism to a dense subset of LGC; see [322,

Section 8.6] One can show that in order to preserve the complex structure on
ΩG, the diffeomorphism ϕ has to preserve both L−

1 G
C and L+GC. This implies

that the circle diffeomorphism ϕ extends to both a conformal automorphism of
the unit disk D and to a conformal automorphism of the exterior of the disk D
fixing ∞; cf. the proof of Theorem 4.4 above. Such a conformal automorphism
of the Riemann sphere has to be a rotation, and so is ϕ itself. �

The complex structures J = ϕ∗ ◦ J0 ◦ ϕ−1
∗ obtained from the complex

structure J0 by the action of the diffeomorphism group Diff(S1) are called
admissible complex structures on ΩG. By construction of J0, all admissible
complex structures are LG-invariant. From the proposition above, we directly
obtain the following result:

Corollary 4.8 ([57, 312]) Admissible complex structures on the based loop
group ΩG are parametrized by the points of the infinite-dimensional manifold
S = Diff(S1)/S1.

Finally, one can verify that the complex structure J0 is compatible with
the symplectic structure ω in the sense that ω(J0X,J0Y ) = ω(X,Y ), while
g0(X,Y ) := ω(X,J0Y ) is a positive definite quadratic form. Hence, g0 defines
an LG-invariant Kähler metric on ΩG. In view of the invariance of the sym-
plectic form ω under the action of the group Diff(S1), the complex structures
J = ϕ∗ ◦ J0 ◦ ϕ−1

∗ obtained from J0 are also compatible with the symplectic
form ω and thus give rise to a family of LG-invariant Kähler metrics g on ΩG
parametrized by the points of S = Diff+(S1)/S1.

This description of Kähler metrics exhibits a kind of reciprocity between
the homogeneous spaces LG/G and Diff+(S1)/S1. More details, the formulas
for the corresponding curvature tensor, and further applications of the above
can be found in [204, 208, 350].



240 Appendices

A.5 Diffeomorphism Groups and Optimal Mass
Transport

In this appendix we consider the Riemannian geometry of the group of all
diffeomorphisms of a compact manifold. This large group, being equipped with
a certain L2-type metric, can be viewed as a unifying framework for problems
of Euler hydrodynamics on the group of volume-preserving diffeomorphisms
on the one hand and problems related to optimal mass transportation on
densities on this manifold on the other hand.

5.1 The Inviscid Burgers Equation as a Geodesic Equation
on the Diffeomorphism Group

Let M be a compact n-dimensional Riemannian manifold with metric ( , ).
Consider the group Diff(M) of smooth diffeomorphisms of M along with its
subgroup SDiff(M) of diffeomorphisms preserving the (Riemannian) volume
form µ (as before, we confine ourselves to the connected component of the
identity diffeomorphism). For a curve {η(t) | t ∈ [0, a]} in Diff(M) its L2-
energy is given by

E({η}) =
1
2

∫ a

0

〈η̇(t), η̇(t)〉Diff dt ,

where the (weak) Riemannian metric at each point η ∈ Diff(M) of the dif-
feomorphism group is defined in the following straightforward way: given
X,Y ∈ Vect(M), the inner product of two vectors X ◦ η, Y ◦ η ∈ TηDiff(M) is

〈X ◦ η, Y ◦ η〉Diff =
∫

M

(X ◦ η(x), Y ◦ η(x)) µ(x). (5.21)

This metric is right-invariant when restricted to the subgroup SDiff(M) of
volume-preserving diffeomorphisms, although it is not right-invariant on the
whole group Diff(M). (Indeed, the change of variables in the integral (5.21)
would give the Jacobian det[∂η/∂x] as an extra factor, which, however, is
identically equal to 1 for a volume-preserving map η ∈ SDiff(M).) Note that
for a flat manifold M this metric is a flat metric on Diff(M): a neighborhood
of the identity id ∈ Diff(M) with the metric 〈 , 〉Diff is isometric to a neigh-
borhood in the pre-Hilbert space of smooth “vector-functions” η : M → M
with the L2 inner product 〈 , 〉L2(M).

Recall that the Euler equation ∂tu+ (u,∇)u = −∇p on a divergence-free
field u on M describes the motion of an ideal incompressible fluid filling M .
It corresponds to the equation of the geodesic flow of the right-invariant L2

metric on the group SDiff(M); see [12] and Section II.3.
Define the (inviscid) Burgers equation as the evolution equation

∂tu+ (u,∇)u = 0 (5.22)
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for a vector field u on M , where (u,∇)u stands for the covariant derivative
∇uu on M . (This equation is often also called the Hopf equation or compress-
ible Euler equation.) Consider the flow (t, x) �→ η(t, x) corresponding to this
velocity field:

∂tη(t, x) = u(t, η(t, x)), η(0, x) = x.

(Here we use the notation ∂tη(t, x) for the time derivative η̇ to emphasize the
dependence of η on both t and x.)

Proposition 5.1 ([96, 303]) (1) Solutions of the Burgers equation are time-
dependent vector fields on M that describe the following flows of fluid particles:
each particle moves with constant velocity (defined by the initial condition)
along a geodesic in M .

(2) Geodesics in the group Diff(M) with respect to the L2-metric (5.21)
correspond to solutions of the Burgers equation. Geodesics in Diff(M) normal
to the submanifold SDiff(M) have potential initial conditions.

Proof. We first assume for simplicity that M is equipped with a flat metric.
Then the geodesics in Diff(M) are given by the equation η̈(t) = 0, which
describes flows of particles moving with constant velocity along their own
geodesics, “straight lines,” in M . This follows from the “flatness” of the L2-
metric (5.21). Indeed, consider a one-parameter variation ηs(t) of a curve
{η(t)} with fixed ends for all s. Let w(t) := ∂sηs(t)|s=0 be the variation
vector field along the curve η(t), and w(0) = w(a) = 0. Then the geodesic
condition on η(t), i.e., vanishing of the variation ∂sE(ηs) = 0 at s = 0, gives

0 =
∫ a

0

〈∂sη̇s(t), η̇s(t)〉L2(M) dt
∣

∣

∣

s=0

=
∫ a

0

〈ẇ(t), η̇(t)〉L2(M) dt = −
∫ a

0

〈w(t), η̈(t)〉L2(M) dt .

This implies η̈(t) = 0 and proves (1) in the flat case.
In order to see that the corresponding velocity field u for the geodesic

{η(t) | ∂2
t η = 0} satisfies the Burgers equation, we apply the chain rule to the

definition ∂tη(t, x) = u(t, η(t, x)). This immediately gives

∂2
t η = ∂tu(t, η(t, x)) = (∂tu+∂xu ·∂tη)(t, η(t, x)) =

(

∂tu+(u,∇)u
)

(t, η(t, x)),

and hence the geodesic condition d2η/dt2(t, x) = 0 is equivalent to the Burgers
equation on M :

∂tu+ (u,∇)u = 0 .

(One can compare the latter to the Euler equation on the subgroup
SDiff(M) ⊂ Diff(M), where the acceleration ∂2

t η is L2-orthogonal to the set
SDiff(M) and hence is given by a gradient field, cf. Section II.3.2.)

In the general case, any Riemannian metric on M induces a unique Levi-
Civita L2-connection ∇̄ on Diff(M), which is determined pointwise by the
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Riemannian connection ∇ on the manifold M itself (see for example [96] or
[267]). Then the same chain rule leads to the Burgers equation (5.22) on
velocity u with (u,∇)u := ∇uu. The latter is equivalent to the Riemannian
version of freely flying non-interacting particles in M : ∇̄η̇ η̇ = 0. The flow
corresponding to the Burgers solution with the initial field v(x) on M has the
form x �→ expM (t · v(x)), where expM stands for the Riemannian exponential
map on the manifold M . This is a family of diffeomorphisms (parametrized by
time t) in which each point moves along its own geodesic on M with constant
velocity.

Finally, observe that the tangent space to the subgroup SDiff(M) at the
identity consists of divergence-free vector fields, and hence the space of nor-
mals is given by the gradients of all smooth functions on M . Thus horizontal
geodesics are the ones whose initial velocities are gradient fields u|t=0 = ∇φ;
see Figure 5.1. �

Remark 5.2 For a smooth initial velocity field u|t=0 = v, the family x �→
exp(t · v(x)) consists of diffeomorphisms for small t, but at some moment
particles can start colliding with each other. This moment corresponds to
formation of a shock wave on M , and from this moment on, the map from
initial to final positions of the particles ceases to be a diffeomorphism. In
other words, the group Diff(M) is incomplete in the L2-metric (5.21) and the
corresponding geodesics “reach the boundary of the group” Diff(M) in finite
time.

One can show that the shock wave formation for the Burgers equation
with potential initial condition u|t=0 = ∇φ corresponds to the first focal
point in the direction ∇φ, which is normal to the set SDiff(M) regarded as a
Riemannian submanifold of Diff(M); see [193] and Figure 5.1. Recall that a
focal point of a submanifold S in a Riemannian manifold N in the direction
ν normal to S is the point of intersection of normals to S that are infinitely
close to ν.

Example 5.3 The Burgers equation on the line assumes the form ∂tu+uu′ =
0, where u′ := ∂xu. Faster particles start passing slower ones, and one can
see that the shock wave solutions of the Burgers equation first arise from
inflection points of the initial velocity profile of u|t=0 (i.e., from the points
corresponding to u′′|t=0 = 0).

In higher dimensions the shock waves first arise from the special points of
the initial potential u|t=0 = ∇φ, which are singularities of type A3 modulo
certain linear and quadratic terms in local orthogonal coordinate charts; see
[46]. The list of initial singularities, possible bifurcations of the shock waves,
and other related questions for the inviscid Burgers equations can be found
in [21, 22, 137].



A.5. Diffeomorphism Groups and Optimal Mass Transport 243

η(0)

SDiff(M)

γ(t)
¹

∇φ η(t1)

Dens(M)

¼

η(t)

Diff(M)

Fig. 5.1. Diffeomorphism group Diff(M) projects to the space of densities Dens(M)
with the fiber SDiff(M); normals to SDiff(M) are horizontal geodesics η(t), and focal
points along them correspond to conjugate points along geodesics γ(t) in Dens(M).

Remark 5.4 While first conjugate points along horizontal geodesics in
Diff(M) naturally correspond to shock waves of the Burgers equation, the
problem of description of conjugate points along vertical geodesics, i.e., geo-
desics in SDiff(M), was posed by Arnold back in the 1960s in the paper [12]
on the geometry of the Euler equation. It is shown in [97] that for a com-
pact surface M without boundary the exponential map of the L2-metric on
SDiff(M) is a nonlinear Fredholm map of index zero. In particular, this im-
plies that conjugate points are isolated and of finite multiplicity along finite
geodesic segments. In other words, in this case the Riemannian exponen-
tial map on SDiff(M) has the same structure of singularities as that on a
finite-dimensional manifold. For a three-dimensional M the situation changes
drastically: the set of conjugate points is not discrete. In particular, conjugate
points cluster to the first one, while the exponential operator is not Fredholm,
since its range is not closed [97, 323]. This is yet another manifestation of the
difference between the geometries of the groups of volume-preserving diffeo-
morphisms in the two- and three-dimensional cases; cf. Section II.3.6.
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5.2 Metric on the Space of Densities and the Otto Calculus

The differential geometry of diffeomorphism groups is closely related to the
theory of optimal mass transport, and in particular, to the problem of moving
one mass (or density) to another while minimizing a certain cost. In this
section we discuss the relation of metric properties of the diffeomorphism
group and the space of densities.

Let µ be a smooth reference volume form (or density) on M of unit total
mass, and consider the projection π : Diff(M) → Dens(M) of diffeomorphisms
onto the space Dens(M) of (normalized) smooth densities on M . The diffeo-
morphism group Diff(M) is fibered over Dens(M) by means of this projection
π as follows: the fiber over a volume form ν consists of all diffeomorphisms
η that push µ to ν, η∗µ = ν. In other words, two diffeomorphisms η1 and η2

belong to the same fiber if and only if η1 = η2 ◦ ϕ for some diffeomorphism ϕ
preserving the volume form µ. Diffeomorphisms from Diff(M) act transitively
on smooth densities, according to the Moser theorem [279].

Remark 5.5 Note that this projection π can be extended to more general
(nonsmooth) maps and densities by tracing how they transport the density
µ. More precisely, let µ and ν be two Borel measures of total volume 1 on a
compact Riemannian manifold M (or, more generally, on a complete metric
space) that are absolutely continuous with respect to the Lebesgue measure,
and let dist(x, y) be the distance function on M . Consider the following opti-
mal mass transport problem: Find a Borel map η : M → M that pushes the
measure µ forward to ν and attains the minimum of the L2-cost functional
∫

M
dist2(x, η(x))µ among all such maps. The minimal cost of transport de-

fines a metric (often called the Kantorovich or Wasserstein metric) Dist on
densities:

Dist2(µ, ν) := inf
η

{

∫

M

dist2(x, η(x))µ | η∗µ = ν
}

. (5.23)

It turns out that this mass transport problem admits a unique solution
(defined up to measure-zero sets), called the optimal map η̄ (see [58] for M =
R

n and [256] for any compact connected Riemannian manifold M without
boundary). Furthermore, there exists a 1-parameter family of Borel maps η(t)
joining the identity map η(0) = id with the optimal map η(1) = η̄ such that
η(t) pushes µ to η(t)∗µ in an optimal way for every t. Such a 1-parameter
family of measures η(t)∗µ describes a geodesic between µ and ν in the space
of densities with respect to the metric Dist; see [374] for details.

In what follows we consider a formal version of this problem, focusing on
smooth densities. One can see that the Kantorovich metric Dist is formally
generated by the (weak) Riemannian metric on the space Dens of smooth
densities. Thus both Diff and Dens can be regarded as infinite-dimensional
Riemannian manifolds.
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Proposition 5.6 ([303]) The bundle map π : Diff(M) → Dens(M) is a
Riemannian submersion of the metric 〈 , 〉Diff on the diffeomorphism group
Diff(M) to the metric Dist on the density space Dens(M). The horizontal
(i.e., normal to fibers) spaces in the bundle Diff(M) → Dens(M) are right-
translated gradient fields.

Recall that for two Riemannian manifolds P and B a submersion π :
P → B is a mapping onto B that has maximal rank and preserves lengths
of horizontal tangent vectors to P ; see, e.g., [302]. For a bundle P → B this
means that on P there is a distribution of horizontal spaces that are orthogonal
to fibers and projected isometrically to the tangent spaces to B.

Proof. Recall the Hodge decomposition Vect = SVect ⊕L2 Grad for vector
fields on M : any vector field v decomposes uniquely into the sum v = ξ +∇p
of a divergence-free field ξ and a gradient field ∇p, which are L2-orthogonal
to each other:

∫

M
(ξ,∇p)µ = 0; cf. Section II.3.16

For the fibration π : Diff(M) → Dens(M) the fiber passing through the
identity diffeomorphism id ∈ Diff(M) is the subgroup SDiff(M), preserving
the reference density µ itself. Thus the vertical tangent space at the identity
coincides with SVect(M), while the horizontal space is Grad. The L2-metric
on Grad projects isometrically to the tangent space to the base Dens at the
point µ.

Other fibers of Diff(M) → Dens(M) are right cosets for the subgroup
SDiff(M) in the group Diff(M). One can think of this fibration as an
SDiff(M)-principal bundle over Dens(M), where volume-preserving diffeo-
morphisms from SDiff(M) act on all diffeomorphisms by right translations
Rϕ : η �→ η ◦ ϕ for ϕ ∈ SDiff(M) and η ∈ Diff(M). This induces the SDiff-
action on the corresponding tangent spaces. The metric (5.21) is invariant
with respect to this action of SDiff(M).

Now the proposition follows from the Hodge decomposition above, which
is right-translated from id to any other point η of the diffeomorphism group
Diff(M). The vertical space (tangent to a fiber) at a point η ∈ Diff(M) consists
of divergence-free vector fields right-translated by the diffeomorphism η,

Vertη = {X ◦ η | X ∈ SVect(M)} ,

while the horizontal space is given by the translated gradient fields,

Horη = {(∇p) ◦ η | p ∈ C∞(M,R)}.

The L2-type metric 〈 , 〉Diff on horizontal spaces for different points of the
same fiber projects isometrically to one and the same metric on the base, due
to the SDiff-invariance of the metric. �
16 More generally, one can consider the volume form µ not related to the Riemannian

metric ( , ). The L2-orthogonality still holds for µ-divergence-free fields and
gradients with respect to this metric.
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One of the main properties of a Riemannian submersion is the following
feature of geodesics:

Corollary 5.7 Any geodesic initially tangent to a horizontal space on the
full diffeomorphism group Diff(M) remains horizontal, i.e., tangent to the
gradient distribution Horη on this group. There is a one-to-one correspondence
between geodesics on the base Dens(M) starting at the density µ and horizontal
geodesics in Diff(M) starting at the identity diffeomorphism id.

Remark 5.8 In PDE terms, the horizontality of a geodesic means that any
solution of the Burgers equation with a potential initial condition u = ∇φ
remains potential for all times. The corresponding potential φ satisfies the
Hamilton–Jacobi equation ∂tφ+ (∇φ,∇φ)/2 = 0 on M ; see [303].

Thus horizontal geodesics in Diff(M), i.e., potential solutions of the Burg-
ers equation, move the densities in Dens(M) in the fastest way. This statement
is very natural geometrically: to obtain the fastest projection to the base, i.e.,
to move densities most effectively, one has to mod out the “volume-preserving”
parts of the diffeomorphisms (since they are not moving the density, but pre-
serve it), and use only their “gradient parts.”

Remark 5.9 Consider the flow η(t) : x �→ expM (t · ∇φ(x)) corresponding
to the potential Burgers solution with a given smooth potential φ. As we
mentioned, the solution remains smooth for some time, and the appearance
of a shock wave corresponds to the first moment at which the solution is
nonsmooth. For M = R

n the map x �→ expM (t · ∇φ(x)) has the form x �→
x + t · ∇φ(x) = ∇(x2/2 + t · φ(x)), and the loss of the map’s smoothness
corresponds to the loss of convexity of the potential f(x) := x2/2 + t · φ(x).
On any M this loss of smoothness occurs when the potential −t φ ceases to
be c-concave, which is an analogous notion for manifolds. (A function ψ on a
manifold M is c-concave if (ψc)c = ψ, where ψc(y) := inf{c(x, y)−ψ(x) | x ∈
M} for the square distance function c(x, y) = dist2(x, y)/2 on M .) As long
as the potential remains c-concave, the curve {η(t)} is the shortest curve
in Diff(M) joining its endpoints, while its projection to Dens(M) gives the
shortest curve joining the corresponding densities. This description is based
on the following theorem on polar decomposition: every diffeomorphism η ∈
Diff(M) has a unique decomposition η = gr ◦ϕ into a “gradient map” gr(x) :=
expM (∇φ(x)) for a c-concave potential −φ and a volume-preserving map ϕ
of M ; see [61, 256].

We return to the problem of finding optimal maps for moving the density
µ(x) to any other density ν(y) = h(y)µ(y), where h is a function on M . The
Jacobian of a map η that sends µ to ν = η∗µ satisfies the relation

h(η(x)) · det[∂η/∂x] = 1 .
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The polar decomposition theorem implies that in R
n the optimal map is the

gradient η = ∇f of a convex potential f , and the above relation assumes the
form of the Monge–Ampère equation on the potential:

det(Hess f(x)) =
1

h(∇f(x))
,

where Hess f := ∂(∇f)/∂x is the Hessian matrix of the function f . For a
manifold M the potential for the optimal map expM (∇φ) also satisfies the
Monge–Ampère-like equation

det
[∂ expM (∇φ)

∂x

]

=
1

h(expM (∇φ(x)))
,

where expM is the Riemannian exponential on the manifold M and −φ is a
c-concave potential. We refer to the books [374, 375] and papers [58, 256, 303]
for a comprehensive discussion of optimal transport.

5.3 The Hamiltonian Framework of the Riemannian Submersion

The Riemannian submersion property for the fibration Diff(M) → Dens(M)
can be put in the framework of symplectic reduction, discussed in Section I.5;
see [235]. Recall the following general construction in symplectic geometry.
Let π : P → B be a principal bundle with the structure group G.

Lemma 5.10 (see, e.g., [23]) The symplectic reduction of the cotangent
bundle T ∗P over the G-action gives the cotangent bundle T ∗B = T ∗P//G.

Proof. The moment map Φ : T ∗P → g∗ associated with this action takes
T ∗P to the dual of the Lie algebra g of the group G. For the G-action on T ∗P
the moment map Φ is the projection of any cotangent space T ∗

aP to cotangent
space T ∗

aF ≈ g∗ for the fiber F through a point a ∈ P . The preimage Φ−1(0)
of the zero value is the subbundle of T ∗P consisting of covectors vanishing on
fibers. Such covectors are naturally identified with covectors on the base B.
Thus factoring out the G-action, which moves the point a over the fiber F ,
we obtain the bundle T ∗B. �

Suppose now that P is equipped with a G-invariant Riemannian metric
〈 , 〉P . Then it induces the metric 〈 , 〉B on the base B.

Lemma 5.11 The Riemannian submersion of P (P, 〈 , 〉P ) to the base B,
equipped with the metrics 〈 , 〉P and 〈 , 〉B respectively, is the result of the
symplectic reduction with respect to the G-action.
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Proof. Indeed, the metric 〈 , 〉P gives a natural identification T ∗P ≈ TP of
the tangent and cotangent bundles for P , and the “projected metric” is equiv-
alent to a similar identification for the base manifold B. In the presence of the
metric in P , the preimage Φ−1(0) is identified with the subbundle of horizontal
spaces in TP : the zero value of the moment map stands for the orthogonal-
ity to the vertical (i.e., tangent to the fibers) spaces. Hence the symplectic
quotient Φ−1(0)/G can be identified with the tangent bundle TB. �

Let HP : T ∗P → R be a Hamiltonian function invariant under the G-
action on the cotangent bundle of the total space P . The restriction of this
function to the horizontal bundle (Φ−1(0) ⊂ T ∗P ) is also G-invariant, and
hence descends to a function HB : T ∗B → R on the quotient, the cotan-
gent bundle of the base B. One has the following reduction of Hamiltonian
dynamics:

Proposition 5.12 ([23]) The Hamiltonian flow of the function HP pre-
serves the preimage Φ−1(0); i.e., trajectories with horizontal initial conditions
stay horizontal. Furthermore, the Hamiltonian flow of the function HP on the
cotangent bundle T ∗P of the total space descends to the Hamiltonian flow of
the function HB on the cotangent bundle T ∗B of the base.

Apply the above consideration to our setting, in which P = Diff(M),
G = SDiff(M), and B = Dens(M). The above lemmas give a Hamiltonian
meaning to Proposition 5.6 on Riemannian submersion.

Now we would like to describe the geodesics on the spaces Diff(M)
and Dens(M). Recall that one of possible definitions of geodesics in any
Riemannian manifold M is that they are projections to M of trajectories
of the Hamiltonian flow on T ∗M , whose Hamiltonian function is the “kinetic
energy” KM (p, q) := (p, p)/2 given by this Riemannian metric. In the same
way, geodesics on Diff(M) and Dens(M) are obtained by considering the cor-
responding Hamiltonians for the metric 〈 , 〉Diff and metric Dist, respectively.

It will be convenient for us to identify the tangent and cotangent spaces
for the manifold M , as well as those for the group Diff(M), using the
corresponding metrics on them. Consider also a more general Hamiltonian
function HM on the (co)tangent bundle TM of the manifold M . The aver-
aged Hamiltonian function is the function HDiff on the (co)tangent bundle
TDiff(M) of the diffeomorphism group Diff(M) obtained by averaging the
corresponding Hamiltonian HM over M in the following way: its value at a
point X ◦ η ∈ TηDiff(M) is

HDiff(X ◦ η) :=
∫

M

HM (X ◦ η(x))µ(x)

for a vector field X ∈ Vect(M) and a diffeomorphism η ∈ Diff(M). For in-
stance, the energy Hamiltonian KDiff(X◦η) := 1

2 〈X◦η,X◦η〉Diff on TDiff(M)
is the averaging of the “kinetic energy” Hamiltonian KM defined on TM .
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Consider the Hamiltonian flows for the Hamiltonian functions HM and
HDiff on the (co)tangent bundles TM and TDiff(M), respectively, relative to
the standard symplectic structures on the bundles.

Theorem 5.13 ([235]) Each Hamiltonian trajectory for the averaged Hamil-
tonian functions HDiff on TDiff(M) describes such a flow on the tangent
bundle TM in which every tangent vector to M moves along its own HM -
Hamiltonian trajectory in TM .

This theorem has the following simple geometric meaning for the energy
Hamiltonians KDiff and KM . It implies that all geodesics on the diffeomor-
phism group Diff(M) (described by the Burgers equation; see Proposition 5.1)
starting at the identity id with the initial velocity X ∈ Vect(M) are the flows
that move each particle x on the manifold M along the geodesic with the
initial direction X(x). Such a geodesic is well defined on the diffeomorphism
group Diff(M) as long as the particles do not collide.

Furthermore, Proposition 5.12 implies that a geodesic on Diff(M) with
potential initial condition will stay potential (cf. Corollary 5.7). Finally, since
the metric on Diff(M) is SDiff-invariant, so is the energy Hamiltonian KDiff,
and hence it descends to the energy Hamiltonian on TDens(M). The latter
describes the geodesics on the density space Dens(M) with respect to the met-
ric Dist. This way one recovers the geodesic properties of the group Diff(M)
discussed above.

Remark 5.14 For a more general Hamiltonian HM on the tangent bun-
dle TM , each particle x ∈ M with an initial velocity X(x) will be moving
along its characteristic, which is the projection to M of the corresponding
Hamiltonian trajectory in the tangent bundle TM . This description for more
general Hamiltonians allows one to extend the above description of geodesics
to other situations, and in particular, to the case of nonholonomic distributions
(i.e., to sub-Riemannian, or Carnot–Carathéodory, spaces); see [9, 188, 235].

Note that the above Hamiltonian framework is also valid for more general
cost functions c : M ×M → R, which can replace dist2 in the mass transport
problem (5.23).
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A.6 Metrics and Diameters of the Group of Hamiltonian
Diffeomorphisms

6.1 The Hofer Metric and Bi-invariant Pseudometrics
on the Group of Hamiltonian Diffeomorphisms

Let M be a symplectic manifold of dimension 2n with a symplectic form ω.
Consider the space F(M) of Hamiltonian functions on M normalized in the
following way. For a closed manifold M we define F(M) as the space of smooth
functions with zero mean with respect to the canonical volume form ωn. For
an open M , the space F(M) consists of all smooth functions with compact
support. In either case, F(M) is a Lie algebra with respect to the Poisson
bracket related to ω or, equivalently, the Lie algebra of the corresponding
Hamiltonian vector fields on M . (Note that this algebra can be endowed with
an invariant inner product 〈H,K〉 :=

∫

M
HK ωn, where H,K ∈ F(M).)

Consider the corresponding group Hamc(M) of all compactly supported
Hamiltonian diffeomorphisms of M , which are time-one maps of time-
dependent Hamiltonian fields with Hamiltonian functions from F(M). In
Sections II.3.6 and II.6.2 we saw that the infinite-dimensional group Ham(M),
as well as Hamc(M), admits left-invariant lp-metrics, which depend on the
choice of a Riemannian metric on the manifold M . It turns out that the
group Hamc(M) does in fact admit a bi-invariant metric, which depends only
on the symplectic structure on M .

Definition 6.1 Set the energy of a Hamiltonian diffeomorphism ϕ ∈
Hamc(M) to be

E(ϕ) := inf
H

(

sup
x,t

H(x, t) − inf
x,t

H(x, t)
)

,

where (x, t) ∈ M × [0, 1] and H runs over the set of all compactly supported
time-dependent Hamiltonian functions H : M× [0, 1] → R whose Hamiltonian
vector field has the given diffeomorphism ϕ as the time-one map. The Hofer
metric defines the distance on the group Hamc(M) as

ρE(ψ,ϕ) = E(ψϕ−1)

for any two compactly supported Hamiltonian diffeomorphisms ψ and ϕ.

Exercise 6.2 Verify that

E(ϕ) = E(ϕ−1) = E(ψϕψ−1) and E(ψϕ) ≤ E(ψ) + E(ϕ) ,

so that ρE(ψ,ϕ) is a pseudometric, i.e., it is symmetric, bi-invariant, and
satisfies the triangle inequality.
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The following theorem is due to Hofer [166] in the case of R
2n with the

standard symplectic form and to Lalonde–McDuff [227] in the case of general
symplectic manifolds.

Theorem 6.3 The pseudometric ρE is a genuine bi-invariant metric on the
group Hamc(M). That is, in addition to nonnegativity, symmetry, and the
triangle inequality, the relation ρE(ψ,ϕ) = 0 implies ψ = ϕ.

Remark 6.4 One can define the lp-length of a curve in the group Hamc(M)
for any Lp-norm on the space F(M). Given the Hamiltonian function Ht of
a path ϕt in Hamc(M), we set

lp(ϕt) =
∫ 1

0

‖Ht‖Lp
dt .

The length functional lp generates a bi-invariant pseudometric ρp on the group
Hamc(M). It is shown in [98] that the pseudometric ρp is not a metric for any
p < ∞. However, for p = ∞ one can show that ρ∞ is indeed a metric, and it
is equivalent to Hofer’s metric ρE .

One of the key ingredients in the proofs of these statements is the notion
of a displacement energy and its estimates. The displacement energy eρ(S)
of a subset S ⊂ M is the (pseudo-) distance in Hamc(M) from the identity
diffeomorphism to the set of all Hamiltonian diffeomorphisms that push S
away from itself:

eρ(S) := inf{ρ(id, ϕ) | ϕ ∈ Hamc(M) such that ϕ(S) ∩ S = ∅} .

Theorem 6.5 ([98]) If ρ is a bi-invariant nondegenerate metric on the group
Hamc(M), then the displacement energy eρ(S) is positive for any open bounded
set S.

On the other hand, for the metric ρp with any p < ∞ one can show that
the displacement energy of an embedded ball B ⊂ M is zero. Indeed, suppose
that the Hamiltonian flow gH

t with the (compactly supported) Hamiltonian
function H : M × [0, 1] → R pushes B from itself: gH

t=1(B) ∩ B = ∅. Intro-
duce the new Hamiltonian function K(·, t) by cutting off H(·, t) outside a
neighborhood Ut ⊂ M of the moving boundary gH

t (∂B). The flows of K and
H coincide on (∂B)t for any t, and hence gK

t=1(B) ∩ B = ∅. Now we note
that for any p < ∞, the Lp-norm of K(·, t) can be made arbitrarily small for
all t ∈ [0, 1] by choosing a sufficiently narrow neighborhood Ut, and hence
ρp(id, gK

t=1) can likewise be made arbitrarily small. The latter implies that
eρp

(B) = 0 for p < ∞. Summarizing, in the Lp-norm one can push the ball
from itself with arbitrarily small energy, but one must pay for this by fast
rotation near the boundary (∂B)t. This fast rotation comes from the steep
(skew-)gradients of the cutoff function K(·, t).
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Of course, this consideration is not applicable to Hofer’s (p = ∞) case,
since the L∞-norm of K(·, t) does not depend on the area of Ut. (See more
details on the material of this section in [317].)

As to the diameter results in Hofer’s metric, we just mention that for a
symplectic manifold M with boundary, the group Ham∂(M) of Hamiltonian
diffeomorphisms of M that are stationary on the boundary ∂M has infinite
diameter. The case of the two-sphere was settled by Polterovich [316]: the
group Ham(S2) also has infinite diameter in Hofer’s metric.

6.2 The Infinite L2-Diameter of the Group of Hamiltonian
Diffeomorphisms

In this section we prove a simplified version of Theorem II.3.46 of Eliashberg
and Ratiu on the infinite diameter of the group of Hamiltonian diffeomor-
phisms in a right-invariant metric.

Let B2n ⊂ R
2n be the 2n-dimensional unit ball with the standard sym-

plectic form ω = dx∧dy. Denote by Ham∂(B2n) the group of its Hamiltonian
diffeomorphisms that are the identity when restricted to the boundary ∂B2n.

Theorem 6.6 ([99]) The L2-diameter of the group Ham∂(B2n) of Hamil-
tonian diffeomorphisms that are stationary on the boundary ∂B2n is infinite.

To prove this theorem we first need to define the Calabi invariant for such
Hamiltonian diffeomorphisms. Fix some 1-form α such that ω = dα.

Definition / Proposition 6.7 Given a 1-form α on B2n and a Hamiltonian
diffeomorphism ϕ ∈ Ham∂(B2n), there exists a unique function h : B2n → R

vanishing with its gradient on ∂B2n such that dh = ϕ∗α− α.
The Calabi invariant of a Hamiltonian diffeomorphism ϕ ∈ Ham∂(B2n) is

defined by

Cal(ϕ) :=
1

n+ 1

∫

B2n

hωn .

It does not depend on the choice of α satisfying ω = dα.

Proof. First, we prove the existence of the function h. To this end, observe
that the 1-form ϕ∗α− α is closed. Indeed, we have

d(ϕ∗α− α) = ϕ∗dα− dα = ϕ∗ω − ω = 0 ,

since ϕ preserves the symplectic form ω. The closed 1-form ϕ∗α − α must
be exact in the ball B2n. So there exists a function h on B2n such that
dh = ϕ∗α − α. The fact that ϕ restricted to the boundary of B2n is the
identity gives the condition ∇h|∂B2n = 0. The condition h|∂B2n = 0 fixes h
uniquely.
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To see that the Calabi invariant is indeed independent of the choice of the
1-form α, suppose that we have another 1-form α̃ = α + df . Then we obtain
˜h = h+ (ϕ∗f − f), and the required independence follows from

∫

B2n

(ϕ∗f)ωn =
∫

B2n

fωn ,

which holds since ϕ preserves ω. �

Remark 6.8 The Calabi invariant Cal : Ham∂(B2n) → R is a homomor-
phism. Indeed, if ϕ = ϕ2 ◦ ϕ1, then we have

dh = ϕ∗α− α = ϕ∗
2(ϕ

∗
1α) − ϕ∗

2α+ ϕ∗
2α− α = ϕ∗

2dh1 + dh2 ,

so that we obtain
∫

B2n

hωn =
∫

B2n

h1ω
n +

∫

B2n

h2ω
n .

There is an alternative definition of the Calabi invariant Cal(ϕ): Let
{ϕt | 0 ≤ t ≤ T} be a path in Ham∂(B2n) connecting ϕ0 = id, and ϕT = ϕ.
This path may be regarded as the flow of a time-dependent Hamiltonian vector
field on B2n. We denote by Ht : B2n× [0, T ] → R the Hamiltonian function of
this vector field at time t normalized by the condition that it vanish on ∂B2n

along with its differential.

H

t

B2n

Fig. 6.1. Graph of the function Ht : B2n × [0, T ] → R.

Theorem 6.9 The Calabi invariant of a Hamiltonian diffeomorphism ϕ of
B2n is equal to the total integral of the Hamiltonian function Ht:

Cal(ϕ) =
∫ T

0

(∫

B2n

Htω
n

)

dt .

In particular, this integral does not depend on the choice of the connecting
path ϕt, i.e., on the choice of the Hamiltonian Ht, provided that the time-one
map ϕT = ϕ is fixed.



254 Appendices

Proof. Let ϕt be a path in Ham(B2n) such that ϕ0 = id and ϕT = ϕ. For
each t ∈ [0, T ], denote by ht the corresponding function from Proposition 6.7.
We have to show that

∫

B2n

hT ωn = (n+ 1)
∫ T

0

(∫

B2n

Ht ω
n

)

dt . (6.24)

Due to the homomorphism property of the Calabi invariant, it is enough to
prove this equality for an infinitesimally short time T . That is, it suffices to
show that the derivatives of both sides with respect to t at t = 0 coincide. We
therefore need to prove the following identity:

∫

B2n

(

d

dt

∣

∣

∣

t=0
ht

)

ωn = (n+ 1)
∫

B2n

H0 ω
n .

Let ξ be the Hamiltonian vector field ξ = d
dt |t=0ϕt. Then, by the definition

of the function ht in Proposition 6.7, we get

d

(

d

dt

∣

∣

∣

t=0
ht

)

= Lξα , (6.25)

where Lξα denotes the Lie derivative of the 1-form α with respect to the
vector field ξ. Now apply Cartan’s formula to obtain

Lξα = dιξα+ ιξdα = d(ιξα+H0) , (6.26)

since H0 is the Hamiltonian function corresponding to the vector field ξ, i.e.,
dH0 = ιξω = ιξdα. Equations (6.25) and (6.26) allow one to reconstruct
d
dt |t=0ht:

d

dt
|t=0ht = ιξα+H0 .

(As a matter of fact, the above formulas allow one to find the derivative up
to an additive constant. The vanishing boundary conditions for ht, ξ, and Ht

force this constant to be 0.) Then Theorem 6.9 would follow from the following
lemma.

Lemma 6.10
∫

B2n

(ιξα)ωn = n

∫

B2n

H0 ω
n .

Proof of Lemma. We have
∫

B2n

(ιξα)ωn =
∫

B2n

α ∧ ιξ(ωn)

= n

∫

B2n

α ∧ ιξω ∧ ωn−1 = n

∫

B2n

α ∧ dH0 ∧ ωn−1

= n

∫

B2n

H0 dα ∧ ωn−1 − n

∫

∂B2n

α ∧H0 ∧ ωn−1 = n

∫

B2n

H0 ω
n ,
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where in the second-to-last equality we used the Stokes formula. The boundary
term vanishes due to the boundary conditions on the function H0. This ends
the proof of Lemma 6.10. �

Now Theorem 6.9 follows from
∫

B2n

(

d

dt

∣

∣

∣

t=0
ht

)

ωn =
∫

B2n

(ιξα+H0)ωn = (n+ 1)
∫

B2n

H0 ω
n .

�

Finally, we are ready to complete the proof of Theorem 6.6 for the group
of Hamiltonian diffeomorphisms on M = B2n that are stationary on the
boundary ∂B2n.

Proof of Theorem 6.6. Let µ = ωn be the volume form corresponding to
the standard symplectic structure on R

2n. The L2-length of a path ϕt joining
the identity ϕ0 = id and an arbitrary Hamiltonian diffeomorphism ϕ1 = ϕ is
given by

�2{ϕt} =
∫ 1

0

‖∂t ϕt‖L2(B2n) dt =
∫ 1

0

‖∇Ht(ϕt)‖L2(B2n) dt

=
∫ 1

0

‖∇Ht‖L2(B2n) dt ,

where the last equality holds since ϕt preserves µ. Now the estimate follows
from the Poincaré and Schwarz inequalities:

�2{ϕt} =
∫ 1

0

‖∇Ht‖L2(B2n) dt ≥ c1

∫ 1

0

‖Ht‖L2(B2n) dt ≥ c2

∫ 1

0

‖Ht‖L1(B2n) dt

≥c2
∣

∣

∣

∣

∫ 1

0

(∫

B2n

Ht µ

)

dt

∣

∣

∣

∣

= c2
∣

∣Cal(ϕ)
∣

∣ .

Finally, since Cal : Ham∂(B2n) → R is a nontrivial homomorphism, one can
find a Hamiltonian diffeomorphism of B2n with an arbitrarily large value of
the Calabi invariant. (For instance, one can take a multiple of the hill function
shown in Figure II.3.6.) �
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A.7 Semidirect Extensions of the Diffeomorphism
Group and Gas Dynamics

In this appendix we obtain the equations of motion of a barotropic fluid as
the Hamiltonian equations on the dual Lie algebra to the semidirect product
group G = Diff(M) � C∞(M). Although we keep the consideration below in
the form of a sequence of exercises, it furnishes the necessary details for the
outline in Section II.3.4; see also [253, 24, 90].

Let M be a compact Riemannian manifold. Recall that the group multi-
plication in the semidirect product Diff(M) � C∞(M) is given by

(ϕ, f) · (ψ, g) = (ϕ ◦ ψ,ϕ∗g + f) ,

where a pair (ϕ, f) consists of a diffeomorphism ϕ and a smooth function f on
the manifold M , and ϕ∗g = g ◦ ϕ−1 denotes the pushforward of the function
g by the diffeomorphism ϕ; see Figure II.3.2. The corresponding Lie algebra
is the semidirect product Vect(M) �C∞(M), which is Vect(M)⊕C∞(M) as
a vector space.

Exercise 7.1 Show that the adjoint representation of the group Diff(M) �

C∞(M) on its Lie algebra Vect(M) � C∞(M) is given by

Ad(ϕ,f)(ξ, a) = (ϕ∗ξ, Lξf + ϕ∗a) .

Obtain from this formula that the infinitesimal adjoint action of the Lie alge-
bra of Diff(M) � C∞(M) on Vect(M) � C∞(M) is given by

ad(v,b)(ξ, a) = (−Lvξ, Lξb− Lva) , (7.27)

where Lvξ denotes the usual bracket of two vector fields v and ξ on the
manifold M .

Exercise 7.2 Show that the smooth part of the dual to the space Vect(M)⊕
C∞(M) can be identified with the space (Ω1(M)⊗C∞(M) Ω

n(M))⊕Ωn(M)
via the pairing

〈(ξ, a), (α⊗ µ, ν)〉 =
∫

M

(ιξα) · µ+
∫

M

aν .

To shorten the notation we denote the latter space by (Ω1 ⊗Ωn ⊕Ωn)(M).

Exercise 7.3 Verify that the coadjoint action of the group Diff(M)�C∞(M)
on the space (Ω1 ⊗Ωn ⊕Ωn)(M) is given by

Ad∗
(ϕ,f)−1(α⊗ η, ν) = (ϕ∗α⊗ ϕ∗η + ϕ∗df ⊗ ϕ∗ν, ϕ∗ν) . (7.28)

Hint: Recall that the coadjoint action of the group Diff(M) � C∞(M) on
(Ω1 ⊗Ωn ⊕Ωn)(M) is defined by
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〈(ξ, a),Ad∗
(ϕ,f)−1(α⊗ µ, ν)〉 = 〈Ad(ϕ,f)(ξ, a), (α⊗ µ, ν)〉 .

Use equation (7.28) to derive the following equation for the coadjoint action
of the Lie algebra of Diff(M) � C∞(M) on (Ω1 ⊗Ωn ⊕Ωn)(M):

ad∗
(v,b)(α⊗ µ, ν) = − ( (Lvα) ⊗ µ+ α⊗ Lvµ+ db⊗ ν, Lvν) .

Alternatively, one can use equation (7.27) and the relation

−〈ad∗
(v,b)(α⊗ µ, ν), (ξ, a)〉 = 〈(α⊗ µ, ν), ad(v,b)(ξ, a)〉 .

Remark 7.4 The above explicit expression for Ad∗ helps in finding certain
Casimir functions for this group. Note that the ratio α⊗µ/ν has the “dimen-
sion” of a 1-form. One can see that the Ad∗

(ϕ,f)−1-action on the pair (α⊗µ, ν)
“changes the coordinates” by the diffeomorphism ϕ in this ratio 1-form mod-
ulo the differential of a function. This allows one to write out Casimir functions
for the coadjoint action of the group Diff(M) � C∞(M) similar to the ones
for SDiff(M); cf. Proposition II.3.9 and see [307, 187].

Now we are in a position to write down the Euler equation on the group
Diff(M)�C∞(M). Recall that M is a Riemannian manifold with a Riemann-
ian metric ( , ). Fix a volume form µ on M (not necessarily related to the
metric). Finally, recall that in the equations of motion of a barotropic fluid
on M we need to specify a function h : C∞(M) → C∞(M) relating density ρ
to the pressure p = h(ρ).

Define a Hamiltonian ˜H : Vect(M) ⊕ C∞(M) → R by

˜H(ξ, ρ) :=
∫

M

(

1
2
(ξ, ξ)ρ+ ρΦ(ρ)

)

µ ,

where Φ(ρ) is a function satisfying ρ2Φ′(ρ) = h(ρ).
In order to write down the corresponding Euler equation we need to lift

this Hamiltonian to the dual of the Lie algebra. Let us fix a (nonlinear!) inertia
operator A from the Lie algebra Vect(M) � C∞(M) to its dual (Ω1 ⊗ Ωn ⊕
Ωn)(M) via

A(ξ, ρ) = (ξ� ⊗ ρµ, ρµ) ,

where ξ� is the 1-form on M that is obtained from the vector field ξ by “raising
the indices” ξ� = (ξ, . ) with the help of the Riemannian metric.

Remark 7.5 From now on we restrict our attention to the (open) subset
of the space Vect(M) ⊕ C∞(M) consisting of pairs (ξ, ρ) such that ρ > 0
everywhere. The reason is that the inertia operator A restricted to this set
is bijective: given any pair (α ⊗ ν, θ) with θ = ρµ, we can write (α ⊗ ν, θ) =
(β ⊗ ρµ, ρµ) for some 1-form β provided that ρ is nonzero. This is consistent
with the physical interpretation of ρ as the density of a fluid, which should be
nowhere zero.



258 Appendices

By pulling back the Hamiltonian ˜H via the inertia operator A, we get a
Hamiltonian function H on the image of A in (Ω1 ⊗Ωn ⊕Ωn)(M). Explicitly
it is given by

H(α⊗ θ, θ) =
∫

M

1
2
(α, α)θ +

∫

M

ρΦ(ρ)θ ,

where ρ ∈ C∞(M) is chosen such that θ = ρµ.
Now let m = (α⊗ θ, θ) be a point in (Ω1 ⊗Ωn ⊕Ωn)(M). Then the vari-

ational derivative δH/δm of H at the point m is an element of the (smooth)
dual of (Ω1 ⊗Ωn ⊕Ωn)(M) and hence of the space Vect(M) ⊕ C∞(M).

Exercise 7.6 Show that the variational derivative δH
δm of H at the point m =

(α⊗ θ, θ) is given by

δH

δm
=
(

α�,
1
2
(α, α) + ρΦ′(ρ) + Φ(ρ)

)

,

where α� denotes the vector field on the manifold M obtained from the 1-form
α by “lowering the indexes” with the help of the metric on M : α� = (α, . ).
As before, the function ρ is such that θ = ρµ.

Hint: Use the definition of δH/δm evaluated on a tangent vector v at the
point m as the directional derivative:

〈

δH

δm
, v

〉

=
d

dt

∣

∣

∣

t=0
H(m+ tv) .

Show that the directional derivative of H at the point m = (α ⊗ θ, θ) in the
direction (β ⊗ θ, 0) is given by

d

dt

∣

∣

∣

t=0
H((α+ tβ) ⊗ θ, θ) = 〈(α�, 0), (β ⊗ θ, θ)〉 .

Similarly, the directional derivative of H in the θ-direction is given by

d

dt

∣

∣

∣

t=0
H((α⊗(θ+tφ), (θ+tφ)) =

〈

(

0,
1
2
(α, α) + ρΦ′(ρ) + Φ(ρ)

)

, (α⊗ φ, φ)
〉

.

Finally, we are in a position to find explicitly the Euler equation

ṁ = − ad∗
δH
δm

m,

corresponding to the negative of the above Hamiltonian H on the dual to the
Lie algebra Vect(M) � C∞(M).

Exercise 7.7 Verify that the Euler equation corresponding to the Hamil-
tonian −H is the Euler equation of a barotropic (compressible) fluid

{

ρ ∂tξ = −ρ (ξ,∇)ξ −∇h(ρ) ,
∂tρ+ div(ρ ξ) = 0 .

(7.29)
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Find the equations of gas dynamics corresponding to h(ρ) = const · ρa.
Hint: Use the fact that our choice of Φ : C∞(M) → C∞(M) satisfies

ρ2Φ′(ρ) = h(ρ). This implies

ρ d(ρΦ′(ρ) + Φ(ρ)) = d h(ρ) .
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A.8 The Drinfeld–Sokolov Reduction

Here we show that the quadratic (or second) Adler–Gelfand–Dickey Poisson
structure on the space of smooth nth-order differential operators on the circle,
which appeared in Section II.4.6 from the Poisson Lie group of pseudodifferen-
tial symbols, can also be obtained by a Hamiltonian reduction from the dual
of the affine Lie algebra L̂gln. (To simplify notation we use Lgln for Lgl(n) in
this appendix.)

8.1 The Drinfeld–Sokolov Construction

Recall that the (smooth) dual of the affine Lie algebra L̂gln can be identified
with the space of first-order differential operators {−a∂ + A | A ∈ Lgln, a ∈
R}; see Section II.1.2. (Here ∂ stands for d/dθ for a fixed parameter θ on the
circle.) In this identification, the coadjoint action of the group LGLn on the
operator −a∂ +A is simply the gauge action on differential operators:

g : −a∂ +A �→ −a∂ + gAg−1 + ag′g−1 .

For the rest of this section we consider the (a = −1)-hyperplane.
Let N− ⊂ LGLn be the subgroup of LGLn consisting of loops with val-

ues in the lower triangular matrices with 1’s on the diagonal. Denote by
n− ⊂ Lgln its Lie algebra of loops assuming values in strictly lower tri-
angular matrices. Note that n− can also be regarded as a Lie subalgebra
n− ⊂ ̂Lgln of the affine Lie algebra. (Indeed, the restriction of the 2-cocycle
ω(X,Y ) =

∫

S1 tr(X(θ)Y ′(θ)) dθ defining the affine algebra vanishes if both X
and Y are lower triangular, i.e., belong to n−.)

The (smooth) dual space n∗
− can be thought of as the space n+ of loops in

strictly upper triangular matrices with the nondegenerate pairing

〈X,Y 〉 =
∫

S1
tr(X(θ)Y (θ)) dθ

between n− and n+.
Consider the affine hyperplane {∂+A | A ∈ Lgln} in the dual space L̂gln

∗
.

The group N−, as a subgroup of the extended loop group L̂GLn, acts on this
hyperplane by the coadjoint action.

Lemma 8.1 The action of the group N− on the affine hyperplane {∂+A | A ∈
Lgln} is Hamiltonian with the moment map Φ : {∂ + A | A ∈ Lgln} → n+

given by the natural projection of a matrix A to its strictly upper triangular
part (which is an element of n+).

Proof. This is a manifestation of a general fact: For a Lie subalgebra n ⊂ g,
the natural projection of the dual spaces g∗ → n∗ is the moment map for the
coadjoint action of the corresponding group N on g∗. �



A.8. The Drinfeld–Sokolov Reduction 261

Now we can perform the Hamiltonian reduction: Let Λ ∈ n∗
− = n+ be the

matrix with −1’s on the superdiagonal and zeros everywhere else:

Λ :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −1 0 0
. . . . . . . . .

. . . . . . 0
. . . −1

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The inverse image of Λ under the moment map Φ is the set of differential
operators Φ−1(Λ) = {∂ + B + Λ}, where B runs over all loops in nonstrictly
lower triangular matrices:

Φ−1(Λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂ +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∗ −1 0 0
. . . . . . . . .

. . . . . . 0
. . . −1

∗ ∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

Proposition 8.2 (i) The matrix Λ is fixed under the (conjugation) action of
the group N− on the dual n∗

− = n+. Hence the inverse image Φ−1(Λ) is a
union of N−-orbits.

(ii) In every N−-orbit in Φ−1(Λ) there is a unique element ∂ + R, where
the matrix R is of the form

R =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −1 0 0
. . . . . . . . .

...
. . . . . . 0

0 . . . 0 −1
u0 u1 · · · · · · un−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(8.30)

for some u0, . . . , un−1 ∈ C∞(S1).

Proposition 8.2 shows that the quotient Φ−1(Λ)/N− can be regarded as the
set Ln of smooth monic nth-order differential operators on S1 by identifying
the differential operator ∂ +R with the nth-order differential operator

L = ∂n + un−1∂
n−1 + · · · + u0 .

Namely, given an nth-order differential operator L as above, the ordinary
differential equation
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Lψ = 0

of order n is equivalent to the system of first-order differential equations

∂Ψ +RΨ = 0 ,

where R is the matrix of type (8.30) and Ψ is a vector-solution, Ψ =
(ψ0, . . . , ψn−1)t. The equivalence of the two equations comes from setting
ψ0 := ψ. Then the first n − 1 equations of the system imply ψ1 :=
ψ′, . . . , ψn−1 := ψ(n−1), while the last equation of the system reads ψ(n) +
un−1ψ

(n−1) + · · · + u0ψ = 0, i.e., Lψ = 0.
Return to the whole affine space {∂ + A | A ∈ Lgln} of all matrix differ-

ential operators, regarded as a hyperplane in the smooth dual of the affine
Lie algebra L̂gln. It carries a natural Poisson structure, which is the linear
Lie–Poisson structure on the dual L̂gln

∗
, restricted to this hyperplane. This

linear Poisson structure produces a certain Poisson structure on the symplec-
tic quotient Φ−1(Λ)/N− as a result of the Hamiltonian reduction; see Section
I.5. The theorem of Drinfeld and Sokolov states that this Poisson structure
coincides with the quadratic Gelfand–Dickey Poisson structure on the space
Ln = {L} of (monic) nth-order differential operators L:

Theorem 8.3 (Drinfeld–Sokolov [88]) The Poisson structure on the quo-
tient Φ−1(Λ)/N− coincides with the quadratic (or second) Gelfand–Dickey
structure on the space Ln of smooth monic nth-order differential operators on
the circle.

We refer to the original paper [88] or to the book [80] for a proof by direct
calculation. Below we shall prove this fact using ideas from the Poisson Lie
groups combined with the approach in [115].

Remark 8.4 The linear (or first) Gelfand–Dickey structure can also be ob-
tained by the Hamiltonian reduction from the smooth dual of the affine Lie
algebra L̂gln. Just as the quadratic Gelfand–Dickey structure is obtained from
the reduction of the linear Lie–Poisson structure on L̂gln

∗
, the linear Gelfand–

Dickey structure comes from a constant Poisson structure on L̂gln

∗
. Details

on how to choose the freezing point and to perform the reduction can be
found, for example, in [88, 31]. The Drinfeld–Sokolov reduction has also been
generalized to pseudodifferential symbols of arbitrary complex degree α ∈ C

in [191]. In this case, the matrix algebra gln is replaced by the “Lie algebra
of matrices of complex size α × α,” which was introduced by Feigin in [116].
A q-analogue of the universal Drinfeld–Sokolov reduction for complex degrees
is described in [314]. There is also a version of the Drinfeld–Sokolov reduction
associated to any simple subalgebra of gln [88].
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8.2 The Kupershmidt–Wilson Theorem and the Proofs

We start with the proof for the explicit identification Ln 
 Φ−1(Λ)/N− for
the result of the Drinfeld–Sokolov Hamiltonian reduction.

Proof of Proposition 8.2. (i) To show that the point Λ ∈ n+ = n∗
− is

a one-point N−-coadjoint orbit, we note that the corresponding Lie algebra
action on this point vanishes. Indeed, this action by an element N− ∈ n− is
the projection of [N−, ∂ + Λ] to n+, i.e., taking the upper triangular part of
the commutator, while for a lower triangular current N− this commutator is
always zero above the diagonal.

(ii) Let ∂ + C be an element of the preimage Φ−1(Λ) for Λ as above, i.e.,
the current C has the form B+Λ, where B ∈ Lgln is a loop in lower triangular
matrices (including the diagonal). To the system of differential equations

∂Ψ + CΨ = 0

with Ψ = (ψ0, . . . , ψn−1)t we associate the following nth-order differential
equation LCψ = 0 for ψ = ψ0. This system has the form

ψ′
i +

i
∑

j=0

ci,jψj = ψi+1 for i = 0, . . . , n− 2 , (8.31)

ψ′
n−1 +

n−1
∑

j=0

cn−1,jψj = 0 . (8.32)

By expressing in succession all the ψi in terms of ψ0, the last relation leads
to the equation LCψ0 = 0. Note that different matrix operators ∂ + C can
correspond to one and the same nth-order operator LC .

First we show that two matrix differential operators ∂+C and ∂+ ˜C that
lie in the same N−-orbit in Φ−1(Λ) give rise to the same nth-order differential
operator: LC = L

˜C . Indeed, such matrix operators are gauge equivalent with
the help of a lower triangular transformation g ∈ N−, and hence their vector-
solutions are related by ˜Ψ = gΨ . Since g has 1’s on the diagonal, the first
coordinate ψ0 of the vector-solution Ψ , which defines the nth-order differential
equation, does not change: ˜ψ0 = ψ0. Now it is enough to note that two monic
nth-order differential operators with the same solution sets coincide, since ψ0

was an arbitrary solution of LCψ0 = 0.
In the other direction we have to show that if the nth-order differential

operators LC and L
˜C coincide, then there exists a gauge transformation g ∈

N− that sends ∂+C to ∂+ ˜C, i.e., such that C̃ = gCg−1−g′g−1. To this end,
let Ψ be a vector-solution of ∂Ψ + CΨ = 0 and let ˜Ψ be a vector-solution of
∂ ˜Ψ + ˜C ˜Ψ = 0. Since the corresponding nth-order equations LCψ = L

˜Cψ = 0
coincide, we can assume that ψ0 = ˜ψ0. Now, comparing the vector-solutions
Ψ and ˜Ψ entry by entry and using the triangular form of the corresponding
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equations (8.31) they satisfy, we find that the transformation from Ψ to ˜Ψ

is also lower triangular with 1’s on the diagonal: ˜Ψ = gΨ for g ∈ N−. This
implies that ∂ + C and ∂ + ˜C lie in the same N−-orbit in Φ−1(Λ). �

Before proving the Drinfeld–Sokolov theorem we are going to derive the
“multiplicative” property of the quadratic Gelfand–Dickey bracket known as
the Kupershmidt–Wilson theorem.

For this purpose, consider the space of the first-order scalar differential
operators L1 := {L = ∂ + v | v ∈ C∞(S1)}. We define the following constant
Poisson bracket on the space of such operators (and discuss the origin for this
Poisson structure a little later). Namely, if F (v) and G(v) are two functionals
on the space L1, their Poisson bracket is

{F,G}(v) :=
∫

S1

δF

δv

(

δG

δv

)′
dθ ,

where δF/δv is the variational derivative of F . This bracket is a constant
Poisson bracket on L1 (cf. Definition I.4.20): the corresponding contraction
of the variational derivatives does not depend on v itself. The Hamiltonian
vector field on L1 corresponding to a linear functional Ff (v) :=

∫

f · v dθ
assumes the value Vf (L) := −f ′ at L = ∂ + v.

Consider now the product L1 × · · · ×L1 → Ln of several first-order differ-
ential operators to obtain one nth-order differential operator:

((∂ + vn−1), . . . , (∂ + v0)) �→ L = (∂ + vn−1) ◦ · · · ◦ (∂ + v0)

= ∂n + un−1∂
n−1 + · · · + u0 .

Definition 8.5 The map {vi} → {uj} given by the product of differential
operators L1 × · · · × L1 → Ln is called the Miura transformation.

Theorem 8.6 (Kupershmidt–Wilson [226]) The Miura transformation
sends the constant Poisson bracket on the product L1 × · · · × L1 of first-
order operators to the quadratic Gelfand–Dickey bracket on the space Ln of
nth-order differential operators.

Proof. Recall that both the spaces L1 and Ln are Poisson submanifolds in
the Poisson Lie group ˜GINT of pseudodifferential symbols. In turn, the group
multiplication on any Poisson Lie group maps the Poisson structure on the
square of this group to the Poisson structure of this group itself. For the group
˜GINT this implies that the Gelfand–Dickey bracket restricted to (several copies
of) the Poisson submanifolds L1 is mapped by the group product, which is the
multiplication of differential operators, to the Gelfand–Dickey bracket on Ln.

Now the theorem follows from the observation that the quadratic Gelfand–
Dickey structure restricted to the first-order operators L1 drastically simplifies
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and becomes exactly the constant Poisson bracket discussed above. In order
to see the latter we consider a cotangent vector X = ∂−1a to the space of
first-order differential operators L = ∂ + v. Then the corresponding Gelfand–
Dickey Hamiltonian field V 2

X(L) is given by

V 2
X(L) = (L ◦X)+ ◦ L− L ◦ (X ◦ L)+ = −a′ ,

which is exactly the Hamiltonian field in the constant Poisson bracket
above. �

Remark 8.7 The Hamiltonian property of the Miura map is important in
integrable systems. For instance, for n = 2 and L = ∂2 + u = (∂ − v)(∂ + v)
the Miura map gives u = v′ − v2. If the function u satisfies the KdV equation
ut = −3uu′ − (1/2)u′′′, then the function v satisfies the so called modified
KdV (or m-KdV) equation vt = 3v2v′ − (1/2)v′′′.

Now we are ready to prove the Drinfeld–Sokolov reduction theorem.

Proof of Theorem 8.3. We would like to show that the linear Lie–
Poisson structure descends from L̂gln

∗
to the quadratic Poisson structure on

the quotient of Φ−1(Λ) over the N−-action:

Φ−1(Λ)/N− 
 {∂ +R} = Ln .

For this purpose we take an auxiliary step: we first restrict the linear Poisson
bracket from L̂gln

∗
not to Φ−1(Λ), but to a certain subspace, and after that

we take the quotient from this subspace to {∂ +R}.
This auxiliary (affine) subspace {∂ +P} ⊂ Φ−1(Λ) consists of all currents

P of the form

P =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

v0 −1 0 0

0
. . . . . . . . .
. . . . . . . . . 0

. . . . . . −1
0 0 vn−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (8.33)

This subspace has the “same functional dimension” as Ln. (Note, however,
that this subspace is not a section for the fibration Φ−1(Λ) → Ln given by the
N−-action: different operators ∂ + P can belong to the same N−-orbit and
then correspond to the same differential operator ∂+R, as we discuss below.)

The restriction of the linear Lie–Poisson structure from L̂gln

∗
to this sub-

space can be found explicitly.

Exercise 8.8 Verify that the linear Lie–Poisson structure from L̂gln

∗
re-

stricted to the subspace {∂ + P} gives the constant Poisson structure on the
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coefficients {vj} discussed above. (Hint: the Lie–Poisson bracket on this sub-
space is equivalent to the Lie structure on the centrally extended subalgebra
of loops in diagonal matrices under the identification we considered. The only
nontrivial term in the commutator between such “diagonal currents” comes
from the 2-cocycle. Finally, the affine 2-cocycle restricted to the diagonal part
can be thought of as the sum of several ̂Lgl1-cocycles c(a, b) =

∫

S1(a · b′) dθ.
The latter Lie algebra is an infinite-dimensional Heisenberg algebra, and it
corresponds to the constant Poisson bracket discussed above; see details in
[115].)

Now we note that this subspace {∂ + P} can be rewritten as the space
of nth-order differential operators {L} expressed as products of first-order
operators

L = (∂ + vn−1) ◦ · · · ◦ (∂ + v0) .

Indeed, the system of first-order differential equations (∂ + P )Ψ = 0 for a
vector-solution Ψ = (ψ0, . . . , ψn−1)t is equivalent to the scalar differential
equation Lψ = 0 under an identification similar to the one above. Namely,
we set ψ0 := ψ, which forces ψ1 := (∂ + v0)ψ0, ψ2 := (∂ + v1)ψ1 etc., while
(∂ + vn−1)ψn−1 = 0.

Thus the passage to the quotient {∂ + P} → {∂ + R} = Ln is the Miura
transform, and the Kupershmidt–Wilson theorem completes the proof: the
constant Poisson bracket on {∂ + P} becomes the quadratic Gelfand–Dickey
bracket on Ln = Φ−1(Λ)/N−. �
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A.9 The Lie Algebra gl∞

In this section we introduce yet another Lie algebra, gl∞, along with its central
extension ̂gl∞, which connects some of the algebras we encountered through-
out the book. In particular, the extended Lie algebra ̂gl∞ contains as subalge-
bras the Virasoro algebra, the centrally extended Lie algebra ̂DO of differential
operators on the circle, and the affine Lie algebras ̂Lgln for all n ∈ N.

9.1 The Lie Algebra gl∞ and Its Subalgebras

Definition 9.1 The space gl∞ consists of doubly infinite matrices that can
have nonzero entries only inside a strip of finite width around the main
diagonal:

gl∞ = {A = (aij)i,j∈Z | ∃ N such that aij = 0 for all i, j with |i− j| > N} .

The multiplication of two such matrices is well defined, since for the product
C = AB of two matrices A,B ∈ gl∞, the sum cij =

∑

k aikbkj is finite. The
Lie algebra gl∞ is the above space equipped with the Lie bracket [A,B] =
AB −BA.

This large Lie algebra has many interesting subalgebras.

Example 9.2 (Differential operators on the circle) Consider the space
C[z, z−1] of Laurent polynomials with coefficients in C. This space can be
identified with the space of vectors X = (xi)i∈Z of infinite length with only
finitely many nonzero entries. The Lie algebra gl∞ acts naturally on the latter
space by left multiplication. In this identification, the derivative operator z d

dz
is identified with the diagonal matrix D = (dij), where dii = i for all i ∈ Z,
and dij = 0 for all i �= j. Furthermore, the operator Z of multiplication by
the monomial z on C[z, z−1] is given by the shift matrix, which has ones on
the superdiagonal and zeros everywhere else: Z = (aij) with ai i+1 = 1 and
aij = 0 for all i, j with j �= i+ 1. Similarly, the operator Z−1 is given by the
matrix that has ones on the subdiagonal and zeros everywhere else.

The subspace in gl∞ generated by sums and compositions of the operators
D and Z realizes the Lie algebra of polynomial differential operators on the
circle as a subalgebra of gl∞. (We restrict our attention to differential opera-
tors whose coefficients are Laurent polynomials, instead of smooth functions
on the circle, in order to avoid convergence issues.) As before, one can use the
map z �→ eiθ to identify the operator iz d

dz with the usual derivative operator
∂θ on the circle.

Note that the above embedding of differential operators to gl∞ does not
extend to an embedding of (polynomial) pseudodifferential symbols. Indeed,
in the identification described above, the inverse ∂−1

θ of the derivative operator
∂θ cannot be realized inside gl∞: the matrix D = (dij) with dii = i has a zero
row and is not invertible.
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Fig. 9.1. Matrices in gl∞, the operator D realizing z d
dz

, and the operator Z for
multiplying by z.

Example 9.3 (Loop algebras inside gln) Fix some integer n ∈ N. We call
an element A = (aij)i,j∈Z ∈ gl∞ periodic of order n if ai+n,j+n = ai,j for
all i, j ∈ Z. The subalgebra of all periodic elements of order n can be iden-
tified with the algebra gln ⊗ C[z, z−1] of polynomial loops in gln. Indeed, a
periodic matrix A of order n is completely determined by fixing the n rows
(aij)0≤i<n,j∈Z. Associate to the periodic matrix A the sequence of n× n ma-
trices Ak, k ∈ Z, by Ak := (aij), where 0 ≤ i < n and kn ≤ j < (k+1)n. Note
that only a finite number of the matrices Ak can be nonzero. We identify such
a sequence with the Laurent series

∑

k Akz
k. This gives a bijection between

the set of periodic matrices of order n in gl∞ and polynomial loop algebra
(Lgln)pol = gln ⊗ C[z, z−1].

Exercise 9.4 Show that the bijection between the set of periodic matrices of
order n in gl∞ and the loop algebra (Lgln)pol described above defines a Lie
algebra isomorphism.

9.2 The Central Extension of gl∞

Let J be the diagonal matrix defined by jii = −1 if i ≥ 0, and jii = 1 if i < 0.

Exercise 9.5 Given two elements A,B ∈ gl∞, show that the matrix C :=
[J,A]B has only finitely many nonzero entries on the diagonal. (Hint: see
Figure 9.2.)

A [J,A]

Fig. 9.2. For every matrix A ∈ gl∞, the commutation with J “cuts out” the upper
left and lower right quadrants of A and multiplies the off-diagonal elements by ±2.
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Definition 9.6 The central extension ̂gl∞ of the Lie algebra gl∞ is defined
by the 2-cocycle

�(A,B) =
1
2

tr([J,A], B) . (9.34)

This cocycle has appeared in a series of papers [75] related to soliton
equations and related algebraic constructions, and it is often referred to as
the Japanese cocycle.

Proposition 9.7 (i) When restricted to the Lie subalgebra DO ⊂ gl∞ of
polynomial differential operators, the cocycle � is cohomologous to (a multiple
of) the Kac–Peterson 2-cocycle. In particular, restricted to the Lie algebra of
vector fields on the circle, � is cohomologous to (a multiple of) the Gelfand–
Fuchs 2-cocycle.

(ii) Restricted to the subalgebra (Lgln)pol ⊂ gl∞, the cocycle � coincides
with the cocycle defining the affine Lie algebra ( ̂Lgln)pol.

In particular, the 2-cocycle � is nontrivial on gl∞, and ̂gl∞ is a nontrivial
central extension of the latter algebra.

Exercise 9.8 Give a proof of Proposition 9.7. (Hint: For part (i) it is enough
to prove the assertion for vector fields. Show that in the basis Ln = zn+1 d

dz ,
the cocycle � has the explicit form

�(Ln, Lm) = δn,−m

n
∑

i=1

i(i− 1) .

For part (ii) start with the case of gl1, i.e., with ordinary Laurent polynomials.
The general case is similar.)

Corollary 9.9 The Virasoro algebra, the centrally extended Lie algebra ̂DO,
as well as all the affine Lie algebras ( ̂Lgln)pol, are Lie subalgebras of ̂gl∞.

Remark 9.10 There is a generalization of gl∞ in which the strip can be
unbounded downward: one requires only that aij = 0 for all i, j satisfying
j − i > N , rather than |i − j| > N . The multiplication, the Lie bracket, and
the 2-cocycle are still well defined on the space of such matrices.

9.3 q-Difference Operators and gl∞

Other interesting subalgebras of gl∞ are the algebras of q-versions of differen-
tial operators and pseudodifferential symbols. Consider the “shift operator”
Dq on the space C[z, z−1] of Laurent polynomials: Dqf(z) := f(qz). Note that
the finite difference operator
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∂q :=
Dq − 1
q − 1

becomes the derivative operator z∂z in the limit q → 1, since (f(qz)−f(z)/(q−
1) → zf ′(z). Thus the operator (Dq − 1)/(q − 1) (or the operator Dq itself)
can be regarded as a quantum version of the derivative operator. The operator
Dq also satisfies the q-analogue of the Leibniz rule Dq ◦ f = (Dqf)Dq, similar
to that for the derivative.

Now one can define the algebras of q-difference operators DOq :=
{
∑n

0 uk(z)Dk
q } and q-difference symbols ψDSq := {

∑n
−∞ uk(z)Dk

q }. (One
usually assumes that q is not a root of unity, i.e., qn �= 1 for any n, to avoid
extra relations of (Dn

q = 1)-type.)
Furthermore, one can define the notion of logDq for the algebra of q-

difference symbols, and it turns out to have a very simple meaning. Since Dq

is a shift operator, one can think of it as the exponent of the derivative operator
Dq = exp(q · z∂z); cf. Section II.4.2. Then logDq is the derivative operator
q · z∂z itself! Note that the derivative z∂z does not belong to the algebra of
q-difference symbols, and it defines an outer derivation of the algebra ψDSq.
One can proceed by defining the corresponding 2-cocycles, constructing the
Lie group of fractional q-difference symbols, and the corresponding integrable
systems; see [190, 313].

The trace on q-difference symbols is defined by Trq(
∑

uk(z)Dk
q ) := tr(u0),

where tr(u0) is the constant term in the Laurent polynomial u0(z), i.e., its
coefficient at z0. It is an algebraic trace, since it satisfies Trq[A,B] = 0,
similar to the trace on pseudodifferential symbols. One should note, however,
that the subalgebras of positive and negative powers of Dq are not isotropic
with respect to the quadratic form related to this trace on ψDSq, and thus
they do not form a Manin triple. Although the corresponding Lie group is not
a Poisson Lie group, it can still be equipped with a natural Poisson structure
[313, 314].

Finally, we note that the algebras DOq and ψDSq act on the space of
Laurent polynomials C[z, z−1], and hence their action can be defined by infi-
nite matrices. One can easily see that the generators of ψDSq are described by
matrices “of finite width,” i.e., they belong to gl∞. This gives an embedding
of ψDSq as a subalgebra of gl∞; see, e.g., [180].

Remark 9.11 The Lie algebra gl∞ and its central extension ̂gl∞ by means
of the cocycle � have a long history and have been used to study the KdV
equation, the KP hierarchy, and other integrable hierarchies (see, e.g., [372,
181] and references therein).

Among various relations between gl∞ and other algebras, including ψDSq,
it is worth mentioning that the algebra ψDSq is also isomorphic to the so-
called noncommutative torus: the associative algebra generated by two unitary
operators U1 and U2 satisfying the relations U2U1 = qU1U2 for q = eih; see
[147, 180].
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Another interesting version of this algebra is known as the sine algebra
[111, 146, 147]. One can also think of it as an algebra with continuous root
systems, as was defined in [335]. Finally, the limit of the structure constants
of the sine algebra gives those of the Lie algebra SVect(T 2) of divergence-
free vector fields on the two-dimensional torus [320, 49]. In this way, the
algebra gl∞ provides a link to a number of the infinite-dimensional Lie algebras
considered in this book. We also refer the interested reader to [118] for many
other related constructions.
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A.10 Torus Actions on the Moduli Space of Flat
Connections

Let G be a compact or complex simple Lie group. In this appendix we discuss
a torus action on the moduli space of flat connections on the trivial G-bundle
over a Riemann surface Σ. We start with constructing a natural set of Poisson
commuting functions on the moduli space of flat connections, and then turn
to the case of G = SU(2), where this set of commuting functions gives rise
to integrable systems on the symplectic leaves of the moduli space [175]. This
action allows one to study the symplectic geometry of the leaves. Finally, fol-
lowing [120, 125], we consider the moduli space of flat SL(n,C)-connections on
the one-holed torus and show that the rational Ruijsenaars–Schneider system
lives on a holomorphic symplectic leaf of this moduli space.

10.1 Commuting Functions on the Moduli Space

Let Σ be a compact Riemann surface of genus κ with d boundary components.
Here we assume that G is a simply connected simple Lie group with the Lie
algebra g. Denote by

AΣ = {d+A | A ∈ Ω1(Σ, g)}

the affine space of connections in the trivial G-bundle over the surface Σ. We
have seen in Section III.2.1 that the space AΣ is an infinite-dimensional sym-
plectic manifold with a Hamiltonian action of (the central extention ̂GΣ of)
the group GΣ = C∞(Σ,G) of gauge transformations. The moment map of this
action is given by the curvature together with the restriction of the connection
to the boundary ∂Σ (see Proposition III.2.10 for the exact formulation). The
corresponding symplectic quotient is the moduli space

MΣ = AΣ
flat/ ̂G

Σ

of flat connections on Σ. This is a finite-dimensional, possibly singular, Pois-
son manifold. The symplectic leaves of MΣ are parametrized by fixing the
conjugacy classes of the holonomies around the boundary circles of the surface
Σ. (More precisely, in Section III.2.1 we considered the case of a compact Lie
group G. But all we really need in the constructions is a nondegenerate invari-
ant bilinear form on the Lie algebra g. In particular, we can take G to be any
semisimple Lie group, in which case MΣ denotes the space of representations
Rep(π1(Σ) → G) modulo conjugation.)

A natural class of functions on the moduli space MΣ can be constructed as
follows. Let f : G → C be a conjugation-invariant function on the group, and
let Γ be a simple curve in Σ. Associate to them the function fΓ : MΣ → C

by assigning to (the equivalence class of) a flat connection A on Σ the value
of f on the holonomy of A around the curve Γ :
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fΓ ([A]) = f(holΓ (A)) .

Goldman gave a formula for the Poisson bracket {fΓ1 , gΓ2} in terms of the
intersection number of the curves Γ1 and Γ2; see [145]. Here we need only the
following special case.

Proposition 10.1 (i) Let Γ1 and Γ2 be two simple disjoint curves on the
surface Σ. Then for any two conjugation-invariant functions f and g on the
group G, we have

{fΓ1 , gΓ2} = 0 .

(ii) For any simple closed curve Γ and any two conjugation-invariant func-
tions f and g on the group G, we have

{fΓ , gΓ } = 0 .

A trinion (or a pair of pants) is a Riemann surface of genus 0 with three
boundary components. Recall that the genus of the Riemann surface Σ is
denoted by κ, and the number of boundary components is d. From now on we
assume that d ≥ 1 if κ = 1, and d ≥ 3 if κ = 0. In these cases the Riemann
surface Σ has a trinion decomposition into 2κ−2+d trinions; see Figure 10.1.

Fig. 10.1. A trinion decomposition of a Riemann surface with boundary.

This can be achieved by cutting Σ along 3κ − 3 + d disjoint curves. On
the other hand, the number of independent conjugation-invariant functions
on the group G is equal to its rank rk(G), i.e., to the dimension of a maximal
torus T ⊂ G. Hence, the trinion decomposition of the surface Σ provides us
with (3κ − 3 + d) · rk(G) independent Poisson-commuting functions on the
moduli space MΣ . For a closed surface Σ (i.e., for d = 0), the moduli space
MΣ is symplectic of dimension (2κ − 2) · dim(G). The above functions fΓ

form an integrable system on the moduli space MΣ whenever the number
of independent functions is equal to half the dimension of MΣ , which for a
closed surface happens exactly if dim(G)/ rk(G) = 3. For simple groups this
occurs only for G = SU(2).
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10.2 The Case of SU(2)

Define a maximal torus T of the group SU(2) as the set of diagonal matrices

T =
{(

eiθ 0
0 e−iθ

)}

∼= S1 .

Each element of SU(2) is conjugate to an element of the torus T . Furthermore,
the matrices diag(eiθ, e−iθ) and diag(e−iθ, eiθ) are conjugate to each other,
so that a conjugacy class of SU(2) is completely determined by the trace
tr(diag(eiθ, e−iθ)) = 2 cos θ. The centralizers of the corresponding conjugacy
classes are given by the torus T if θ �∈ πZ. Otherwise, the centralizer is the
whole group SU(2).

Recall that for a surface Σ with boundary a symplectic leaf in the moduli
space MΣ is singled out by fixing conjugacy classes of the holonomies around
the boundary components of Σ.

Proposition 10.2 Let θ1, . . . , θd ∈ [0, π] be such that for all εj ∈ {±1}, we
have

∑

εjθj �= 0 mod 2π. Then the symplectic leaf defined by the conjugacy
classes of the diagonal matrices diag(eiθj , e−iθj ), j = 1, . . . , d, is a smooth
symplectic manifold of dimension 6κ− 6 + 2d.

Let Γ1, . . . , Γ3κ−3+d denote curves cutting the surface Σ into a trinion
decomposition and denote by ˜Γ1 . . . , ˜Γd the boundary circles of the surface Σ.
Let φj be the functions on the moduli space MΣ defined by

φj([A]) := cos−1

(

1
2

tr(holΓj
(A))

)

,

and similarly for ˜φk and ˜Γk. By Proposition 10.1, the functions φj and ˜φk all
Poisson commute. Consider the map

Φ = (φ1, . . . , φ3κ−3+d, ˜φ1, . . . , ˜φd) : MΣ → R
3κ−3+2d .

Jeffrey and Weitsman showed that the restriction of the map Φ to the open
and dense subset

◦
MΣ :=

3κ−3+d
⋂

j=1

φ−1
j (0, π) ∩

d
⋂

k=1

˜φ−1
k (0, π) ⊂ MΣ

is the moment map of the Hamiltonian action of a (3κ − 3 + d)-dimensional
torus [174]. This action is given by the twist flows defined as follows.

Denote by Pl, l = 1, . . . , 2κ − 2 + d, the trinions in the above trinion
decomposition of the surface Σ with the cutting curves Γj and boundary
curves ˜Γk.
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Definition 10.3 A connection A ∈ AΣ is said to be adapted to the trinion
decomposition if around each Γj , there exists a tubular neighborhood Γj ×
[−1, 1] such that A|Γj×[−1,1] can be written as

A|Γj×[−1,1] = Xj dθj ,

where Xj is an element of the Lie algebra h = Lie(T ), and dθj is the coordinate
1-form on the circle Γj . Furthermore, we require the existence of a (semi-)
neighborhood ˜Γk × [−1, 0] of each of the boundary circles such that

A|
˜Γk×[−1,0] = ˜Xk d˜θk

with ˜Xk and d˜θk as above.

Exercise 10.4 Show that every flat connection A ∈ AΣ
flat is gauge-equivalent

to a connection adapted to the trinion decomposition.

To define an action of the torus T 3κ−3+2d ∼= R
3κ−3+2d/Z3κ−3+2d on the

moduli space MΣ we fix an element

t := (t1, . . . , t3κ−3+d,˜t1, . . . ,˜td) ∈ T 3κ−3+2d

and take an element

(ψ1, . . . , ψ2κ−2+d) ∈
2κ−2+d
∏

l=1

GPl

in the product of the corresponding current groups, such that the restrictions
of ψl to different (semi-) neighborhoods of Γj and ˜Γk are given by

ψl|Γj×[0,1] = tj , ψl|Γj×[−1,0] = id, and ψl| ˜Γk×[−1,0] = ˜tk

whenever any of the semi-neighborhoods Γj×[0, 1], Γj×[−1, 0], and ˜Γk×[−1, 0]
belongs to the pair of pants Pl. Such an element (ψ1, . . . , ψ2κ−2+d) acts on
the set of connections that are adapted to the trinion decomposition by the
gauge action on each piece Pl:

A|Pl
�→ Ā|Pl

:= ψl ·A|Pl
· ψ−1

l − dψl · ψ−1
l .

Indeed, the gauge transformation ψl does not change A|Pl
in a neighborhood

of the boundary of the trinion Pl, so that all Ā|Pl
fit together to form a

connection Ā on the surface Σ. This action descends to an action of the
element t ∈ T 3κ−3+2d on the moduli space MΣ , since any two choices of
(ψ1, . . . , ψ2κ−2+d) for the same t differ by an element of the current group GΣ .
The action of the torus T 3κ−3+2d preserves the holonomies of the connection
A around the circles Γj and ˜Γk, and hence preserves the fibers of the map Φ.
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Proposition 10.5 ([174]) The action of the torus T 3κ−3+2d on the open

subset
◦

MΣ is Hamiltonian with the moment map 1
πΦ.

Example 10.6 For one trinion the image of the moment map Φ is as follows.
Let Σ be a trinion, i.e., a sphere with three holes (κ = 0, d = 3), and let ˜Γ1,
˜Γ2, and ˜Γ3 denote the boundary circles of Σ. For a connection A we denote
by Mk := hol

˜Γk
(A), k = 1, 2, 3, the corresponding holonomies around the

boundary components. The relation of the fundamental group of the trinion
implies that these holonomies satisfy the condition M1 ·M2 ·M3 = id. As one
can check, the latter implies that the functions θk := cos−1( 1

2 tr(Mk)) have to
satisfy the inequalities

θ1 + θ2 − θ3 ≥ 0 ,
θ1 − θ2 + θ3 ≥ 0 ,

−θ1 + θ2 + θ3 ≥ 0 ,
θ1 + θ2 + θ3 ≤ 2π ,

and these are the only restrictions on their possible values. Thus the image of
the moment map Φ is the tetrahedron inscribed in the cube [0, π]3; see Figure
10.2.

π

π

θ3

θ1

θ2

Fig. 10.2. The moment polytope of the sphere with three holes is a tetrahedron
inscribed in the cube.

The general case follows from Example 10.6 by gluing the trinions:

Theorem 10.7 ([174]) The closure of the image of the moment map

Φ :
◦

MΣ → R
3κ−3+2d
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is given by the product of the tetrahedra corresponding to the trinion decom-
position of the surface Σ, where one identifies the coordinates corresponding
to the glued boundary components of the trinions.

Remark 10.8 In order to obtain the moment map image of a particular
symplectic leaf of the moduli space MΣ , one has to intersect the moment
polytope of MΣ with the hyperplanes defined by fixing the holonomies around
the boundary components of the surface Σ. This was used in [175] to compute
the symplectic volume of the regular symplectic leaves of the moduli space
MΣ .

Note also that the above torus action is defined on a dense open part of
the moduli space and this construction provides us with an integrable system
there.

10.3 SL(n, C) and the Rational Ruijsenaars–Schneider System

Now we consider the case of a torus Σ with one hole (i.e., κ = 1, d = 1),
and the group G = SL(n,C). There are n − 1 independent invariant func-
tions on SL(n,C) given by tr(Pm) for 1 ≤ m ≤ n − 1. So Goldman’s result
(Proposition 10.1) provides us with n − 1 Poisson-commuting functions on
each symplectic leaf of the moduli space MΣ . This construction gives rise to
an integrable system on a holomorphic symplectic leaf of complex dimension
2(n− 1), provided that the functions are independent on that leaf.

Γ2

Γ1

Fig. 10.3. A torus with one hole and generators of its fundamental group.

Theorem 10.9 ([120, 125]) The corresponding Hamiltonian system is the
rational Ruijsenaars–Schneider system defined below.

To sketch the derivation of this system we fix two curves Γ1 and Γ2 on the
surface Σ generating its fundamental group (see Figure 10.3). Let A be a flat
connection on Σ, and denote by P = holΓ1(A) the holonomy of A around the
curve Γ1, and by Q = holΓ2(A) the holonomy of the connection A around the
curve Γ2. Then the symplectic leaf of the moduli space MΣ determined by
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forcing the holonomy of the connection A around the boundary of Σ to lie in
the conjugacy class CX of an a priori fixed matrix X in SL(n,C) is given by

MX
Σ = {P,Q ∈ SL(n,C) | QPQ−1P−1 ∈ CX}/SL(n,C) ,

where SL(n,C) acts on pairs (P,Q) by simultaneous conjugation.
A symplectic leaf of complex dimension 2(n − 1) is given by fixing the

matrix X = diag(a, . . . , a, b), where a is any (nonzero) complex number, and
b = a−n+1. Indeed, a necessary condition for QPQ−1P−1 to be an element of
the conjugacy class CX is that

rk(QPQ−1 − aP ) ≤ 1 .

In particular, all 2×2 minors of QPQ−1−aP have to vanish. In a basis where
Q is a diagonal matrix Q = diag(q1, . . . , qn), we have

(QPQ−1 − aP )ij = qiq
−1
j pij − apij .

Now by using the vanishing condition for the 2 × 2 minors of the matrix
QPQ−1 − aP , we obtain

pij =
√
piipjj(1 − a)

qiq
−1
j − a

.

This shows that the symplectic leaf MX
Σ is 2(n−1)-dimensional: it is fixed by

the parameters (p11, . . . , pnn, q1, . . . , qn) subject to the conditions detP = 1
and detQ = 1.

In the new coordinates qi and si, where

si := piia
(n−1)/2

⎛

⎝

∏

j, j �=i

(qj − qi)(qi − qj)
(qj − aqi)(qi − aqj)

⎞

⎠

1
2

,

the Poisson brackets assume the form

{qi, qj} =0 ,
{si, sj} =0 ,
{qi, sj} =δijpisj ;

see [120]. The functions si are independent and give rise to an integrable
system on the symplectic leaf MX

Σ .
Finally, consider the Hamiltonian function H(P,Q) = tr(P +P−1) on the

moduli space MX
Σ . In terms of the variables qi and si it has the following

explicit form:

H(s, q) =
∑

i

(si + s−1
i )a

n−1
2

⎛

⎝

∏

k, k �=i

(qk − qi)(qi − qk)
(qk − aqi)(qi − aqk)

⎞

⎠

1
2

,
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where a is a parameter. This is the Hamiltonian of the rational Ruijsenaars–
Schneider system [333, 332].

Note that the Hamiltonian H(P,Q) = tr(P + P−1) can be regarded as
a group version of the Hamiltonian that appeared in the construction of the
rational Calogero–Moser system by symplectic reduction (see Section II.5.4).
Indeed, by considering matrices P = id + ˜P close to the identity in SL(n,C)
one can view the Hamiltonian H(P,Q) = tr(P +P−1) as a deformation of the
Calogero–Moser Hamiltonian tr( ˜P 2) + const.

Definition 10.10 The elliptic Ruijsenaars–Schneider system has the
Hamiltonian

H(p, q) =
∑

i

cosh(βpi)

⎛

⎝

∏

k, k �=i

(1 − a2℘(a(qi − qk); τ))

⎞

⎠

1
2

,

which is a relativistic version of the elliptic Calogero–Moser Hamiltonian
function.

Exercise 10.11 Derive the rational and trigonometric versions of the
Ruijsenaars–Schneider Hamiltonian from the elliptic one by taking appro-
priate limits of the elliptic parameter τ . Compare the rational limit with the
Hamiltonian above for si = exp(βpi). (Hint: see [332].)
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action
functional, 180
Hamiltonian, 41
symplectic, 41

action-angle coordinates, 40
adjoint orbit/representation, 18
Adler–Gelfand–Dickey structure, see

Gelfand–Dickey structure
affine Lie

algebra, 48
group, 52, 59

barotropic gas/fluid, 96, 258
bi-Hamiltonian system, 35, 82
bialgebra, see Lie bialgebra
binormal equation, 102
Bott cocycle, 69
Boussinesq equation, 131
bundle

degree of, 158
flat and unitary, 150
holomorphic, 137, 155
stable, 158

Burgers equation, 34, 82, 240

Calabi invariant, 252
Calabi–Yau manifold, 207
Calogero–Moser system, 142, 218

elliptic, 143, 149
rational, 143
trigonometric, 143, 146

Camassa–Holm equation, 34, 82
Cartan subalgebra, 215, 223
Casimir function, 27, 37

Casson invariant, 186
Cauchy–Stokes formula, 171

central extension
of a Lie algebra, 22

universal, 23

of a Lie group, 24
Chern–Simons

action functional

holomorphic, 187
topological, 184

path integral

abelian, 193
holomorphic abelian, 195
nonabelian, 195

coadjoint orbit/representation, 20
coboundary, 22, 25
cocycle

exact, see coboundary
identity, 22
on a Lie algebra, 22

complexification table, 197
compressible fluid, 258
concave function, 246

connection
flat, 163, 168
integrable, 156

on a graph, 170
partial, 156
projective, 228

unitary, 157
current algebra, 14, 51
current group, 11

curvature of a connection, 157, 167, 176



302 Index

de Rham current, 100, 191
degree of a bundle, 158
derivation of a Lie algebra, 16
determinant bundle, 158
diffeomorphism group, 11
differential operator, 112
displacement energy, 251
Dolbeault cohomology, 205
double loop algebra, 134
Drinfeld–Sokolov reduction, 129, 262

elliptic Lie algebra, 135
Euler equation, 29, 31

compressible, see Burgers equation
for a rigid body, 33, 45
for an ideal fluid, 34, 90

Euler–Arnold equation, see Euler
equation

Euler–Lagrange equation, 181
Euler–Poisson equation, see Euler

equation
exponential map of a Lie group, 12

filament equation, 102
Fréchet

Lie group, 9
space, 8

fundamental alcove, 57, 222

Gardner–Faddeev–Zakharov bracket, 84
gas dynamics, 97, 256
gauge transformation group, see Lie

group of gauge transformations
Gauss

integral, 192
linking form, 191

Gelfand–Dickey structure
linear, 127, 262
quadratic, 125, 262

Gelfand–Fuchs cocycle, 67, 114, 225
group, 7

Lie, see Lie group
Poisson Lie, 124

Hamiltonian
action, 41
diffeomorphism, 108, 250
equation, 29
function, 27, 41

averaged, 248
hierarchy, 37
reduction, see Marsden–Weinstein

reduction
vector field, 27

Hasimoto transformation, 104
Heisenberg

algebra, 23
infinite-dimensional, 23, 115, 266

group, 26
magnetic chain, 34, 103

helicity, 94
Hermitian structure, 157
Higgs bundle, 160
Hill’s operator, 74
Hitchin systems, 162
Hofer metric, 250
holomorphic linking, see polar linking

number
holomorphic loop group, 138
Hopf equation, see Burgers equation
Hunter–Saxton equation, 34, 82

ideal of a Lie algebra, 17
incompressible fluid, 90
inertia operator, 30
integrable system, 38
integral symbol, 112
invariant bilinear form, 24, 48
isotropic submanifold, 183

Jacobi identity, 12, 15, 27
Jacobian of a curve, 136
Japanese cocycle, 269

Kac–Moody algebra, 48
Kac–Peterson cocycle, 115
Kadomtsev–Petviashvili (KP) hierarchy,

131
rational, 132

Kantorovich metric, 244
KdV

equation, 34, 80
modified, 265

first structure, 84
integrals, 85
second structure, 84

n-KdV hierarchy, 131
Killing form, 59, 221
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Kirchhoff equation, 34, 95
Kirillov–Kostant structure, 29
Korteweg–de Vries equation, see KdV

equation
Krichever–Novikov algebra, 226

affine, 231
Kupershmidt–Wilson theorem, 264

Lagrangian
function, 180
submanifold, 40, 183

Landau–Lifschitz equation, 103
least action principle, 181
Leibniz identity, 27
Lenard–Magri scheme, 37, 85
Lie algebra, 9

abstract, 15
affine, 48
almost graded, 226
central extension, 22
cocycle, 22

local, 229
cohomology, 22
elliptic, 135, 149
graded, 225
of differential operators, 112
of divergence-free vector fields, 88
of pseudodifferential symbols, 111
semisimple, 17, 215
simple, 17, 215
structure, 9

Lie bialgebra, 118
Lie bracket, 9, 18

of vector fields, 19
Lie group, 8

affine, 59
cocycle, 25
compact, 57, 221
elliptic, 135
of currents, 11
of diffeomorphisms, 11
of gauge transformations, 11, 159

based, 167
of pseudodifferential symbols, 119
of volume-preserving diffeomor-

phisms, 88
quasi-unipotent, 121
semisimple, 221
simple, 221

Lie–Poisson structure, 29
linking number, 189
Liouville–Arnold theorem, 40
logarithm of the derivative operator,

113
loop algebra, 47

doubly extended, 55
loop group, 52, 146

based, 237
holomorphic, 138

magnetohydrodynamics, 96
Magri bracket, 84
Manakov’s metrics, 39
Manin triple, 118
Marsden–Weinstein

reduction, 44
structure, 100

mass transport problem, 109, 244
maximal torus, 57, 222
Mayer–Vietoris sequence, 210
Miura transformation, 264
moduli space

of (stable) holomorphic bundles, 159,
173

of flat connections, 168
moment map, 42
Monge–Ampère equation, 247
monodromy of a differential equation,

56, 138
Mukai’s symplectic structure, 177, 188

Newton equation, 181
nonlinear Schrödinger equation, 104,

132
normal subgroup, 17
nullity of root system, 217

orbit
adjoint, 18
coadjoint, 20
method, 21

Poincaré residue, 171
Poisson

manifold, 27
pair, 35
structure, 26

compatible, 35
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frozen, 36
Poisson Lie group, 124
polar

boundary, 204
chain, 202
chain complex, 204
de Rham theorem, 205
decomposition of diffeomorphisms,

246
homology group, 198, 204, 209
intersection number, 207
linking number, 195, 208

presymplectic manifold, 181
pseudodifferential symbol, 111
pushforward map, 97, 201

quadratic differential, 70

representation
adjoint, 18
coadjoint, 20
of a Lie group, 17

Riemann–Roch theorem, 160
root, 213, 223

space decomposition, 215
system

affine, 217
elliptic, 217
extended, 216
finite, 213
nullity of, 217

Ruijsenaars–Schneider system, 143, 279

Schwarzian derivative, 73, 228

Seifert surface, 99, 189
semidirect product of groups/algebras,

97, 256
smooth dual of a Lie algebra, 20
stabilizer of a point, 42
sub-Riemannian metric, 103
submersion, 245
symplectic

action, 41
leaves, 28
manifold, 28
quotient, 44
reduction, 40, see Marsden–Weinstein

reduction
structure, 28

holomorphic, 174

theta function, 151
trace of a pseudodifferential symbol,

113
trinion (or pair of pants) decomposition,

273
twisted conjugacy class, 139

unattainable diffeomorphism, 107

variational derivative, 83, 130
Virasoro algebra, 67, 111, 138, 225
Virasoro–Bott group, 69, 235
vorticity, 95

Wasserstein metric, 244
Weierstrass ℘-function, 143
Weyl group, 57, 214, 222
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