
ar
X

iv
:1

80
3.

00
72

6v
4 

 [
nl

in
.S

I]
  4

 M
ar

 2
02

1

Pentagram maps and refactorization in Poisson-Lie groups

Anton Izosimov∗

Abstract

The pentagrammap was introduced by R. Schwartz in 1992 and is now one of the most renowned dis-
crete integrable systems. In the present paper we prove that this map, as well as its all known integrable
multidimensional generalizations, can be seen as refactorization-type mappings in the Poisson-Lie group
of pseudo-difference operators. This brings the pentagram map into the rich framework of Poisson-Lie
groups, both describing new structures and simplifying and revealing the origin of its known properties.
In particular, for multidimensional pentagram maps the Poisson-Lie group setting provides new Lax
forms with a spectral parameter and, more importantly, invariant Poisson structures in all dimensions,
the existence of which has been an open problem since the introduction of those maps. Furthermore,
for the classical pentagram map our approach naturally yields its combinatorial description in terms
of weighted directed networks and cluster algebras.

In addition to that, in the appendix written with B. Khesin we introduce and prove integrability
of long-diagonal pentagram maps, encompassing all known integrable cases, as well as describe their
continuous limit as the Boussinesq hierarchy.
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1 Introduction and outline of main results

The pentagram map, introduced by R. Schwartz in [32], is a discrete integrable system on the space
of projective equivalence classes of planar polygons. The definition of this map is illustrated in Fig-
ure 1: the image of the polygon P under the pentagram map is the polygon P ′ whose vertices are
the intersection points of consecutive shortest diagonals of P (i.e., diagonals connecting second-nearest
vertices). The pentagram map has been an especially popular subject in the last decade, mainly due
to a combination of an elegant geometric definition and connections to such topics as cluster algebras,
dimer models etc.

P

P ′

Figure 1: The pentagram map.

Integrability of the pentagram map was established, in different contexts, in [28, 29, 34]. Further-
more, it was shown that the pentagram map can be viewed as a particular case of several general
constructions of integrable systems. In particular, it has an interpretation in terms of cluster alge-
bras [12], networks of surfaces [10], T-systems [16], and Poisson-Lie groups [9]. In the present paper we
suggest an alternative to [9] Poisson-Lie approach to the pentagram map. Namely, we show that the
pentagram map can be seen as a refactorization in the Poisson-Lie group of pseudo-difference operators.
The main advantage of our approach is that it is based on the geometric definition of the map and
the explicit formulas are obtained as its corollaries. We thereby obtain all the ingredients needed to
establish integrability, namely an invariant Poisson structure, Lax representation, and first integrals,
directly from geometry. This can be compared with other frameworks, in particular, the ones based on
cluster algebras [10] and Poisson-Lie groups [9], which lead to integrable maps shown to coincide with
the pentagram map at the level of formulas.

By virtue of the geometric nature of our approach, it almost immediately generalizes to pentagram-
type maps in higher dimensions and enables us to treat all these maps on an equal footing. It turns
out that our scheme covers all previously known higher-dimensional integrable cases, and also gives
rise to a large number of new ones. Furthermore, for many of the previously known integrable maps
our approach provides certain missing ingredients, in particular invariant Poisson structures for short-
diagonal and dented maps of [17, 19]. Construction of such structures has been an open problem since
the introduction of these maps. Furthermore, for these maps we get new Lax representations which
are, in a sense, dual to the ones given in [17, 19].

Recall that a refactorization is a mapping of the form AB 7→ BA, where A and B are elements
of a non-Abelian group, e.g. matrices. The relation between such mappings and integrability was
pointed out in [38, 25] and put in the context of Poisson-Lie groups in [5]. Nowadays, refactorization
in Poisson-Lie groups is viewed as one of the most universal mechanisms of integrability for discrete
dynamical systems. In this paper we suggest such an interpretation for the pentagram map and its
generalizations. Below we briefly describe the construction for the case of the classical pentagram map.

Let {vi ∈ RP2} be a planar n-gon, and let {Vi ∈ R3} be its arbitrary lift to R3 (here and in
what follows we assume that the ground field is real numbers, although all the same constructions
work over C). The sequence Vi can be encoded by writing down the relations between quadruples of
consecutive vectors:

aiVi + biVi+1 + ciVi+2 + diVi+3 = 0,

where i ∈ Z, and a, b, c, d are n-periodic sequences of real numbers. This can be equivalently written
as DV = 0, where V is a bi-infinite sequence whose entries are the vectors Vi, and D is an n-periodic
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difference operator
D := a+ bT + cT 2 + dT 3.

Here T is the left shift operator on bi-infinite sequences, (TV )i := Vi+1, while the sequences a, b, c, d
of real numbers act on sequences of vectors by term-wise multiplication: (aV )i := aiVi. Thus, one
can encode planar polygons by third order difference operators. There is, however, more than one
operator corresponding to a given polygon in RP2. Namely, one can multiply D by scalar sequences
from the left or right without changing the corresponding polygon. This means that, for any mapping
of the space of polygons to itself, its lift to difference operators is not a map, but a correspondence (a
multivalued map). To explicitly describe this correspondence for the case of the pentagram map, we
split the difference operator D = a+ bT + cT 2 + dT 3 into two parts:

D+ := a+ cT 2, D− := bT + dT 3.

Theorem 1.1. The pentagram map, written in terms of difference operators, is a multivalued map

D = D+ +D− 7−→ D̃ = D̃+ + D̃−

determined by the relation
D̃+D− = D̃−D+. (1)

Proof sketch. Equation (1) can be viewed as a homogeneous linear system on 4n unknown coefficients
of the n-periodic operator D̃. Both sides of (1) are linear combinations of T , T 3, and T 5 with n-periodic
coefficients, so the number of equations is 3n, which is less than the number of unknowns. Therefore,
there always exists a non-trivial solution D̃ depending on D, and (1) indeed defines a multivalued map
D 7→ D̃. To identify the latter with the pentagram map, we need to rewrite it in terms of bi-infinite
sequences V , Ṽ annihilated by the operators D and D̃ respectively. Applying both sides of (1) to V ,
we get

D̃+D−V = D̃−D+V,

which, using that DV = 0 and thus D−V = −D+V , can be rewritten as

D̃ D+V = 0.

But the latter means that Ṽ = D+V, which is exactly the definition of the pentagram map. Indeed, by
definition of D+, the vector (D+V )i belongs to the span 〈Vi, Vi+2〉 of Vi, Vi+2. At the same time, we
have D+V = −D−V , so

(D+V )i = −(D−V )i ∈ 〈Vi+1, Vi+3〉.

Therefore, we have
(D+V )i ∈ 〈Vi, Vi+2〉 ∩ 〈Vi+1, Vi+3〉,

which means that the corresponding point in RP2 is the intersection of consecutive shortest diago-
nals 〈vi, vi+2〉 and 〈vi+1, vi+3〉, as desired.

Corollary 1.2. The pentagram map, written in terms of difference operators, is a refactorization
relation.

Proof. Relation (1) can be rewritten as

D̃−1
− D̃+ = D+D

−1
− , (2)

where the inverses of difference operators are understood as pseudo-difference operators. To see that
this formula defines a refactorization mapping, consider the operator L := D−1

− D+. Then (2) means

that the dynamics of L under the pentagram map is given by L 7→ L̃, where L̃ := D+D
−1
− . Therefore,

the pentagram map in terms of L is a refactorization map

D−1
− D+ 7→ D+D

−1
− .
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A crucial part of the proof of Theorem 1.1 is solvability of (1) with respect to D̃, which in turn is
related to a very special choice of exponents of the shift operator T entering D− and D+. We refer to
the set of integers that are the exponents of T entering a given difference operator D as the support
of D. It is easy to see that (1) is solvable if and only if the supports J± ⊂ Z of the operators D± satisfy

|J+ + J−| < |J−|+ |J+|,

where J+ + J− is the Minkowski sum. Furthermore, for sets J± with |J±| > 1 the latter inequality
holds if and only if the J± are finite arithmetic progressions with the same common difference. Different
choices of such pairs of progressions lead to different pentagram-type maps admitting a refactorization
description. As we already saw, the choice {0, 2}, {1, 3} corresponds to the usual pentagram map. More
generally, the choice {0, 2, 4, . . .}, {1, 3, 5, . . .} corresponds to short-diagonal maps of [17]. Similarly,
{0, 1}, {2, 3} leads to the inverse pentagram map, while {0, 1, . . . , p}, {p+ 1, p+ 2, . . . , q} corresponds
to the inverse dented map of [19]. Finally, the choice {0, d}, {1, d+ 1} leads to the pentagram map on
corrugated polygons in RPd studied in [10].

One can also consider relation (1) for difference operatorsD± with non-disjoint supports. Such maps
still admit a refactorization description, but they do not have a pentagram-like interpretation. Indeed,
in this case the pair D± is not equivalent to a single operator D+ +D−, and because of that the phase
space cannot be interpreted as the space of polygons. The simplest case {0, 1}, {1, 2} corresponds to the
leapfrog map defined in [10], while for other cases of non-disjoint supports the geometric interpretation
is not known.

The structure of the paper is as follows. In Section 2 we define a general class of pentagram-type
maps associated with pairs of disjoint arithmetic progressions with the same common difference. This
class, in particular, includes all previously known integrable pentagram-type maps. In Section 3 we
discuss difference and pseudo-difference operators, along with Poisson structures on such operators.
Section 4 contains main results of the paper, namely we show that pentagram maps of Section 2 fit into
an even bigger class of dynamical systems which are parametrized by pairs of not necessarily disjoint
progressions and admit a refactorization description. As a corollary, all such maps admit an invariant
Poisson structure and a Lax representation with Poisson-commuting spectral invariants. It is therefore
very likely that all these maps are both Liouville and algebraically integrable. This integrability problem
will be addressed in a separate publication. In addition to these results, in Section 4 we also discuss
some applications, as well as relations to known constructions. In particular, in Section 4.2 we show
how our approach yields the scaling invariance of pentagram-type maps, which was the central tool
in the proof of integrability for the classical, as well as for short-diagonal and dented maps. Further,
in Section 4.3 we explicitly compute Poisson brackets for the short-diagonal pentagram map in RP3.
In contrast to previously known cases, those brackets turn out to be not quadratic but polynomial of
degree four. After that, in Section 4.4 we outline the connection between the approach of the present
paper and the Y-meshes description of higher pentagram maps given in [13]. It turns out that Y-meshes
are related to factorizations of difference operators. In addition to that, in Section 4.5 we show how
our refactorization approach can be used to represent pentagram-type maps using moves in Postnikov
networks, as in [10]. This also gives a cluster description of the pentagram map, and one may hope to
use our approach to extend the cluster algebra formalism to multidimensional maps, which is still an
open problem. Finally, Section 5 is devoted to open questions.

The paper also contains an appendix (Section 6, joint with B.Khesin), where we introduce a new
class of long-diagonal pentagram maps, which can be thought of as alternative geometric realizations
of maps described in Section 2. This class not only encompasses all known integrable cases, but also
includes some of the maps whose integrability was observed numerically in [18]. As a corollary, we
describe the continuous limit of all pentagram-type maps appearing from refactorization: their limits
turn out to be Boussinesq-type equations in the KdV hierarchy.

Acknowledgments. The author is grateful to Anton Alekseev, Michael Gekhtman, Boris Khesin,
Nicolai Reshetikhin, Richard Schwartz, Alexander Shapiro, Yuri Suris, and Sergei Tabachnikov for
fruitful discussions. A large part of this work was done during the author’s visit to Max Planck
Institute for Mathematics (Bonn). The author would like to thank the Institute’s faculty and staff for
their support and stimulating atmosphere. This work was supported by NSF grant DMS-2008021.

4



2 Pentagram-type maps associated with pairs of arithmetic progressions

In this section we explain how to associate a pentagram-type map to any pair of finite disjoint arithmetic
progressions J± ⊂ Z with the same common difference. As particular cases of this construction,
one obtains all known integrable pentagram-type maps. Later on, in Section 4.1, we will show that
these maps fit into a more general class of dynamical systems which are parametrized by pairs of not
necessarily disjoint progressions and admit a refactorization description.

All pentagram-type maps operate on polygons, i.e. ordered sequences of points in the projective
space. We will only consider polygons satisfying the following natural condition:

Definition 2.1. A polygon in RPd is a bi-infinite sequence of points {vi ∈ RPd} such that any d + 1
consecutive points vi, . . . , vi+d+1 are in general position (i.e. do not belong to a subspace of dimension
d− 1).

In contrast to the classical pentagram map, which is well-defined for all generic polygons, some
of the maps that we will study operate on a more restricted class of polygons whose vertices satisfy
certain additional coplanarity conditions, described in the following definition:

Definition 2.2. Let J ⊂ Z, |J | ≥ 2 be a finite set of integers containing at least two elements, and
let d := max(J)−min(J) − 1. Then a polygon {vi} in RPd is called J-corrugated if for any i ∈ Z the
points {vi+j | j ∈ J} belong to a |J | − 2 dimensional plane (instead of a |J | − 1 dimensional plane,
which is the generic case).

Example 2.3. Assume that J consists of consecutive integers, J = {j, j + 1, . . . , j + d + 1}. Then a
J-corrugated polygon is any polygon in RPd.

Example 2.4. Assume that J = {0, 1, d, d+ 1}. Then J-corrugated polygons are corrugated polygons
in RPd in the sense of [10, Section 5.1.1].

Example 2.5. Assume that J = {0, 1, . . . , l} ∪ {m,m+ 1, . . . , d+ 1}, where l < m, is a union of two
disjoint sets of consecutive integers. Then J-corrugated polygons are partially corrugated polygons in
RPd in the sense of [19, Definition 6.3].

We now define an analogue of the pentagram map on the space of J-corrugated polygons. Such a
map can be defined if J ⊂ Z can be partitioned as J = J+ ⊔ J−, where J± ⊂ Z are finite arithmetic
progressions with the same common difference.

Definition 2.6. Let J± ⊂ Z be non-empty disjoint finite integral arithmetic progressions with the
same common difference. Let also J := J+ ∪ J−. Then the pentagram map associated with the pair J±
is the map from the space of twisted J-corrugated n-gons to itself defined by

ṽi := 〈vi+j | j ∈ J+〉 ∩ 〈vi+j | j ∈ J−〉.

Here vi’s are the vertices of the initial polygon, ṽi’s are vertices of its image under the map, and the
notation 〈vi〉 stands for the projective subspace spanned by the points {vi}.

Remark 2.7. This definition makes sense for arbitrary disjoint finite sets J± ⊂ Z, but for general
J± the image of a J-corrugated polygon (where J := J+ ∪ J−) under the so defined map is not J-
corrugated. This property, however, does hold if J± are arithmetic progressions with the same common
difference, as shown by the following proposition.

Proposition 2.8. For any non-empty disjoint finite arithmetic progressions J± ⊂ Z with the same
common difference, the corresponding pentagram map is a generically well-defined mapping from the
space of J-corrugated n-gons to itself.

Proof. For a generic J-corrugated polygon {vi ∈ RPd}, where d = max(J)−min(J)−1, the subspaces
〈vi+j | j ∈ J±〉 have complementary dimensions |J±|−1 in the space 〈vi+j | j ∈ J〉 of dimension |J |−2.
Therefore, their intersection indeed defines a point ṽi ∈ RPd. Furthermore, it is not hard to see that
for generic vi’s any d + 1 consecutive points ṽi will be in general position, so {ṽi} is a polygon in the
sense of Definition 2.1. Thus, it remains to show that the new polygon {ṽi} is J-corrugated. To that
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J+ J− The corresponding map

{0, 2} {1, 3} Classical pentagram map

{0, 1} {2, 3} Inverse pentagram map

{0, d} {1, d + 1} Pentagram map on corrugated polygons in RPd [10]

{0, 1} {d, d + 1} Inverse pentagram map on corrugated polygons in RPd

{0, . . . , k} {k + 1, . . . , d+ 1} Inverse dented pentagram maps in RPd [19]

{0, 2, 4, . . . , 2k} {1, 3, 5, . . . , 2k + 1} Short-diagonal pentagram map in RP2k [17]

{0, 2, 4, . . . , 2k} {1, 3, 5, . . . , 2k − 1} Short-diagonal pentagram map in RP2k−1 [17]

Table 1: Examples of pentagram maps associated with pairs of arithmetic progressions.

end, for any i ∈ Z, consider the subspace Li := 〈vi+j | j ∈ J+ + J−〉, where J+ + J− is the Minkowski
sum of J+ and J−. Notice that for any i ∈ Z and any j ∈ J , we have ṽi+j ∈ Li. Indeed, by construction
of the polygon {ṽi}, we have

ṽi+j = 〈vi+j+j′ | j
′ ∈ J+〉 ∩ 〈vi+j+j′ | j

′ ∈ J−〉.

Assume that j ∈ J+. Then 〈vi+j+j′ | j′ ∈ J−〉 is a subspace of Li, because j+ j
′ ∈ J++J−. Therefore,

ṽi+j ∈ Li. Analogously, if j ∈ J−, then 〈vi+j+j′ | j
′ ∈ J+〉 is a subspace of Li, and we still have

ṽi+j ∈ Li. So, all the points {ṽi+j | j ∈ J} belong to Li. But the dimension of Li does not exceed

|J+ + J−| − 1 = |J+|+ |J−| − 2 = |J | − 2,

where we use that for finite arithmetic progressions J± ⊂ Z with the same common difference one has
|J+ + J−| = |J+| + |J−| − 1. So, for every i ∈ Z, the points {ṽi+j | j ∈ J} belong to at most |J | − 2
dimensional subspace Li, which means the polygon {ṽi} is indeed J-corrugated, as desired.

Example 2.9. Examples of pentagram maps associated with pairs of arithmetic progressions are given
in Table 1. Note that these examples cover all known integrable cases, so all such cases fit into the
above construction.

Remark 2.10. The classical pentagram is usually defined by ṽi = 〈vi−1, vi+1〉 ∩ 〈vi, vi+2〉 (right
labelling scheme), or by ṽi = 〈vi−2, vi〉 ∩ 〈vi−1, vi+1〉 (left labelling scheme). This corresponds to
progressions {−1, 1}, {0, 2} for the right scheme, and {−2, 0}, {−1, 1} for the left scheme. Our choice
{0, 2}, {1, 3} corresponds to the same map, but with a different labeling of vertices of the resulting
polygon. More generally, shifting both J+ and J− by the same number results in the same map up to
a shift of indices.

Remark 2.11. Note that except for the short-diagonal and inverse dented cases, our construction gives
no maps which are defined on all generic polygons (with no additional coplanarity conditions). Indeed,
such maps would correspond to sets J consisting of consecutive integers (cf. Example 2.3), and without
loss of generality we can assume that J = {0, 1, . . .} (because we can always shift J , as in Remark 2.10).
But the only ways to represent this set J as a disjoint union of two arithmetic progressions with the
same common difference are {0, 1, . . . , k} ⊔ {k + 1, k + 2, . . . } and {0, 2, 4, . . .} ⊔ {1, 3, 5, . . .}, which
corresponds to the inverse dented and short-diagonal maps respectively. There is, however, a way to
modify our construction to produce other maps defined on generic polygons. This gives what we call
long-diagonal pentagram maps, described in detail in the appendix (Section 6).

The space of J-corrugated polygons is infinite-dimensional for any J with |J | > 2. One can still
study pentagram-type maps on such spaces, but to obtain integrable dynamics one should impose some
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kind of boundary conditions on the polygon {vi}. From the geometric perspective, the most natural
condition is closedness, vi+n = vi. However, it turns out that the pentagram map, as well as similar
maps studied in the present paper, have much better properties on a bigger space of polygons that are
closed only up to a projective transformation. Such polygons as known as twisted:

Definition 2.12. A twisted n-gon is a polygon {vi ∈ RPd} such that vi+n = φ(vi) for every i and a
fixed (not depending on i) projective transformation φ : RPd → RPd, called the monodromy.

It is clear that all pentagram maps defined above (as well as any other map on polygons which
is defined using only projectively natural operations) take twisted polygons to twisted polygons and,
moreover, preserve the monodromy. Throughout the paper, all pentagram-type maps are assumed to
operate on twisted polygons.

3 Difference and pseudo-difference operators

3.1 Generalities on difference operators

In this section we recall some basic notions related to difference operators. Our terminology mainly
follows that of [37]. Let R∞ be the vector space of bi-infinite sequences of real numbers, and let
J ⊂ Z be a finite collection of integers. A linear operator D : R∞ → R∞ is called a difference operator
supported in J if it can be written as

(Dξ)i =
∑

j∈J

aj,iξi+j , (3)

or, equivalently, if

D =
∑

j∈J

ajT
j,

where T : R∞ → R∞ is the left shift operator (Tξ)i = ξi+1, and each coefficient aj is a bi-infinite
sequence {aj,i | i ∈ Z} of real numbers acting on R∞ by term-wise multiplication. Such sequences can
per se be regarded as difference operators with J = {0}.

The order of difference operator (3) is the number ordD :=M−m, whereM := maxJ , m := min J .
Difference operator (3) is called properly bounded if none of the elements of sequences am, aM vanish.
Clearly, for a properly bounded difference operator D one has dimKerD = ordD. A difference operator
D is n-periodic if all its coefficients aj are n-periodic sequences, which is equivalent to saying that D
commutes with the n’th power of the shift operator: DT n = T nD. Clearly, if D is an n-periodic
operator, then its kernel is invariant under the action of T n. The finite-dimensional operator T n|KerD

is called the monodromy of D. Eigenvectors of the monodromy operator T n|KerD are exactly quasi-
periodic solutions of the equation Dξ = 0, i.e. solutions which belong to the space of quasi-periodic
sequences

{ξ ∈ R
∞ | ξi+n = zξi} (4)

for certain z ∈ R∗.
We denote the space of n-periodic difference operators supported in J by DOn(J), while

PBDOn(J) ⊂ DOn(J) stands for the (dense) subset of properly bounded operators. Let also DOn

be the associative algebra of all n-periodic difference operators (with arbitrary finite support).

Remark 3.1. The algebra DOn of n-periodic difference operators is isomorphic to the algebra Matn⊗
R[z, z−1] of Matn-valued Laurent polynomials in one variable z (here Matn stands for the associative
algebra of n × n matrices over the base field R). Indeed, consider the natural action of n-periodic
difference operators on the space (4) of all n-quasi-periodic bi-infinite sequences of real numbers with
monodromy z. This gives a 1-parametric family ρz of n-dimensional representations of the algebra
DOn. In each of the spaces (4), take a basis ξ1, . . . , ξn determined by the condition ξij = δij for
i, j = 1, . . . , n (where δij is the Kronecker delta). Written in this basis, the representation ρz takes an
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n-periodic sequence a = {ai} (viewed as a zero order difference operator) to a diagonal matrix with

entries a1, . . . , an, while the shift operator T becomes the matrix
∑n−1

i=1 Ei,i+1 + zEn,1, where Ei,j is
the matrix with a 1 at position (i, j) and zeros elsewhere. Therefore, since the algebra of difference
operators is generated by sequences, T , and T−1, it follows that ρz can be viewed as a homomorphism
of difference operators into Matn⊗R[z, z−1]. Furthermore, it is easy to verify that this homomorphism
is a bijection, and hence an isomorphism.

Proposition 3.2. Let D be a properly bounded difference operator supported in J , and let D(z) be
the associated element of the loop algebra. Then detD(z) is a constant multiple of the polynomial
zmP (D, z), where m := min J , and P (D, z) is the characteristic polynomial of the monodromy of D.

Proof. If we multiply D by T k, where k ∈ Z, then the characteristic polynomial of its monodromy
does not change, while the polynomial detD(z) gets multiplied by detT k(z) = (det T (z))k = zk. So, it
suffices to consider the case min J = 0. Furthermore, it is sufficient to prove the statement for generic
properly bounded operators supported in {0, . . . , d}, because within that set the coefficients of both
polynomials detD(z) and P (D, z) are polynomial functions in terms of the coefficients of D. So, if one
can show that these polynomials are proportional for generic operators, then it must be true for all
operators. To establish the statement for generic D, observe that by definition of D(z) the polynomial
detD(z) vanishes for some z 6= 0 if and only if D has a kernel on the space (4), which is equivalent to
saying that z is an eigenvalue of the monodromy of D. So, the roots of the polynomials detD(z) and
P (D, z) are the same (as sets). Furthermore, for generic D all roots of P (D, z) are distinct. So, to prove
that the polynomials detD(z) and P (D, z) are proportional, it suffices to show that they have the same
degree. In other words, we need to show that the degree of detD(z) is equal to the degree d of D. This
can be checked by explicitly writing down the matrix D(z), or by using the following argument. First
of all, one easily checks that the statement holds for operators of degree 1. But a generic operator D of
degree d can be written as a product of operators of degree 1, so by multiplicativity for such operator
we have deg detD(z) = d, as desired.

3.2 Difference operators and J-corrugated polygons

There is a close relation between difference operators supported in J and J-corrugated polygons.
Denote by Pn(J) the space of twisted J-corrugated n-gons, and let Pn(J) /PGL be the quotient of
that space by projective transformations. We will describe that space as a certain quotient of the space
PBDOn(J) of properly bounded n-periodic difference operators supported in J . Namely, let H be the
group of non-vanishing n-quasi-periodic scalar sequences, i.e.

H := {α ∈ R
∞ | ∀ i ∈ Z, αi 6= 0, and ∃ z ∈ R

∗ s.t. ∀ i ∈ Z, αi+n = zαi}.

Further, let H ×̃H be the subgroup of H ×H that consists of pairs of non-vanishing n-quasi-periodic
scalar sequences with the same monodromy, i.e.

H ×̃H :={(α, β) ∈ R
∞ × R

∞ | ∀ i ∈ Z, αi 6= 0, βi 6= 0,

and ∃ z ∈ R
∗ s.t. ∀ i ∈ Z, αi+n = zαi, βi+n = zβi}.

This group acts on the space DOn(J) of n-periodic difference operators with given support by means
of the left-right action

D 7→ αDβ−1. (5)

Proposition 3.3. For any finite subset J ⊂ Z with |J | ≥ 2, there is a one-to-one correspondence (a
homeomorphism) between the following spaces:

1. The space Pn(J) /PGL of twisted J-corrugated n-gons modulo projective transformations.

2. The space PBDOn(J) /H ×̃H of properly bounded n-periodic difference operators supported in
J modulo the left-right action (5) of the group H ×̃H of pairs of non-vanishing n-quasi-periodic
scalar sequences with the same monodromy.
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Proof. The proof is analogous to that of [15, Proposition 2.2]. Let us just briefly outline the con-
struction. Given a projective equivalence class of generic twisted J-corrugated n-gons, consider an
arbitrary representative {vi ∈ RPd} ∈ Pn(J) of that class (here d := max(J) −min(J) − 1). Lift the
quasi-periodic sequence of points vi ∈ RPd to a quasi-periodic sequence of vectors Vi ∈ Rd+1. Then,
from the J-corrugated condition it follows that for any i ∈ Z the vectors {Vi+j | j ∈ J} belong to a
subspace of dimension |J | − 1 and, therefore, are linearly dependent:

∑

j∈J

aj,iVi+j = 0. (6)

This is equivalent to DV = 0, where V is the bi-infinite sequence of Vi’s, and the operator D is given
by (3). Furthermore, since the sequence {Vi} is quasi-periodic, the so-obtained operator D is periodic,
while from the genericity condition for {vi ∈ RPd} it follows that D is properly bounded. Hence we
obtain a properly bounded n-periodic difference operator supported in J . To complete the proof, it
suffices to notice that from the possibility to rescale each of the Vi’s and also multiply each of the
equations (6) by a scalar it follows that D is defined up to the left-right action (5). Details of the proof
(in the case when J consists of four consecutive integers) can be found in [15].

As can be seen from this construction, one has the following relation between the monodromy of a
J-corrugated polygon and the monodromy of the corresponding difference operator:

Corollary 3.4. Let P ∈ Pn(J) be a twisted J-corrugated n-gon, and let D ∈ PBDOn(J) be one of the
corresponding difference operators. Then the monodromy of P is conjugate to the projectivization of
the monodromy of D.

Proof. Assume that the monodromy of the polygon {vi} in the proof of Proposition 3.3 is given by the
projective transformation φ. Then the sequence of Vi’s satisfies Vi+n =MVi, where M is a matrix of φ
(i.e. φ is the projectivization of M). At the same time, the components of the vectors Vi form a basis
in the space KerD, and the monodromy matrix T n|KerD written in that basis is the transpose of M .
So, the monodromy of the polygon {vi} is the projectivization of (T n|KerD)

t, and hence is conjugate
to the projectivization of T n|KerD.

In particular, one has the following relation between the eigenvalues of the monodromy and the
determinant of the corresponding loop algebra element:

Corollary 3.5. Let P ∈ Pn(J) be a twisted J-corrugated n-gon, and let D ∈ PBDOn(J) be one of
the corresponding difference operators. Then the eigenvalues of the monodromy of P coincide (with
multiplicities) with non-zero roots of the polynomial detD(z), where D(z) is an element of the loop
algebra corresponding to the difference operator D, as described in Remark 3.1.

Proof. This follows from Proposition 3.2.

Remark 3.6. Note that the monodromy of a twisted polygon is a projective transformation, so its
eigenvalues are defined up to simultaneous multiplication by the same constant. However, the same is
true for the roots of detD(z), because taking α and β in (5) with non-trivial monodromy w leads to
simultaneous rescaling of all the roots by a factor of w.

3.3 The Poisson-Lie group of pseudo-difference operators

We define an n-periodic pseudo-difference operator as a formal Laurent series in terms of the left shift
operator T , whose coefficients are n-periodic sequences. In other words, every such operator is of the
form

+∞
∑

j=k

ajT
j, (7)

where k ∈ Z is an integer, T is the left shift operator on R∞, while each aj is an n-periodic bi-infinite
sequence of real numbers. Such an expression can be regarded either as a formal sum, or as an actual
operator acting on the space {ξ ∈ R∞ | ∃ j ∈ Z : ξi = 0 ∀ i > j} of eventually vanishing sequences.
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We will denote the set of n-periodic pseudo-difference operators by ΨDOn. Is is an associative
algebra with respect to addition and multiplication (composition) of operators. Moreover, almost
every pseudo-difference operator in invertible. In particular, (7) is invertible if the coefficient ak of
lowest power in T is a sequence none of whose elements vanish. We will denote the set of invertible
n-periodic pseudo-difference operators by IΨDOn. This is a group with respect to multiplication. It
can be regarded as an infinite-dimensional Lie group with Lie algebra ΨDOn.

Remark 3.7. One can also consider (and apply for the purposes of the present paper) pseudo-difference
operators which have infinitely many terms of negative degree in T , but only finitely many terms of
positive degree. This leads to an isomorphic algebra.

Remark 3.8. The isomorphism DOn ≃ Matn ⊗ R[z, z−1] described in Remark 3.1 naturally extends
to an isomorphism between the algebra of n-periodic pseudo-difference operators, and the algebra
Matn ⊗ R((z)) of matrices over the field R((z)) of formal Laurent series with real coefficients and
finitely many terms of negative degree. Under this isomorphism, the group IΨDOn of invertible pseudo-
difference operators is identified with the group of matrices over Laurent series with non-vanishing
determinant (this group is one of the versions of the loop group of GLn).

Proposition 3.9. There exists a natural Poisson structure π on the group IΨDOn of n-periodic in-
vertible pseudo-difference operators. This structure has the following properties:

1. It is multiplicative, in the sense that the group multiplication is a Poisson map. In other words,
the group IΨDOn, together with the structure π, is a Poisson-Lie group.

2. Assume that J ⊂ Z is a finite subset that consists of consecutive integers. Then the subset
IDOn(J) := IΨDOn∩DOn(J) of invertible difference operators (that is, difference operators whose
inverse is well-defined as a pseudo-difference operator) supported in J is a Poisson submanifold
of IΨDOn.

3. If J is a one-point set, then the restriction of π to IDOn(J) is zero. In particular, the Poisson
structure π vanishes on sequences (viewed as difference operators supported in {0}).

4. The Poisson structure π is invariant under the left-right action (5) of the group H ×̃H of pairs
of non-vanishing n-quasi-periodic sequences with the same monodromy.

5. Central functions on IΨDOn Poisson commute.

Remark 3.10. As explained in Remark 3.8, the group IΨDOn is isomorphic to a version of the loop
group of GLn. In the loop group language, the Poisson structure π is well-known: it is the one associated
with the trigonometric r-matrix. Here we will provide a construction of this Poisson structure which
does not appeal to the loop group formalism. In fact, the language of (pseudo)difference operators
seems to be more natural when dealing with the trigonometric r-matrix. We will, however, use the
loop group language in some of the computations, see in particular Section 3.6.

Our Poisson structure on pseudo-difference operators can also be viewed as a natural discrete
analogue of the Poisson-Lie structure on pseudo-differential operators [20].

Remark 3.11. For periodic sequences α and β, the fourth statement of Proposition 3.9 follows from
the third one combined with the first. Indeed, by the third statement the Poisson structure π vanishes
on sequences, so from multiplicativity we get that both left and right multiplications by sequences are
Poisson maps. However, if the sequences α and β have non-trivial monodromy, then one cannot extract
the fourth statement of the proposition from multiplicativity, because in that case α and β are not
elements of IΨDOn.

Remark 3.12. Take a subset J ⊂ Z which consists of d+2 consecutive integers. Then the J-corrugated
condition is vacuous and, according to Proposition 3.3, the quotient of PBDOn(J) by the action (5)
can be identified with the space of twisted polygons in RPd, considered up to projective equivalence.
So, restricting the Poisson structure π to PBDOn(J) (which is an open subset of IDOn(J) and hence
a Poisson submanifold) and taking the quotient under the action (5) one gets a Poisson structure
on the space of polygons. It seems, however, that this structure has nothing to do with pentagram
maps. As will be explained below, Poisson structures invariant under pentagram maps arise from
Poisson submanifolds of IΨDOn given by rational pseudo-difference operators, i.e. operators that can
be written as a quotient of two difference operators.
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We prove Proposition 3.9 in Section 3.5, after a brief general discussion of Poisson-Lie groups in
Section 3.4.

3.4 Generalities on Poisson-Lie groups

This section is a brief introduction to the theory of Poisson-Lie groups. Our terminology follows that
of [31]. Recall that a Lie group G endowed with a Poisson structure π is called a Poisson-Lie group if
π is multiplicative, i.e. if the multiplication G×G→ G is a Poisson map (it also follows from this that
the inversion map i : G→ G is anti-Poisson, i.e. i∗π = −π). Assume that G is a Poisson-Lie group, and
let G be its Lie algebra. Then, by considering the left trivialization of the tangent bundle of G, one can
identify the bivector field π with a map G→ G ∧G. Furthermore, one can show that multiplicativity
of π is equivalent to that map being a cocycle on G with respect to the adjoint representation of G on
G∧G. If that cocycle is a coboundary, then G is called a coboundary Poisson-Lie group. A Poisson-Lie
group G is coboundary if and only if there exists an element r̂ ∈ G ∧ G, called the classical r-matrix,
such that the Poisson tensor π at every point g ∈ G is given by

πg =
1

2

(

(λg)∗r̂ − (ρg)∗r̂

)

, (8)

where λg and ρg are, respectively, the left and right translations by g. Note that although the bivec-
tor (8) is automatically multiplicative (since any coboundary is a cocycle), it does not need to satisfy
the Jacobi identity. The necessary and sufficient condition for (8) to satisfy the Jacobi identity is a
rather complicated equation in terms of r̂ which is usually replaced by simpler sufficient conditions,
such as the modified Yang-Baxter equation. We will state this condition under the assumption that the
Lie algebra G is endowed with an invariant (under the adjoint action of G) inner product, in which
case one can identify the bivector r̂ ∈ G ∧G with a skew-symmetric operator r : G→ G (which is also
called the r-matrix). In terms of that operator, the modified Yang-Baxter equation reads

[rx, ry] − r[rx, y] − r[x, ry] = −[x, y] ∀x, y ∈ G. (9)

It is well-known that this equation implies the Jacobi identity for (8). If the Lie algebra of a coboundary
Poisson-Lie group G is endowed with an invariant inner product, and the corresponding r-matrix
satisfies the modified Yang-Baxter equation (9), then G is called factorizable. In what follows, we will
be interested in one particular type of r-matrices satisfying the modified Yang-Baxter equation:

Proposition 3.13. Let G be a Lie algebra endowed with an invariant inner product. Assume also
that G, as a vector space, can be written as a direct sum of three subalgebras G>0, G0, and G<0, such
that [G0,G>0] ⊂ G>0, [G0,G<0] ⊂ G<0, the subalgebras G>0, G<0 are isotropic, and G0 is orthogonal
to both G>0 and G<0. Then r := p>0 − p<0, where p>0, p<0 are projectors G → G>0, G → G<0

respectively, satisfies the modified Yang-Baxter equation, thus turning the group G of the Lie algebra G

into a factorizable Poisson-Lie group.

Proof. Direct verification of (9).

Remark 3.14. Formula (8) for the coboundary Poisson-Lie bracket can be written in a more explicit
form when the Lie group G can be embedded, as an open subset, into an associative algebra A (in a
typical situation G coincides with the group of invertible elements in A, e.g. the group of invertible
matrices inside the algebra of all n×n matrices). In this case, the Lie algebra of G and, more generally,
the tangent space to G at any point can be naturally identified with A. Assume also that A is endowed
with an invariant inner product, which in the context of associative algebras means that 〈xy, z〉 = 〈x, yz〉
for any x, y, z ∈ A (in particular, this inner product is invariant with respect to the adjoint action of
G ⊂ A on A). In that case the r-matrix can be thought of as a skew-symmetric operator r : A → A,
and identifying the cotangent space T ∗

gG with the tangent space TgG = A by means of the invariant
inner product, one can rewrite formula (8) for the corresponding Poisson tensor on G as

πg(x, y) =
1

2

(

〈r(xg), yg〉 − 〈r(gx), gy〉

)

∀ g ∈ G, x, y ∈ A. (10)
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The corresponding Poisson bracket is given by

{f1, f2}(g) =
1

2

(

〈r(grad f1(g) · g), gradf2(g) · g〉 − 〈r(g · gradf1(g)), g · gradf2(g)〉

)

, (11)

where the gradients are defined using the invariant inner product. Notice that the right-hand side of
this formula is actually defined for every g ∈ A, i.e. invertibility of g is not necessary. Therefore, this
formula may be used to define a Poisson bracket on the whole of A. This bracket is known as the
second Gelfand-Dickey bracket on the associative algebra A.

In what follows we will need the following standard facts about coboundary Poisson-Lie groups:

Proposition 3.15. Let G be a Lie group endowed with a coboundary Poisson structure π defined by
r-matrix r̂, and let g ∈ G. Then the Poisson structure π vanishes at g if and only if (Adg)∗r̂ = r̂.

Proof. We have (Adg)∗r̂ = (ρ−1
g )∗(λg)∗r̂, so (Adg)∗r̂ = r̂ if and only if (λg)∗r̂ = (ρg)∗r̂, i.e. πg = 0.

Proposition 3.16. Let σ : G → G be an automorphism of a coboundary Poisson-Lie group. Assume
that the differential of σ at the identity preserves the r-matrix r̂. Then σ is a Poisson map.

Proof. Since σ is an automorphism, we have λσ(g) = σλgσ
−1 and ρσ(g) = σρgσ

−1, so

πσ(g) =
1

2

(

(λσ(g))∗r̂ − (ρσ(g))∗r̂

)

=
1

2

(

σ∗(λg)∗(σ
−1)∗r̂ − σ∗(ρg)∗(σ

−1)∗r̂

)

.

Since σ preserves the r-matrix, the latter expression can be rewritten as

1

2

(

σ∗(λg)∗r̂ − σ∗(ρg)∗r̂

)

= σ∗πg.

So, πσ(g) = σ∗πg, which means that σ is a Poisson map.

Proposition 3.17. Central functions on a coboundary Poisson-Lie group Poisson commute.

Proof. Formula (8) is equivalent to

{f1, f2}(g) =
1

2

(

r̂(λ∗gdf1(g), λ
∗
gdf2(g))− r̂(ρ

∗
gdf1(g), ρ

∗
gdf2(g))

)

∀ f1, f2 ∈ C
∞(G), g ∈ G.

But for central functions f1, f2 we have fi ◦ λg = fi ◦ ρg ⇒ λ∗gdfi(g) = ρ∗gdfi(g)⇒ {f1, f2} = 0.

3.5 Existence and properties of the Poisson structure

In this section we prove Proposition 3.9 describing the Poisson structure on the group IΨDOn of n-
periodic invertible pseudo-difference operators. To define that structure, we will use the construction
described in Proposition 3.13. The Lie algebra of the group IΨDOn is the space ΨDOn of all n-periodic
pseudo-difference operators. That is actually an associative algebra in which IΨDOn is embedded as
the set of invertible elements. That algebra has an invariant inner product defined by

〈D1,D2〉 = TrD1D2 ∀D1,D2 ∈ ΨDOn, (12)

where the trace of an n-periodic pseudo-difference operator D is given by

Tr





∞
∑

j=k

ajT
i



 :=

n
∑

i=1

a0,i.

The product (12) is clearly non-degenerate and invariant in the associative algebra sense, i.e.
〈D1,D2D3〉 = 〈D1D2,D3〉. Furthermore, one can explicitly verify that TrD1D2 = TrD2D1, so the
inner product (12) is symmetric. Alternatively, this can be showed by using the isomorphism of ΨDOn

and the algebra Matn ⊗R((z)) of matrices over formal Laurent series (see Remark 3.1). In the matrix
language, the trace of an operator can be written as TrD = Resz=0

(

z−1Tr D(z)
)

, where D(z) is a
matrix with coefficients in R((z)) associated to the operator D.
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Proof of Proposition 3.9. Represent the algebra ΨDOn of n-periodic pseudo-difference operators
as the sum of three subalgebras G<0, G0, G>0 as follows. Let ΨDOn(J) be the vector space of pseudo-
difference operators supported in J ⊂ Z. By definition, an operator of the form (7) is supported in J
if aj ≡ 0 for all j /∈ J . Define

G<0 := ΨDOn(Z<0) = DOn(Z<0), G0 := ΨDOn({0}) = DOn({0}), G>0 := ΨDOn(Z>0),

where Z>0 stands for positive integers and Z<0 for negative ones. This decomposition clearly satisfies
all the requirements of Proposition 3.13, so we get an r-matrix r := p>0− p<0 and hence a factorizable
Poisson-Lie structure on IΨDOn. This proves the first statement of Proposition 3.9. To prove the
second statement (difference operators supported in a subset J ⊂ Z consisting of consecutive integers
form a Poisson submanifold), we use formula (10). From that formula it follows that, when viewed as
map ΨDOn → ΨDOn, the Poisson tensor πD (where D ∈ IΨDOn) reads

πD(Q) = Dr(QD) − r(DQ)D. (13)

To show that the set IDOn(J) ⊂ IΨDOn of invertible difference operators supported in J is a Poisson
submanifold, one needs to prove that for D ∈ IDOn(J) the image of the Poisson tensor (13) belongs
to the tangent space to IDOn(J) at D. The latter is the space DOn(J) of all n-periodic difference
operators supported in J , so we need to show that the operator (13) is supported in J whenever D is
supported in J . To that end, notice that the right-hand side of (13) stays the same if r is replaced by
r ± Id. But the image of r + Id = 2p>0 + p0 (where p0 is the projector to G0) is the space G0 +G>0

of operators which only have terms of non-negative power in T , so, rewriting (13) in terms of r + Id,
we get that

min suppπD(Q) ≥ min suppD = min J.

Analogously, rewriting (13) in terms of r − Id, we get max suppπD(Q) ≤ maxJ. All in all, we have
suppπD(Q) ⊂ [min J,maxJ ] = J, as desired.

To prove the third statement (if J is one-point set, then the Poisson structure vanishes on operators
supported in J), notice that if D is supported in a one-point set, then conjugation by D preserves the
subalgebras G± and G0, as well as the inner product on ΨDOn. Therefore, it preserves the r-matrix,
and π(D) = 0 by Proposition 3.15.

To prove the fourth statement (the left-right action is Poisson), we represent the left-right action (5)
as a superposition of two actions: one is of the same form, but with periodic α and β, while the other one
is conjugation action D 7→ γDγ−1, with quasi-periodic γ. Then the former action is Poisson because the
Poisson structure vanishes on sequences, while the latter is Poisson because conjugation by sequences
preserves G>0, G<0, and G0, as well as the inner product, and hence is Poisson by Proposition 3.16.
So, the left-right action (5) is also Poisson.

Finally, the last statement of Proposition 3.9 (central functions Poisson commute) directly follows
from Proposition 3.17. So, Proposition 3.9 is proved.

Remark 3.18. As central functions on IΨDOn, one can take expressions of the form fij(D) :=
TrT inDj , where i ∈ Z, j ∈ Z>0. An alternative way to get the same functions is to consider the
matrix-valued Laurent series D(z) corresponding to the operator D (cf. Remark 3.8), and then take
coefficients in z of the spectral invariants of D(z).

3.6 Relation to the GLn bracket

One can compute Poisson brackets of coordinate functions on IΨDOn using formula (11). The resulting
expressions are quite complicated and involve infinite series. However, only finitely many terms of those
series are non-zero for every concrete pseudo-difference operator. Moreover, for a difference operator
whose support is small compared to the period these series simplify to just one term. Below we explain
how to compute the brackets in this case by using the standard Poisson-Lie structure on GLn.

Recall that the standard Poisson structure on GLn is defined using the construction of Proposi-
tion 3.13 with G<0, G>0, G0 being the lower nilpotent, upper nilpotent, and the Cartan subalgebra
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respectively, see e.g. [11]. Explicitly, the brackets of the matrix elements are given by

{xij , xkl} =
1

2
(sgn(k − i) + sgn(l − j))xilxkj ,

where sgn(t) is +1 if t > 0, −1 if t > 0, and 0 if t = 0. In other words, for any matrix entries a, b, c, d
located at vertices of a rectangle as shown below:

a . . . . . . b
...

...

c . . . . . . d

we have

{a, b} =
1

2
ab, {a, c} =

1

2
ac, {a, d} = bc, {b, c} = 0.

Since the relative position of b and d is the same as of a and c, while the relative position of c and d is
the same as of a and b, we also have that

{b, d} =
1

2
bd, {c, d} =

1

2
cd.

We now explain the relation between the bracket on difference operators and the GLn bracket. Consider
the algebra ΨDOn(Z≥0), where Z≥0 := Z>0 ∪ {0}, of n-periodic upper-triangular pseudo-difference

operators. Any such operator D =
∑+∞

j=0 ajT
j can be represented by a bi-infinite upper-triangular

matrix
a0,i−1 a1,i−1 . . .

a0,i a1,i . . .

a0,i+1 a1,i+1 . . .

.

Let Φi(D) be the n× n submatrix of this matrix which has the element a0,i in its upper left corner.

Proposition 3.19. Each of the mappings Φi : ΨDOn(Z≥0)→ Matn takes the Poisson structure π on
ΨDOn(Z≥0) to the standard Poisson structure on Matn.

Remark 3.20. Technically, we have defined Poisson structures only on invertible pseudo-difference
operators and invertible matrices. However, since both pseudo-difference operators and matrices form
associative algebras, the Poisson structures in fact extend to non-invertible elements (see Remark 3.14).

Remark 3.21. This proposition is saying that one can compute Poisson brackets of difference operator
coefficients by sliding an n× n window through the operator matrix. If the support of the operator is
not too big compared to the period, then the size of the window is big enough to fit any pair of the
coefficients, so all Poisson brackets can be computed in this way.

Example 3.22. Consider the space of operators of the form a + bT . This corresponds to bi-infinite
bi-diagonal matrices

. . .
. . .

ai bi

ai+1 bi+1

. . .
. . .

.

If n = 1, then we cannot use the n×n window to compute all the brackets. For n ≥ 2, Proposition 3.19
gives

{ai, bi} =
1

2
aibi, {bi, ai+1} =

1

2
biai+1, (14)

while all other brackets are either obtained from these by shift of indices or vanish.
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Example 3.23. Consider the space of operators of the form a + bT + cT 2. The matrix of such an
operator is

. . .
. . .

. . .

ai bi ci

ai+1 bi+1 ci+1

ai+2 bi+2 ci+2

. . .
. . .

. . .

For n ≥ 3, Proposition 3.19 gives

{ai,bi} =
1

2
aibi, {ai, ci} =

1

2
aici, {bi, ci} =

1

2
bici, {bi, ai+1} =

1

2
biai+1,

{bi, bi+1} = ai+1ci, {ci, bi+1} =
1

2
cibi+1, {ci, ai+2} =

1

2
ciai+2.

The proof of Proposition 3.19 is based on the following lemma.

Lemma 3.24. Consider the space Matn ⊗ R[[z]] of formal matrix power series endowed with the
trigonometric r-bracket, and the space Matn endowed with the standard bracket. Then the mapping

Φ: Matn ⊗ R[[z]]→ Matn, Φ

(

∞
∑

i=0

Aiz
i

)

:= A0,

taking a matrix power series to its constant term is a Poisson map.

Remark 3.25. The trigonometric r-bracket on the space Matn⊗R((z)) of formal matrix Laurent series
is defined using the construction of Proposition 3.13, where G>0 consists of matrix power series with
nilpotent upper-triangular constant term, G<0 consists of matrix polynomials in z−1 with nilpotent
lower-triangular constant term, while G0 is the space of constant diagonal matrices. The invariant
inner product on Matn ⊗ R((z)) is defined by

〈A(z), B(z)〉 := Resz=0

(

1

z
Tr A(z)B(z)

)

.

Proof of Lemma 3.24. The mapping Φ is well-defined on the whole space Matn ⊗R((z)) and maps
both the r-matrix and the inner product on the latter space to the corresponding objects on Matn.
Also notice that for any function f ∈ C∞(Matn), we have gradΦ∗f ∈ Matn ⊗ R[[z]]. Indeed, the
function Φ∗f is constant on the subspace

KerΦ =

{

∞
∑

i=1

Aiz
i

}

,

so gradΦ∗f ∈ (KerΦ)⊥ = Matn ⊗ R[[z]]. Furthermore, since Φ preserves the inner product, we have
Φ(grad (Φ∗f)(A)) = gradf(Φ(A)). Now, take two functions f1, f2 ∈ C∞(Matn). Then the Poisson
bracket of their Φ-pullbacks at a point A = A(z) ∈Matn ⊗ R[[z]] is given by formula (11):

{Φ∗f1,Φ
∗f2}(A) =

1

2

(

〈r(gradΦ∗f1(A) · A), gradΦ
∗f2(A) · A〉

− 〈r(A · gradΦ∗f1(A)), A · gradΦ
∗f2(A)〉

)

.

Using that both A and the gradients of f1, f2 belong to Matn ⊗ R[[z]], while the restriction of Φ to
Matn⊗R[[z]] is a homomorphism of associative algebras preserving the inner product and the r-matrix,
this can be rewritten as

{Φ∗f1,Φ
∗f2}(A) =

1

2

(

〈r(grad f1(Φ(A)) · Φ(A)), grad f2(Φ(A)) · Φ(A)〉

− 〈r(Φ(A) · grad f1(Φ(A))), φ(A) · grad f2(Φ(A))〉

)

,
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which is exactly the Matn bracket of the functions f1, f2 at the point Φ(A). Thus, the mapping Φ is
indeed Poisson, as claimed.

Proof of Proposition 3.19. In the loop algebra language, the space ΨDOn(Z≥0) of upper-triangular
n-periodic pseudo-difference operators is the space of formal matrix power series of the form A(z) =
∑∞

i=0 Aiz
i, where A0 is upper-triangular. The infinite matrix corresponding to such power series is

A0 A1 . . .

A0 A1 . . .

with upper-left corners of A0 blocks located at positions (jn + 1, jn + 1), j ∈ Z. Thus, the mapping
Φ1 takes A(z) to A0 and is, therefore, a restriction of the mapping Φ from Lemma 3.24. So, Φ1 is a
Poisson map. Furthermore, we have Φi+1 = Φi ◦AdT , where AdT (D) := TDT−1. Therefore, since AdT
is also a Poisson map (by Proposition 3.9, item 3), it follows that all Φi’s are Poisson, as desired.

3.7 The subgroup of sparse operators

We say that a pseudo-difference operator is k-sparse if its support is an arithmetic progression with
step k. For example, the operator T−1 + T + T 3 + T 5 + . . . is 2-sparse. Denote the set of invertible
k-sparse pseudo-difference operators by IΨDOn(kZ+ ∗). This is a Lie subgroup of IΨDOn, whose Lie
algebra is the space ΨDOn(kZ) of pseudo-difference operators supported in kZ. It is not, however, a
Poisson submanifold and hence not a Poisson-Lie subgroup IΨDOn. One can, however, define a different
Poisson structure on IΨDOn(kZ + ∗), which has all the same properties as the Poisson structure on
IΨDOn described above. More precisely, we have the following:

Proposition 3.26. There exists a natural Poisson structure π(k) on the group IΨDOn(kZ + ∗) of
invertible k-sparse pseudo-difference operators. It has all the same properties as the Poisson structure
π described in Proposition 3.9, except for the second property which is replaced by the following: if
J ⊂ Z is an arithmetic progression with common difference k, then IDOn(J) is a Poisson submanifold
of IΨDOn(kZ+ ∗).

Proof. This Poisson structure is given by the following decomposition of the Lie algebra ΨDOn(kZ):

G<0 := ΨDOn(kZ<0), G0 := ΨDOn({0}), G>0 := ΨDOn(kZ>0).

All necessary properties are established in the same way as in the proof of Proposition 3.9.

Remark 3.27. A more constructive way to describe the Poisson structure π(k) is as follows. When
n and k are coprime, there is a group isomorphism IΨDOn(kZ) ≃ IΨDOn given by the action of
IΨDOn(kZ) on eventually vanishing sequences whose non-zero entries are contained in an arithmetic
progression with common difference k. Explicitly, this isomorphism is given by

∑

akjT
kj 7→

∑

ãjT
j, (15)

where ãj,i = akj,ki (note that this is only an isomorphism when n and k are coprime; otherwise, this
map is neither injective nor surjective). The Poisson structure π(k) can be defined as the pull-back of the
structure π by this isomorphism. Furthermore, π(k) uniquely extends to the whole group IΨDOn(kZ+∗)
if we require that the resulting structure is invariant under multiplication by T . This gives a structure
which coincides with the one described in the proof of Proposition 3.26. Furthermore, this construction
can also be applied when n and k are not coprime, in which case IΨDOn(kZ) is isomorphic to a product
of m := gcd(n, k) copies of IΨDOn/m. The corresponding m maps IΨDOn(kZ)→ IΨDOn/m are given
by (15) with ãj,i = akj,ki+l, where l = 0, . . . ,m− 1.

Example 3.28. Consider sparse operators of the form a + bT 2. The Poisson bracket π(2) on such
operators may be obtained from the bracket π on operators of the form a + bT using the following
mnemonic rule (justified by Remark 3.27): take the formulas (14) for brackets on a+ bT and replace
all indices of the form i+ j with i+ 2j. This gives

{ai, bi} =
1

2
aibi, {bi, ai+2} =

1

2
biai+2.
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4 General refactorization maps associated with pairs of arithmetic
progressions

4.1 The main theorem

In this section we describe a class of maps parametrized by pairs of finite arithmetic progressions
J± ⊂ Z with the same common difference. For disjoint J± these maps coincide with pentagram
maps on J-corrugated polygons described in Section 2. All these maps, regardless of whether J± are
disjoint, admit a refactorization description in terms of the group IΨDOn of periodic pseudo-difference
operators. As a corollary, all such maps admit an invariant Poisson structure and a Lax representation
with Poisson-commuting spectral invariants. Therefore, one should expect that all these maps are both
Liouville and algebraically integrable. In order to actually prove that, one needs to accurately verify
certain technical conditions, which is beyond the scope of the present paper.

Recall that the pentagram maps defined in Section 2 act on the space Pn(J) /PGL of twisted
J-corrugated n-gons modulo projective transformations, where J := J+ ⊔ J− is the union of two
disjoint finite arithmetic progressions J± with the same common difference. By Proposition 3.3,
that space can be identified with the space PBDOn(J) /H ×̃H of properly bounded n-periodic dif-
ference operators supported in J modulo the left-right action (5) of the group H ×̃H of pairs of
non-vanishing n-quasi-periodic sequences with the same monodromy. Furthermore, decomposing a
difference operator D ∈ PBDOn(J) into a sum D+ + D−, where D± ∈ DOn(J±) are difference op-
erators supported in J±, one can identify a dense subset in the quotient PBDOn(J) /H ×̃H with
PBDOn(J+)×PBDOn(J−) /H ×̃H , where H ×̃H acts on both factors by the simultaneous left-right
action (this identification is only possible for a dense subset of PBDOn(J) /H ×̃H because the op-
erators D± may not be properly bounded even if D is). Thus, our pentagram maps, considered on
sufficiently generic polygons, can be thought of as transformations defined on the left-right quotient
PBDOn(J+) × PBDOn(J−) /H ×̃H , with J± being disjoint. Note, however, that the latter quotient
is well-defined regardless of whether the sets J± are disjoint. Below we describe certain dynamics on
that quotient which in the disjoint case coincides with the pentagram dynamics.

An alternative way to think of the space PBDOn(J+)×PBDOn(J−) /H ×̃H is to identify it with the
quotient PBDOn(J−)

−1PBDOn(J+) /AdH , where PBDOn(J−)
−1PBDOn(J+) is the space of rational

pseudo-difference operators of the form D−1
− D+ with D± ∈ PBDOn(J±), and AdH stands for the

conjugation action of the group H of n-periodic non-vanishing scalar sequences. The identification
between the two spaces is done via the map D± 7→ D

−1
− D+, which we will show to be almost everywhere

bijective.
One last ingredient that we need to state the main result is a Poisson structure on our phase

space PBDOn(J+)×PBDOn(J−) /H ×̃H (which, in the disjoint case, is the space of polygons). That
structure is constructed as follows. Let k be the common difference of J±. Define a Poisson structure
on PBDOn(J+) as the restriction of the structure π(k) on k-sparse operators (see Proposition 3.26).
If k = 1, that is just the standard structure on pseudo-difference operators (see Proposition 3.9).
Further, on PBDOn(J−), take the restriction of the same Poisson structure, but with an opposite
sign. This endows PBDOn(J+) × PBDOn(J−) with a product Poisson structure. Furthermore, the
quotient PBDOn(J+)×PBDOn(J−) /H ×̃H inherits the Poisson structure because the left-right action
is Poisson.

The following theorem is the main result of the paper.

Theorem 4.1. Let J± ⊂ Z be a pair of non-empty finite arithmetic progressions with the same common
difference. Consider the space PBDOn(J+) × PBDOn(J−) of pairs (D+,D−) of n-periodic properly
bounded difference operators supported in J+, J− respectively. Consider also the multivalued map of
that space to itself that assigns to D± new difference operators D̃± defined by the equation

D̃+D− = D̃−D+. (1’)

Then the following is true.

1. This map D± 7→ D̃± descends to a generically defined single-valued transformation ΨJ±
of the

quotient PBDOn(J+)×PBDOn(J−) /H ×̃H, where H ×̃H is the group of pairs of non-vanishing
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n-quasi-periodic sequences with the same monodromy acting by the simultaneous left-right ac-
tion (5).

2. If the progressions J± are disjoint, then the so-obtained map ΨJ±
coincides with the pentagram

map associated with J±.

3. The mapping

PBDOn(J+)× PBDOn(J−) /H ×̃H → PBDOn(J−)
−1PBDOn(J+) /AdH. (16)

taking the left-right orbit of a pair D± to the H-conjugacy class of the pseudo-difference opera-
tor D−1

− D+ is generically a bijection. This bijection identifies the map ΨJ±
with the following

refactorization dynamics on conjugacy classes:

L := D−1
− D+ 7→ L̃ := D+D

−1
− . (17)

In other words, the mapping ΨJ±
has a Lax representation

L 7→ D+LD
−1
+ . (18)

4. The mapping ΨJ±
is Poisson.

5. Suitably normalized central functions on the space of Lax operators L are Poisson commuting first
integrals of ΨJ±

.

Remark 4.2. Here is what we mean by normalization of central functions. Recall that as central
functions on the group IΨDOn of n-periodic pseudo-difference operators one can take functions of
the form fij(L) := TrT inLj , where i ∈ Z, j ∈ Z>0 (see Remark 3.18). Upon conjugation of L by a
quasi-periodic sequences α ∈ H with monodromy z, the function fij transforms as

fij(αLα
−1) = TrT inαLjα−1 = ziTrαT inLjα−1 = zifij(L).

Thus, the functions fij do not descend to the quotient of Lax operators by the conjugation action of
H . One can, however, consider Laurent monomials of those functions that are invariant under the
H-action and hence descend to the quotient.

Remark 4.3. As explained in Remark 3.8, periodic pseudo-difference operators can be identified with
matrices over the field R((z)) of formal Laurent series. Thus, (18) can be viewed as a Lax representation
valued in Matn⊗R((z)), i.e. a Lax representation with spectral parameter (in fact, since L is defined as
a quotient of two difference operators, the corresponding matrix L(z) is not just a formal Laurent series
but a rational function of z). Note, however, that since L is only defined up to conjugation by quasi-
periodic sequences α ∈ H , the corresponding z-dependent matrix L(z) is not uniquely defined. Namely,
conjugation by periodic sequences translates to conjugation by z-independent diagonal matrices, while
conjugation by a quasi-periodic sequence αt defined by αt,i := t⌊(i−1)/n⌋ (where ⌊ ⌋ is the floor function)
becomes the action L(z) 7→ L(tz). Since H is the direct product of periodic operators and the subgroup
{αt | t ∈ R

∗}, it follows that the Lax matrix L(z) is defined up to transformations of the form
L(z) 7→ AL(tz)A−1, where A is a constant invertible diagonal matrix.

Example 4.4. For the classical pentagram map, the matrix Lax representation is given by

D+ =

























a1 0 c1
. . .

. . .
. . .

. . .
. . .

. . .

an−2 0 cn−2

cn−1 an−1 0

0 cn an

























,D− =























0 b1 0 d1
. . .

. . .
. . .

. . .

0 bn−3 0 dn−3

dn−2z 0 bn−2 0

0 dn−1z 0 bn−1

bnz 0 dnz 0























,

L := D−1
− D+, L̃ = D+LD

−1
+ ,

where L is determined by a polygon up to conjugation by constant diagonal matrices and rescaling
z 7→ tz, and D± are determined by L up to simultaneous left multiplication by diagonal matrices.
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One can also characterize first integrals of the maps ΨJ±
provided by Theorem 4.1 as follows:

Corollary 4.5. The characteristic polynomial P (D++wD−, z) of the monodromy of D++wD−, defined
up to transformations of the form z 7→ tz and a constant factor, is invariant under the map ΨJ±

.

Proof of Corollary 4.5. Let D±(z),L(z) be the loop group elements corresponding to the operators
D± and L respectively. Then, by Theorem 4.1, the map ΨJ±

preserves the central function

det(L(z) + wId) = det(D−1
− (z)D+(z) + wId) =

det(D+(z) + wD−(z))

detD−(z)

defined up to transformations of the form z 7→ tz, cf. Remark 4.3. Using Proposition 3.2, we can
further rewrite this as

det(L(z) + wId) = zk
P (D+ + wD−, z)

P (D−, z)
, k := min(J− ∪ J+)−min J−.

The fraction in the right-hand side is generically irreducible, so both its numerator and denominator
must be preserved by ΨJ±

, up to a constant factor.

Remark 4.6. In Section 4.2 we use Corollary 4.5 to show that in the known cases of integrability our
first integrals coincide with the known ones. Furthermore, one can show that our Poisson structures
also coincide with the familiar ones in those cases where a Poisson structure was previously known,
namely for the classical pentagram map, leapfrog map (see Remark 4.7 below), as well as for pentagram
maps on corrugated polygons. For short-diagonal and dented maps no invariant Poisson structures were
previously known. In Section 4.3 we derive, as an example, explicit formulas for the Poisson structure
of the short-diagonal map in 3D.

Remark 4.7. For J+ ∩ J− 6= ∅, the geometric meaning of the maps ΨJ±
is not known. The only

case which we were able to identify with a familiar integrable system is J+ = {−1, 0}, J− = {0, 1}
(and, more generally, J+ = {k − 1, k}, J− = {k, k + 1} which correspond to the same map up to
a shift indices). In that case, the map ΨJ±

is the leapfrog map of [10], also known as the discrete
relativistic Toda lattice [35]. The phase space of the leapfrog map is, by definition, the space of
pairs of twisted n-gons in RP1 with the same monodromy, considered up to simultaneous projective
transformations. One can lift such two polygons to two bi-infinite sequences V −

i , Vi of vectors in R2,
and then construct two operators D− and D+ supported in J+ = {−1, 0} and J− = {0, 1} respectively
such that (D− + D+)V

− = 0 and D−V
− = V. This identifies the space of pairs of twisted n-gons in

RP1 with the same monodromy, considered up to simultaneous projective transformations, with the
left-right quotient PBDOn(J+)×PBDOn(J−) /H ×̃H , while the leapfrog map gets identified with the
map ΨJ±

. The only proof of this we were able to find consists of expressing both maps in coordinates.
However, we do believe that it should be possible to directly identify equation (1’) with the geometric
“leapfrogging” definition, similarly to how we identify it with pentagram-type dynamics in the case of
disjoint J±.

To prove Theorem 4.1 we essentially repeat the argument we used to prove Theorem 1.1, filling in
technical details. We begin with a few lemmas.

Lemma 4.8. Let D, D′ be n-periodic difference operators with the same support, and let D be properly
bounded. Assume that KerD′ ⊃ KerD. Then there is an n-periodic sequence α such that D′ = αD.

Proof. Without loss of generality, assume that D and D′ are supported in {0, . . . , d}. Let α be
the leading coefficient of D′ divided by the leading coefficient of D. Then the difference operator
R := D′−αD is supported in {0, . . . , d− 1} and annihilates the kernel of D. Let us show that such an
operator must be zero. Assume R 6= 0. Then there is ξ ∈ R∞ and i ∈ Z such that (Rξ)i 6= 0. Further,

since D is properly bounded of degree d, there is ξ̂ ∈ KerD such that ξ̂j = ξj for all j ∈ {i, . . . , i+d−1}.

Then, on one hand, since KerR ⊃ KerD, we have Rξ̂ = 0. On the other hand, since ξ̂j = ξj for all

j ∈ {i, . . . , i + d − 1} and R is supported in {0, . . . , d − 1}, we have that (Rξ̂)i = (Rξ)i 6= 0. So we
indeed must have R = 0 and D′ = αD, as desired.
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Lemma 4.9. Let D± ∈ PBDOn(J±) be operators with trivially intersecting kernels. Assume also
that D̃± ∈ PBDOn(J±) are properly bounded operators satisfying (1’). Then, for any other operators
D̃′

± ∈ DOn(J±) satisfying (1’), there exists an n-periodic sequence α such that D̃′
± = αD̃±.

Proof. First assume that D̃± ∈ DOn(J±) is any solution of (1’). Then, applying both sides of (1’) to
any ξ ∈ KerD+ we get D̃+D−ξ = 0, meaning that

Ker D̃+ ⊃ D−(KerD+). (19)

Now assume that D̃+ is properly bounded. Then dimKer D̃+ = dimKerD+. At the same time, since
KerD+ ∩KerD− = 0, it follows that dimD−(KerD+) = dimKerD+. So, the dimensions of both sides
of (19) are the same. Thus, for any solution of (1’) we have inclusion (19) while for properly bounded
solutions the inclusion becomes an equality. That means that if D̃± is a properly bounded solution,
and D̃′

± is any other solution, then Ker D̃′
+ ⊃ Ker D̃+. So, by Lemma 4.8 we have D̃′

+ = αD̃+ for some

periodic sequence α. But then, using that both pairs D̃±, D̃′
± solve (1’), we get

D̃′
− = D̃′

+D−D
−1
+ = αD̃+D−D

−1
+ = αD̃−.

So, D̃′
± = αD̃±, as desired.

Lemma 4.10. There exists a Zariski open and dense subset A(J±) ⊂ PBDOn(J+)×PBDOn(J−) such
that for any (D+,D−) ∈ A(J±) equation (1’) admits a solution (D̃+, D̃−) ∈ PBDOn(J+)×PBDOn(J−).
Moreover, this solution is unique up to multiplying both D̃+ and D̃− by the same periodic sequence on
the left.

Proof. Let A′ ⊂ PBDOn(J+)×PBDOn(J−) be the set of pairs D± such that (1’) has a unique solution
(D̃+, D̃−) ∈ DOn(J+) × DOn(J−) with monic D̃+ (which means that the leading coefficient of D̃+ is
equal to 1). This set is Zariski open. Indeed, solving (1’) for D̃± with D̃+ monic is equivalent to a
linear system. The number of indeterminates in that system is the number of unknown coefficients of
D̃± multiplied by the period, that is n (|J+|+ |J−| − 1). At the same time, since both sides of (1’) are
operators supported in the Minkowski sum J+ + J−, the number of equations is n|J+ + J−|, which,
for two arithmetic progressions with the same common difference is also equal to n (|J+|+ |J−| − 1).
So, we have a linear system where the number of unknowns is the same as the number of equations,
and uniqueness of the solution is equivalent to non-vanishing of the determinant. That determinant is
a polynomial in coefficients of D±, so the set A′ is Zariski open.

Now, define A ⊂ A′ as the set of those pairs D± that belong to A′ and have the property that the
unique solution (D̃+, D̃−) of (1’) with monic D̃+ belongs to PBDOn(J+) × PBDOn(J−). This set is
also Zariski open. Indeed, as we just saw, the unique solution of (1’) with monic D̃+ comes from an
m×m linear system with coefficients being polynomials in D±. So, the solution is properly bounded
when certain rational functions do not vanish, which means A is Zariski open in A′ and hence in
PBDOn(J+)× PBDOn(J−).

We now show that the set A is not empty. To that end, assume that D± ∈ PBDOn(J±) are
operators with constant coefficients such that KerD+ ∩KerD− = 0 and D+ is monic. Then D̃± := D±

solves (1’). That solution has monic D̃+ and, moreover, there are no other monic solutions. Indeed,
by Lemma 4.9 any other solution must be of the form D̃± = αD±, so if D̃+ is monic then α = 1 and
D̃± = D±. Therefore, for D± as described, equation (1’) admits a unique solution with D+ is monic,
and that solution is properly bounded. But that means (D+,D−) ∈ A, as desired.

So, the set A is Zariski open and non-empty, hence open and dense. Now, to complete the proof, it
suffices to show that for any (D+,D−) ∈ A(J±) the solution (D̃+, D̃−) ∈ PBDOn(J+)×PBDOn(J−) of
equation (1’) is unique up to multiplying both D̃± by the same periodic sequence on the left. Indeed,
if there were two solutions not related in this way, then dividing them by the leading term of D̃+ we
would obtain two different solutions with monic D̃+. But that is not possible by construction of A.
Thus, the set A(J±) := A satisfies our requirements.
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Lemma 4.11. There exists a Zariski open and dense subset B(J±) ⊂ PBDOn(J+)×PBDOn(J−) such
that for any (D+,D−) ∈ B(J±) the pseudo-difference operator D−1

− D+ has a unique representation as
a left quotient of operators supported in J±, up to multiplying both D+ and D− by a periodic sequence
on the left.

Proof. Recall that duality D 7→ D∗ is an anti-automorphism of the algebra of difference operators
that is uniquely determined by requiring that a scalar sequence is self-dual, and T ∗ = T−1. In other
words, the dual of an operator D =

∑

aiT
i is

D∗ =
∑

T−iai =
∑

ãiT
−i, ãi,j = ai,j−i.

This corresponds to transposition of the operator matrix and can be thought of as operator duality
with respect to the formal L2 inner product on R∞. Also note that the dual of a properly bounded
operator supported in J ⊂ Z is a properly bounded operator supported in −J := {−j | j ∈ J}.

Let ⋆ : PBDOn(J+) × PBDOn(J−) → PBDOn(−J+) × PBDOn(−J−) be the map that takes
(D+,D−) to (D∗

+,D
∗
−). Let also ψJ±

: A(J±)→ PBDOn(J+)×PBDOn(J−) be the map which takes a

pair (D+,D−) to the unique monic properly bounded solution (D̃+, D̃−) of equation (1’). As we saw
in the proof of Lemma 4.10, that is a rational map. Consider now the map

ψ∗
J±

:= ⋆ ◦ ψ−J±
◦ ⋆ : A(−J±)

∗ → PBDOn(J+)× PBDOn(J−),

whereA(−J±)∗ := ⋆(A(−J±)), and let B := (ψ∗
J±

)−1(AJ±
). Then B is Zariski open as the preimage of a

Zariski open set under a rational map. Furthermore, B is non-empty. Indeed, let D± ∈ PBDOn(−J±)
be operators with constant coefficients such that KerD+ ∩ KerD− = 0 and D+ is monic. Then
(D+,D−) ∈ A(−J±), so (D∗

+,D
∗
−) ∈ A(−J±)

∗. Furthermore, we have

ψ∗
J±

(D∗
+,D

∗
−) = (D∗

+,D
∗
−),

so (D∗
+,D

∗
−) ∈ B. Thus, the set B(J±) := B is Zariski open and non-empty, and to complete the

proof it suffices to show it satisfies the unique factorization requirement. To that end, assume that
(D+,D−) ∈ B, and D

−1
− D+ = (D′

−)
−1D′

+ for some operators D′
± ∈ PBDOn(J±). Since (D+,D−) ∈ B,

we have that (D∗
+,D

∗
−) ∈ A(−J±), meaning there exists a unique pair of operators D̃± ∈ PBDOn(−J±)

with D̃+ monic such that
D̃+D

∗
− = D̃−D

∗
+. (20)

Moreover, by definition of B we have (D̃∗
+, D̃

∗
−) ∈ A(J±). Now, taking the dual of (20) we get

D−D̃
∗
+ = D+D̃

∗
− ⇒ D̃

∗
+(D̃

∗
−)

−1 = D−1
− D+ = (D′

−)
−1D′

+ ⇒ D
′
−D̃

∗
+ = D′

+D̃
∗
−.

So, since (D̃∗
+, D̃

∗
−) ∈ A(J±), by Lemma 4.10 we have D′

± = αD± for some periodic sequence α, as
required.

Proof of Theorem 4.1. We begin with the first statement of the theorem (equation (1’) defines a
generically single-valued map ΨJ±

of the left-right quotient to itself). By Lemma 4.10, for generic

D± ∈ PBDOn(J±) equation (1’) has a solution D̃± ∈ PBDOn(J±) which is unique up to multiplying
both D̃± on the left by some n-periodic sequence α. Thus, that equation defines a generically defined
and generically single-valued map from the space PBDOn(J+)×PBDOn(J−) to its left quotient by the
group H0 := IDOn({0}) ⊂ H of non-vanishing n-periodic sequences. To show that this map descends
to the left-right quotient, it suffices to check that if the preimages are in the same left-right orbit, then
so are the images (note that the left-right action is still defined on the left quotient by H0, although
it is not faithful). Assume that (1’) takes a pair D± to the H0-orbit of D̃±. Take another element of
the left-right orbit of D±. That has the form αD±β

−1 for some quasi-periodic sequences α, β with
the same monodromy. Then (1’) has a solution given by βD̃±α

−1. So, indeed elements of the same
left-right orbit are mapped to elements of the same left-right orbit, proving the first statement of the
theorem.
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The proof of the second statement (for disjoint J± the maps ΨJ±
coincide with pentagram maps

on J-corrugated polygons) repeats, word for word, the proof of the corresponding part of Theorem 1.1,
so we proceed to the third statement (the map ΨJ±

can be identified with refactorization dynamics on

rational operators). First, we need to show that the map (16) given by D± 7→ D
−1
− D+ is generically a

bijection. It is clearly surjective by definition of the codomain, so it suffices to prove injectivity. That
is, we need to show that if D−1

− D+ is H-conjugate to (D′
−)

−1D′
+, then for generic D± the pairs D±

and D′
± are in the same left-right orbit. To that end, assume that

D−1
− D+ = α−1(D′

−)
−1D′

+α = (D′
−α)

−1D′
+α

for some periodic sequence α ∈ H . Then, for generic D±, by Lemma 4.11 we have D′
±α = βD±. But

that precisely means that the pairs D± and D′
± are in the same left-right orbit, as desired.

Now that we know that (16) is bijection, we show that it identifies ΨJ±
with refactorization dy-

namics. Indeed, (1’) is equivalent to
D̃−1

− D̃+ = D+D
−1
− , (2’)

which precisely means that the operator L̃ := D̃−1
− D̃+ associated with D̃± is obtained from the operator

L := D−1
− D+ associated with D± by means of refactorization (17).

To prove the fourth statement (the mapping ΨJ±
is Poisson), depict (2’) as the following commu-

tative diagram:

PBDOn(J+)× PBDOn(J−) /H ×̃H PBDOn(J+)× PBDOn(J−) /H ×̃H

PBDOn(J−)
−1PBDOn(J+) /AdH

D+D−1

−

ΨJ±

D−1

−
D+

Note that the left diagonal arrow is well-defined because by Lemma 4.10 almost every right quotient
D+D

−1
− can be rewritten as a left quotient D̃−1

− D̃+, so

PBDOn(J+)PBDOn(J−)
−1 = PBDOn(J−)

−1PBDOn(J+),

up to Zariski closed subsets (Lemma 4.10 is only one containment direction, while the opposite one can
be proved by applying the lemma to dual operators, as in Lemma 4.11). Furthermore, the diagonal
arrows are Poisson, since multiplication in IΨDOn is Poisson, inversion is anti-Poisson, and the Poisson
structure on the space PBDOn(J+) × PBDOn(J−) of pairs of operators is defined by reversing the
structure on the factor corresponding to D−. Also notice that by item 3 the right diagonal arrow is
generically invertible. So, ΨJ±

is a composition of Poisson maps and hence Poisson, as stated.
Finally, we prove the fifth statement (central functions of L are Poisson-commuting first integrals

of the map ΨJ±
). Central functions on IΨDOn applied to L are preserved by the map ΨJ±

due to
representation (18) so it suffices to prove that they commute. More precisely, we need to establish
Poisson commutativity for the pull-backs of central functions on IΨDOn by the map (16). But that
follows from commutativity of central functions on IΨDOn along with the fact that (16) is a Poisson
map (proved in item 4). So, Theorem 4.1 is proved.

4.2 Scaling invariance

Most of the known constructions of first integrals and Lax representations for pentagram-type maps
are based on scaling symmetries. A scaling symmetry is a 1-parametric group of transformations of
the polygon space which commutes with the pentagram map. In most cases such symmetries were
guessed by studying explicit formulas for the corresponding map, and their geometric meaning is not
known. The aim of this section is to show that the scaling symmetry is an immediate corollary of our
construction.
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Proposition 4.12. The map ΨJ±
, described in Theorem 4.1, commutes with a 1-parametric group Rw

of transformations which is defined, in terms of difference operators, as

D+,D− 7→ D+, wD−. (21)

In terms of the Lax operator, this transformation is simply rescaling:

L(z) 7→ w−1L(z). (22)

Remark 4.13. Transformation (21) commutes with the left-right H ×̃H action (5) (while (22) com-
mutes with the conjugation action) and hence can be viewed as a map from the space PBDOn(J+)×
PBDOn(J−) /H ×̃H (which is where the map ΨJ±

is defined) to itself.

Proof of Proposition 4.12. Indeed, the defining equation (1’) of the map ΨJ±
is invariant under

the transformation D− 7→ wD−, D̃− 7→ wD̃−, while the Lax form (18) is invariant under rescaling.

Proposition 4.14. In the case of the classical pentagram map, as well as in short-diagonal and dented
cases, transformations Rw defined in Proposition 4.12 coincide with scaling transformations introduced
for these maps in [33, 17, 19].

Proof. The proof is achieved by introducing coordinates on the polygon space and rewriting the scaling
symmetry in those coordinates. As an example, let us consider short-diagonal maps in RP2k (the proof
in other cases is analogous). This corresponds to J+ = {0, 2, 4, . . . , 2k}, J− = {1, 3, 5, . . . , 2k + 1}
(see Table 1). The phase space of the associated short-diagonal map is the space Pn(J) /PGL, with
J = J+⊔J− = {0, . . . , 2k+1}, of arbitrary (twisted) polygons in RP2k, modulo projective equivalence.
In terms of difference operators, it is the space of operators supported in J and considered modulo the
left-right action (5) of H ×̃H . As can be seen from [17, Section 3.2], as well as from [24, Section 8.2],
if gcd(2k + 1, n) = 1, then every orbit of the H ×̃H action has a unique representative of the form

D = 1 +

2k
∑

j=1

ajT
j − T 2k+1. (23)

Thus, one can take entries of the sequences aj , j = 1, . . . , 2k, as coordinates on the polygon space. To
write our scaling transformation Rw in these coordinates, we need to apply it to operator (23), which
gives

D′ = 1 +

2k−1
∑

j=1

wajT
j +

2k
∑

j=2

ajT
j − wT 2k+1, (24)

and then normalize, i.e. find an operator D̃ of the form (23) which belongs to the same orbit of the
H ×̃H action as (24). Note that since the constant term of D′ is already of necessary form, it remains
to normalize the coefficient of T 2k+1, which can be done using only the conjugation action of H . The
condition for αD′α−1, where α ∈ H , to have coefficient of T 2k+1 equal to −1 is αi+2k+1α

−1
i = w. This

has a quasi-periodic solution αi = λi, where λ is such that λ2k+1 = w. Computing D̃ = αD′α−1 with
such α, we find that its coefficients ãk are given by

ãj = wλ−jaj = λ2k+1−jaj

when j is odd, and
ãj = λ−jaj

when j is even. Upon a parameter change s = λ−2 = w− 2
2k+1 , this coincides with formulas for the

scaling given in [17, Section 9].

Remark 4.15. In [17], the invariance of short-diagonal maps under scaling was only established in
dimensions ≤ 6, while the general case was proved in [22]. With our definition, the invariance of
pentagram maps under scaling is immediate.
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Corollary 4.16. For the classical, as well as short-diagonal and dented maps, first integrals obtained
from our construction coincide with the ones obtained in [28, 17, 19].

Proof. Indeed, according to Corollary 4.5, our integrals can be interpreted as spectral invariants of
the monodromy for polygons obtained from the initial one by means of scaling Rw. But this is exactly
the definition of first integrals in [28, 17, 19].

Remark 4.17. For corrugated maps of [10] our first integrals also coincide with the known ones. In
fact, one can show more: for these maps, our refactorization description (17) is equivalent to the one
given in [10, Proposition 4.10]. The refactorization description of [10] looks more complicated because
it is given in terms of actual loop group elements (equivalently, pseudo-difference operators) A1(z),
A2(z), as opposed to elements of the quotient by the H ×̃H action. Rewriting refactorization on the
quotient as operator refactorization involves choosing a section of the action, which complicates the
resulting formulas.

4.3 Poisson brackets for the short-diagonal map in 3D

In this section we derive explicit formulas for Poisson brackets preserved by the short-diagonal pen-
tagram map in 3D. The corresponding sets J± are J+ = {−2, 0, 2}, J− = {−1, 1} (the choice
J+ = {0, 2, 4}, J− = {1, 3} indicated in Table 1 leads to the same map up to the shift of indices
and hence gives rise to the same Poisson bracket). The phase space of the associated map is the space
of all twisted n-gons in RP3 modulo projective equivalence. We coordinatize that space as in [17, Sec-
tion 5.2], namely we assign to a twisted n-gon {vi ∈ RP3} three periodic n-sequences xi, yi, zi defined
as the following negative cross-ratios:

xi := −[vi+4, vi+5, 〈vi, vi+1, vi+2〉 ∩ 〈vi+4, vi+5〉, 〈vi+1, vi+2, vi+3〉 ∩ 〈vi+4, vi+5〉],

yi := −[vi, vi+1, 〈vi+2, vi+3, vi+4〉 ∩ 〈vi, vi+1〉, 〈vi+2, vi+4, vi+5〉 ∩ 〈vi, vi+1〉],

zi := −[vi+4, vi+5, 〈vi, vi+1, vi+3〉 ∩ 〈vi+4, vi+5〉, 〈vi+1, vi+2, vi+3〉 ∩ 〈vi+4, vi+5〉].

Proposition 4.18. In these coordinates, the Poisson structure for the short-diagonal pentagram map
in RP3 takes the following form:

{xi, xi+1} = xixi+1, {xi, xi+2} = xixi+2wi+1, {yi, yi+2} = yiyi+2wi+1, {zi, zi+2} = zizi+2wi

{xi, yi−2} = xiyi−2wi−1, {xi, yi+2} = −xiyi+2wi+1,

{xi, zi−1} = xizi−1(wi−1 − 1), {xi, zi+1} = xizi+1, {xi, zi+3} = −xizi+3wi+1,

{yi, zi−1} = yizi−1(1− wi−1), {yi, zi+1} = −yizi+1, {yi, zi+3} = yizi+3wi+1,

where wi := yi+1zi.

Proof. A direct computation shows that for any difference operator D = aT−2+ bT−1+ c+ dT + eT 2

representing the polygon {vi}, the coordinates xi, yi, zi can be expressed in terms of coefficients of D
as follows:

xi−2 = −
ci+1ei
didi+1

, yi−2 = −
ai+1di
bici+1

, zi−2 = −
bi+1ei
cidi+1

. (25)

The Poisson bracket between coefficients of D is, by construction, the product bracket corresponding
to the decomposition D = D+ + D−, where D+ = aT−2 + c+ eT 2, D− = bT−1 + cT . The bracket on
operators D+ is defined as the restriction of the bracket π(2) on 2-sparse operators, while the D− part
is endowed with the negative of that bracket. Similarly to Example 3.28, we get

{ai, ci} =
1

2
aici, {ai, ei} =

1

2
aiei, {ci, ei} =

1

2
ciei, {ci, ai+2} =

1

2
ciai+2,

{ci, ci+2} = ai+2ei, {ei, ci+2} =
1

2
eici+2, {ei, ai+4} =

1

2
eiai+4
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and

{bi, di} = −
1

2
bidi, {di, bi+2} = −

1

2
biai+2.

It now remains to compute the brackets of functions (25) using these formulas. This is done by a
straightforward calculation.

Remark 4.19. As shown in [17, Theorem 5.6], the short-diagonal map in xyz-coordinates reads

x̃i = xi+1
αi

βi
, ỹi =

xi−1yi−2zi
xizi−1

βi−1βi+2

αiβi+1
, z̃i =

xi+1zi
xi

βi−1βi+2

αi−1βi
,

where
αi := 1 + yi−1 + zi+2 + yi−1zi+2 − yi+1zi, βi := 1 + yi−1 + zi.

It follows from our construction that this map preserves the above bracket. This can of course be
verified with a computer algebra system.

4.4 Refactorization and Y-meshes

In this section we outline the connection between the refactorization description of higher pentagram
maps and the description in terms of Y-meshes given in [13]. Although we only consider the example
of a short-diagonal pentagram map in RP3, it is quite likely that all the same arguments work for more
general maps in any dimension.

Let us briefly recall the Y-mesh description of the short-diagonal map from [13]. A Y-pin S
is four distinct points S = {a, b, c, d ∈ Z

2}, satisfying certain technical conditions. Given a Y-pin
S = {a, b, c, d}, a Y-mesh of type S and dimension d is a map v : Z2 → Pd such that the points v(r+a),
v(r + b), v(r + c), v(r + d) are collinear for any r ∈ Z2. One can view any Y-mesh as a polygon
depending on a discrete time variable t ∈ Z. By definition, the i’th vertex of the polygon at time t is
given by v(i, t). In what follows, we will only consider Y-meshes such that v(i + n, t) = φ(v(i, t)) for
a fixed projective transformation φ. In other words, we assume that all the polygons defined by the
Y-mesh are twisted n-gons with the same monodromy.

The collinearity assumption on v(r + a), v(r + b), v(r + c), v(r + d) defines a relation between
the polygon v(∗, t) and the polygons corresponding to several previous time instances. Thus, Y-
meshes can be regarded as dynamical systems. Since the polygon v(∗, t) may be expressed in terms
of polygons corresponding to several previous values of time, such a dynamical system is, generally
speaking, defined on the space of k-tuples of polygons (as opposed to pentagram maps which are
defined on polygons). Furthermore, those polygons need to satisfy certain additional restrictions.
As an example, consider the Y-pin S := {(−1, 0), (1, 0), (0, 1), (0, 2)} depicted in Figure 2. In this
case, the horizontal level v(∗, t + 2) may be expressed in terms of the previous two levels. Indeed,
by definition of a Y-mesh, the vertex v(i, t + 2) may be reconstructed as the intersection of lines
〈v(i − 1, t), v(i + 1, t)〉 ∩ 〈v(i − 1, t+ 1), v(i + 1, t+ 1)〉. Thus, in this case the Y-mesh may be viewed
as a dynamical system on pairs of polygons. These polygons satisfy two additional conditions:

Figure 2: A Y-pin corresponding to the short-diagonal map in 3D.
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• The vertex v(i, t+1) of the second polygon lies on the diagonal 〈v(i− 1, t), v(i+1, t)〉 of the first
polygon.

• The respective diagonals 〈v(i − 1, t), v(i + 1, t)〉 and 〈v(i − 1, t + 1), v(i + 1, t + 1)〉 of the two
polygons are coplanar.

Further, the authors of [13] observe that in dimension d = 3 the square of the map

(v(∗, t), v(∗, t+ 1)) 7→ (v(∗, t+ 1), v(∗, t+ 2))

defined by the Y-pin depicted in Figure 2 is precisely the short-diagonal pentagram map. Indeed,
we have v(i − 1, t + 1) ∈ 〈v(i − 2, t), v(i, t)〉 and v(i + 1, t + 1) ∈ 〈v(i, t), v(i + 2, t)〉, so the point
v(i, t+2) ∈ 〈v(i− 1, t+1), v(i+1, t+1)〉 belongs to the plane 〈v(i− 2, t), v(i, t), v(i+2, t)〉. Given also
that v(i, t+ 2) ∈ 〈v(i − 1, t), v(i+ 1, t)〉, we get

v(i, t+ 2) ∈ 〈v(i − 1, t), v(i+ 1, t)〉 ∩ 〈v(i − 2, t), v(i, t), v(i + 2, t)〉,

which is precisely the definition of the short-diagonal map. Thus, the map defined by the Y-pin depicted
in Figure 2 can be viewed as the “square root” of the short-diagonal map. This square root, however,
is not defined on the space of polygons itself, but on a certain extension of that space which consists of
pairs of polygons satisfying two above-mentioned conditions. It can be shown, using purely geometric
arguments, that this extended space is generically a finite cover of the space of polygons. In other
words, given a level v(∗, t) of a Y-mesh of type depicted in Figure 2, there are generically finitely many
ways to reconstruct the next level v(∗, t+1) and thus all subsequent levels. Below we give an algebraic
proof, by showing that this reconstruction problem is equivalent to a factorization problem for the
difference operator D+ corresponding to the initial polygon v(∗, t).

Recall that the short-diagonal map in 3D corresponds to progressions J+ = {−2, 0, 2}, J− = {−1, 1}.
To every twisted n-gon in P3 we can assign two operators D± ∈ DOn(J±) supported in those sets, which
identifies the short-diagonal map with refactorization dynamics (1’). Assume now that the polygon
encoded by the operators D± is realized as a level v(∗, t) of a Y-mesh of type depicted in Figure 2.
Let V (i, t) be the lifts of points v(i, t) to R

4. Since the levels v(∗, t) and v(∗, t+ 2) are related by the
short-diagonal map, their lifts V (∗, t), V (∗, t+ 2) may be chosen in such a way that

D+V (∗, t) = −D−V (∗, t) = V (∗, t+ 2)

(cf. the proof of Theorem 1.1). Furthermore, since v(i, t + 2) ∈ 〈v(i − 1, t + 1), v(i + 1, t + 2)〉, there

exists a difference operator D
(1)
+ supported in {−1, 1} such that

V (∗, t+ 2) = D
(1)
+ V (∗, t+ 1).

Analogously, there exists a difference operator D
(2)
+ supported in {−1, 1} such that

V (∗, t+ 1) = D
(2)
+ V (∗, t). (26)

Therefore, we have

(D+ −D
(1)
+ D

(2)
+ )V (∗, t) = 0.

But since both operators D+ and D
(1)
+ D

(2)
+ and hence their difference are supported in {−2, 0, 2}, it

follows that
D+ = D

(1)
+ D

(2)
+ .

Conversely, given such a factorization of D+, we can reconstruct the level v(∗, t+ 1) of the Y-mesh
by using (26), and hence reconstruct all the subsequent levels.

Proposition 4.20. A generic operator difference operator D supported in {−2, 0, 2} has two factor-
izations of the form D = D1D2, where Di’s are supported in {−1, 1}, if n is odd, and four such
factorizations if n is even. Two factorizations D1D2 and D̃1D̃2 are considered the same if D̃1 = D1α

−1

and D̃2 = αD2 for a certain n-periodic non-vanishing sequence α.
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Remark 4.21. The coefficients of the factors are, in general, complex numbers, even if the initial
operator D is real.

Proof of Proposition 4.20. The problem is equivalent to representing an operator supported in
{0, 2, 4} as a product of two operators supported in {0, 2}. If n is odd, this problem further reduces,
using the isomorphism described in Remark 3.27, to representing an operator D supported in {0, 1, 2}
as a product D1D2 of two operators supported in {0, 1}. The latter problem has two different solutions
for generic D since D2 is a right divisor of D if and only it annihilates a certain element of KerD, and
since D2 must be periodic, this element has to be of the two eigenvectors of the monodromy operator.
Similarly, if n is even, an operator supported in {0, 2, 4} can be identified with two (n/2)-periodic
operators supported in {0, 1, 2} (see Remark 3.27), each of which has two different factorizations.
Hence, in this case we generically have 2× 2 = 4 distinct factorizations.

Therefore, the square root of the short-diagonal map defined by the Y-pin depicted in Figure 2 acts
on the space which is generically a 2-to-1 or 4-to-1 covering of the space of polygons. This space can

be described as the space of triples of operators D
(1)
+ ,D

(2)
+ ,D−, all of which are supported in {−1, 1}.

These operators should be considered up to the action

D
(1)
+ 7→ αD

(1)
+ β−1, D

(2)
+ 7→ βD

(2)
+ γ−1, D− 7→ αD−γ

−1,

where α, β, γ are n-quasi-periodic sequences with the same monodromy. This space projects to the
space of polygons in P3 by means of the map

D
(1)
+ ,D

(2)
+ ,D− 7−→ D

(1)
+ D

(2)
+ ,D−.

Furthermore, the Y-mesh dynamics (i.e. the square root of the short-diagonal map) can be expressed
in terms of difference operators as follows:

D̃−D
(2)
+ = D̃

(1)
+ D−, D̃

(2)
+ = D

(1)
+ ,

which can also be described as the following refactorization:

D−1
− D

(1)
+ D

(2)
+ 7−→ D

(2)
+ D

−1
− D

(1)
+ .

Since D̃
(2)
+ = D

(1)
+ , applying this refactorization twice we obtain the operator D

(1)
+ D

(2)
+ D

−1
− , which is

equivalent to the short-diagonal map. Thus, the Y-mesh interpretation of higher pentagram maps can
be regarded as a step-by-step refactorization, where on each step one needs to solve a refactorization-
type problem for binomial difference operators (i.e. operators whose support consists of two elements).
As shown in [13], each of these individual steps can be identified with a sequence of mutations in
an appropriately defined cluster algebra. We conjecture that refactorization problems for binomial
operators always admit a cluster description. An example of that is discussed in the next section.
Namely, we show how the refactorization description of the classical pentagram map yields a description
in terms of networks, in the spirit of [10]. Since network moves are well-known to correspond to cluster
mutations, this also provides a cluster algebra description.

4.5 From refactorization to networks

In this section we show how the refactorization approach to the classical pentagram map yields a
description in terms of weighted directed networks, in the spirit of [10]. Such networks were introduced
by A.Postnikov [30] to study totally positive Grassmannians. For the purposes of our paper, a network
is a directed graph embedded in an infinite strip, as shown in Figure 3. All vertices located at one
boundary component of the strip are 1-valent sources labeled by integers (so there are countably many
of them). Likewise, all vertices at the other boundary component are 1-valent sinks also labeled by
integers. All interior vertices are 3-valent and are neither sources nor sinks. Some edges of the graph
are assigned with numbers, called weights. If no weight is explicitly assigned, it is assumed that the
weight of the corresponding edge is 1. We also assume for simplicity that there are no directed cycles.
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Figure 3: A network.

The weight of a directed path in a network is the product of weights of edges on that path. The
boundary measurement between the source i and sink j is the sum of weights of all directed paths
going from i to j (we will only consider networks for which every such sum is finite). The boundary
measurement matrix is the bi-infinite matrix whose entries are the boundary measurements (below we
use the convention that the (i, j) entry of that matrix corresponds to boundary measurement between
the source j and sink i). In what follows, we only consider networks whose boundary measurement
matrices represent difference or pseudo-difference operators. If the boundary measurement matrix of a
certain network represents an operator, we will also say that the network itself represents that operator.

Example 4.22. For two bi-infinite scalar sequences a, b, consider the difference operator a+ bT . Fig-
ure 4 shows networks representing that operator and its inverse (which is a pseudo-difference operator).
To prove that these two networks represent inverse operators, one considers their concatenation, i.e.
glues the sinks of one network to the sources of the other (which corresponds to composition of the
corresponding operators), and shows that the resulting network represents the identity operator. Note
that if the operator a+ bT is periodic, then these networks are also periodic and can be thought of as
networks on a cylinder, as in [10].

Networks admit local transformations which do not change boundary measurements. These trans-
formations are known as Postnikov moves. Following [10], we consider three types of moves depicted in
Figure 5. For the third move, the updated weights w̃, x̃, ỹ, z̃ are rational functions of the initial weights
w, x, y, z whose particular form can be easily derived from preservation of boundary measurements
and is irrelevant to our purposes. For other types of moves, weights do not change.

We now show how to use Postnikov moves to encode refactorization of pseudo-difference operators.
We will do that using the classical pentagram map as an example. Consider the progressions J+ =
{0, 1}, J− = {2, 3}. Then the equation D̃+D− = D̃−D+, where the operators D± and D̃± are supported
in J±, encodes the inverse pentagram map. Accordingly, the pentagram map itself can be described
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1
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Figure 4: Networks representing the difference operator a+ bT and its inverse.
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Figure 5: Postnikov moves.

by D+D̃− = D−D̃+, which is the same as

D̃−D̃
−1
+ = D−1

+ D−.

Thus, an application of the pentagram map can be thought of as rewriting an operator of the form
D−1

+ D− as D̃−D̃
−1
+ . This operation can be represented as a sequence of Postnikov moves, as follows. The

network representing D−1
+ D−, where D+ = a+ bT and D− = cT 2 + dT 3 is basically the concatenation

of networks in Figure 4, up to a change of weights and shift of indices, see upper left picture in Figure 6.
Applying Postnikov moves as shown in the figure (the figure does not show transformations of weights
since those are irrelevant) results in the network depicted in the bottom left picture. That resulting
network represents an operator of the form D̃−D̃

−1
+ , as can be seen by cutting it along the dashed

line and labeling the newly obtained boundary vertices as shown (simply put, the left half of the new
network looks the same as the right half of the initial one, and vice versa). Furthermore, since this
new network is obtained from the initial one by Postnikov moves, these networks represent the same
operator:

D̃−D̃
−1
+ = D−1

+ D−,

as required. Thus, the pentagram map can be represented as a sequence of Postnikov moves. Further-
more, it is well known that Postnikov moves give rise to cluster transformations of certain variables
associated with faces, which gives the cluster description of the pentagram map, see [10].

Remark 4.23. In [10], the authors consider two different networks describing the pentagram map,
in a sense dual to each other. One of their networks coincides with the one shown in the upper right
picture in Figure 6, cf. [10, Figure 14]. Thus, their network is obtained from ours by type 2 Postnikov
moves. The advantage of our approach is that we obtain networks directly from the refactorization
description and hence essentially from the geometry of the map, while in [10] the identification between
maps and networks is done at the level of formulas.

More generally, one gets a network description for all refactorization corresponding to J± of the
form {k, k + 1}, thus recovering the results of [10]. It is an open problem whether it is possible to
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Figure 6: A network representing a pseudo-difference operator (a+ bT )−1(cT 2 + dT 3) and its refactoriza-
tion.

represent other pentagram maps using networks. This problem reduces to the question of constructing
networks representing operators with support other than {k, k + 1}. This can definitely be done by
means of factorization, as in the previous section. However, the weights of so obtained networks will
not be rational functions in terms of the initial data. It is an interesting question whether one can
represent an operator supported, say, in {0, 1, 2} by means of a network whose weights are rational in
terms of the operator coefficients. If this can be done, one may hope to obtain a cluster description of
higher pentagram maps.

5 Open problems

1. Relation to cluster algebras. The classical pentagram map, as well as pentagram maps on
corrugated polygons, can be described as sequences of cluster mutations [12, 10]. It would be interesting
to find a similar description for more general pentagram maps on J-corrugated polygons or, even
more generally, the maps ΨJ±

associated with arbitrary pairs of progressions with the same common
difference.

Short-diagonal and dented maps were recently treated from the cluster perspective in [13] (see
also Section 4.4 above), where the authors introduced certain variables which transform, under the

30



corresponding pentagram map, according to a cluster rule. However, the definition of those variables
involves introduction of the k’th root of the corresponding map, which in general results in multivalued
functions on the space of polygons (as we show in Section 4.4, computation of such a root is equivalent to
a factorization problem for a certain difference operator; in general, this operation cannot be performed
using only rational functions). Do there exist single-valued cluster variables for short-diagonal, dented,
and more general maps studied in the present paper? A possible approach to this problem is outlined
in Section 4.5: first construct networks representing arbitrary difference operators and their inverses,
and then show that refactorization is equivalent to a sequence of Postnikov moves.

A related question is whether our maps fit into a construction of [14] of integrable systems
associated with dimer models on bipartite graphs, or perhaps some generalized version of it.

2. Refactorization and Y-meshes. Generalize the approach of Section 4.4 to all types of
Y-meshes. What is the precise relation between maps described in the present paper and maps that
admit a Y-mesh description? In particular, is it possible to interpret the cluster dynamics of [13] as
refactorization of ratios of binomial difference operators, as in Section 4.4 above?

3. Maps associated with pairs of non-disjoint progressions. In this paper we con-
structed refactorization maps associated with pairs of progressions J± ⊂ Z with the same common
difference. When these progressions are disjoint, such maps can be interpreted as pentagram-type
maps. What is a geometric interpretation in the non-disjoint case?

4. The leapfrog map. Give a geometric proof of the fact that for J+ = {−1, 0}, J− = {0, 1} our
construction leads to the leapfrog map of [10] (cf. Remark 4.7).

5. Integrability. For all maps ΨJ±
associated with pairs of progressions we constructed a

Lax representation with spectral parameter and a Poisson structure such that the first integrals
coming from the Lax representation Poisson-commute. This suggests that all these maps are both
algebraically and Liouville integrable. Find a proof of this fact, i.e. show that the joint levels sets
of first integrals are Lagrangian submanifolds of symplectic leaves, that each of those submanifolds
can be identified with an open subset in the Jacobian of the corresponding spectral curve, and that
a suitable power of the map ΨJ±

is a translation relative to the natural group structure on the Jacobian.

6. Difference operators with matrix coefficients and pentagram maps on Grass-
mannians. The construction of the present paper can be generalized to difference operators with
matrix coefficients. Does this lead to pentagram maps on Grassmannians defined in [8]? How are the
corresponding Poisson structures related to double brackets of [27]?

7. Partial difference operators and the Laplace transform. One can generalize the
construction of the present paper to partial difference operators supported in arithmetic progressions
J± ⊂ Z2. This leads to pentagram-type maps defined on polyhedra. The simplest example of such a
map is the discrete Laplace transform of [6] corresponding to J+ = {(0, 0), (1, 0)}, J− = {(0, 1), (1, 1)}.
Are maps of this type integrable?

Note that pentagram map as well as its generalizations to corrugated polygons can be thought of
as reductions of the Laplace transform, see [2]. This should correspond to certain reductions of partial
difference operators to ordinary ones.

8. Poisson structures on reductions of difference operators. Poisson structures stud-
ied in the present paper arise as reductions of structures on rational pseudo-difference operators.
One can also study Poisson structures on polygons arising as reductions of difference operators, see
Remark 3.12. For example, taking d = 1 and coordinatizing the moduli space of polygons in RP1 by
means of cross-ratios of quadruples of consecutive vertices, one gets the following Poisson bracket:

{xi, xi+1} = xixi+1(xi + xi+1 − 1), {xi, xi+2} = xixi+1xi+2.

This bracket is well-known in relation to the Volterra lattice and also arises in the study of cross-ratio
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dynamics on polygons [3, 36]. Furthermore, this structure is often considered as a lattice analogue
of the Virasoro algebra [7]. Similarly, computing the bracket on polygons in RP2, one recovers the
Belov-Chaltikian latticeW3-algebra [4]. More generally, we believe that Poisson structures on polygons
obtained by reduction from difference operators can be viewed as lattice versions of classicalW -algebras.
In particular, we conjecture that these structures coincide with the ones constructed by means of
difference Drinfeld-Sokolov reduction [23]. One interesting property that such structures have is that,
in contrast to Poisson brackets studied in the present paper, they restrict to the space of closed polygons.

6 Appendix: Refactorization as long-diagonal pentagram maps and its
continuous limit (by Anton Izosimov and Boris Khesin1)

In this appendix we introduce a new class of long-diagonal pentagram maps in arbitrary dimension, and
derive their complete integrability from the results on refactorization. Furthermore, it turns out that
any factorization case corresponds to an appropriate long-diagonal pentagram map. As a corollary, one
can describe the continuous limit of all integrable pentagram-type maps appearing from refactorization:
this limit gives the equations of the Boussinesq type in the KdV hierarchy.

6.1 Long-diagonal pentagram maps

Definition 6.1. Given a (twisted) n-gon {vk | k ∈ Z} in RPd, its m-diagonal hyperplanes are defined
by

Pk := span〈vk, vk+m, . . . , vk+(d−1)m〉.

Now take two disjoint arithmetic m-progressions (i.e. integer arithmetic progressions with common
difference m) R+ and R− with d elements in total. Then the associated long-diagonal (or m-diagonal)
pentagram map Tlong is given by

v̂k = Tlongvk :=
⋂

r∈R+∪R−

Pk+r .

Example 6.2. The usual pentagram map in RP2 corresponds to m = 2 with R− = {0} and R+ = {1}
(a sequence consisting of one element can be regarded as an m-progression with any m).

Example 6.3. This also generalizes the short-diagonal pentagram map in RPd [17], which corresponds
to m = 2, while R− = {0, 2, ..., d− 2} and R+ = {1, 3, ..., d− 1} if d is even, and R− = {0, 2, ..., d− 1},
R+ = {1, 3, ..., d− 2} if d is odd.

Example 6.4. In RP3 we set m = 3 and take the pair of 3-progressions R+ = {0, 3} and R− = {1}.
Then the corresponding long-diagonal pentagram map is

v̂k = Tlongvk = (vk, vk+3, vk+6) ∩ (vk+1, vk+4, vk+7) ∩ (vk+3, vk+6, vk+9)

= (vk+1, vk+4, vk+7) ∩ (vk+3, vk+6),

see Figure 7.

Theorem 6.5. The long-diagonal pentagram maps Tlong are completely integrable discrete dynamical
systems on generic twisted n-gons in RPd. Namely, each of those maps admits a Lax representation
with spectral parameter and an invariant Poisson structure such that the spectral invariants of the Lax
matrix Poisson commute.

Below we observe that this theorem covers all known examples of integrable pentagrammaps defined
by intersections of diagonals: short-diagonal, dented, deep-dented (including corrugated) cases. The
case of pentagram maps on Grassmannians of [8] is apparently related to a “matrix version” of the
above theorem.

1Department of Mathematics, University of Toronto, Toronto, Canada, khesin@math.toronto.edu
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Figure 7: Integrable long-diagonal map in RP3 for m = 3 with R+ = {0, 3} and R− = {1}.

Proof of Theorem 6.5. Consider separately two sequences R+ and R− defining which hyperplanes
are to intersect in RPd. Without loss of generality, assume that the minimal element in R+ is equal to
0. (This can always be arranged by simultaneously shifting R+ and R−. Such a shift corresponds to an
overall shift of indices in the corresponding long-diagonal map). Then formula (28) can be rewritten
as

v̂k :=
⋂

r∈R+∪R−

Pk+r = Lk,+ ∩ Lk,− ,

where
Lk,± :=

⋂

r∈R±

Pk+r

are planes of complementary dimensions in RPd. Notice that since each of R± is an arithmetic pro-
gression, with the same common difference m, it follows that each of the planes Lk,± is also spanned
by vertices vj with indices j forming arithmetic m-progressions k+ J+ and k+ J−. Explicitly, one has

J± =
⋂

r∈R±

{r, r +m, . . . , r +m(d− 1)} = {max(R±),max(R±) +m, . . . ,min(R±) +m(d− 1)}. (27)

This, in particular, implies, |J±| = d+1−|R±|, so |J−|+ |J+| = d+2. It is also easy to see that J± are
disjoint. (The only exception is the case of R+ = {0,m, . . . , km}, R− = {(k+1)m, . . . , (d−1)m}, which
implies J+ = {km, . . . , (d − 1)m}, J− = {(d − 1)m, . . . , (d + k)m}, so the intersection is non-empty.
This corresponds to the identity pentagram map up to a shift of indices.)

Now consider the space of J-corrugated polygons in RPd̃ for J := J+ ∪ J− and d̃ := max(J) −

min(J) − 1. The spaces of generic n-gons in RPd and J-corrugated n-gons in RPd̃ are defined by the
same linear relation on vertices and are locally diffeomorphic, while globally it is a map N -to-1.

For instance, the standard corrugated condition means that the vectors Vj , Vj+1, Vj+d̃ and Vj+d̃+1

in Rd̃+1, which are lifts of vertices vj , vj+1, vj+d̃ and vj+d̃+1 in RPd̃, are linearly dependent for all j ∈ Z.

Thus the subset of corrugated polygons is singled out in the space of generic twisted polygons in Rd̃+1

by the relations
ajVj+d̃+1 + bjVj+d̃ + cjVj+1 + djVj = 0, j ∈ Z .

Note that this relation also allows one to define a map ΦJ±
from generic twisted n-gons in RP2 to

corrugated ones in RPd̃ for any dimension d̃: consider a lift of vertices vj ∈ RP2 to vectors Vj ∈ R3 so

that they satisfy these relations for all j ∈ Z, see [10]. Now by considering solutions Vj ∈ Rd̃+1 of these

linear relations modulo the natural action of SLd̃+1(R) we obtain a polygon in the projective space RPd̃

satisfying the corrugated condition. The constructed map ΦJ±
commutes with the pentagram maps

(since all operations are projectively invariant) and is a local diffeomorphism. A similar consideration
is applicable to any J-corrugated maps, where the relations are on vertices Vj+k with indices k ∈ J for
all j ∈ Z.
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Now we apply the main refactorization theorem (Theorem 4.1) to obtain integrability of the lift

of generic polygons from RPd to J-corrugated ones in RPd̃ with d̃ := max(J) − min(J) − 1. This
lift commutes with the pentagram map, as follows from refactorization or consideration above. Since
the lift is a local diffeomorphism on the space of twisted polygons, this implies integrability of the
long-diagonal pentagram map Tlong.

A separate interesting issue is to understand the ramification of the lift of the space of polygons to
corrugated ones in higher-dimensional projective spaces, as well as the global behavior of orbits for the
pentagram map before and after the lift.

Example 6.6. For the above Example 6.4 in RP3, we get J+ = {0, 3, 6} and J− = {2, 5} with period 3.
Indeed, the intersection of two planes P−1 = (v−1, v2, v5) and P2 = (v2, v5, v8) is the line L+ = (v2, v5),
which is intersected with another plane L− = P0 = (v0, v3, v6). The refactorization theorem establishes
its integrability in d̃ = 6 − 0 − 1 = 5-dimensional space, while the projection consideration gives its
integrability in RP3.

It turns out that not only long-diagonal pentagram maps can be described in terms of the factor-
ization, but also any refactorization corresponds to a certain pentagram map:

Theorem 6.7. Every pentagram-type map associated with a pair of nonintersecting arithmetic m-
progressions (J±) can be uniquely realized by a long-diagonal pentagram map.

Proof. Indeed, for d = |J−| + |J+| − 2 consider polygons in the space RPd. One can recover the
m-progressions R± from J± using formula (27). Namely, one has

R± = {max(J±)−m(d− 1),max(J±)−m(d− 2), . . . ,min(J±)}.

These progressions R± define the long-diagonal pentagram map Tlong. The fact that this long-diagonal
pentagram map is equivalent to the (J±)-pentagram map is proved in Theorem 6.5.

Corollary 6.8. The pentagram-type maps associated with pairs of nonintersecting arithmetic m-
progressions J± of total length d + 2 are in one-to-one correspondence with m-diagonal pentagram
maps in RPd.

This follows by combining the arguments of Theorems 6.5 and 6.7.

Long-diagonal maps can be regarded as a special type of a more general pentagram maps based on
hyperplanes and previously defined in the literature, with somewhat different notations, which we now
recall.

Definition 6.9. [19] Let I = (i1, . . . , id−1) be a (d−1)-tuple of positive integers (a jump tuple). Given
a (twisted) n-gon {vk | k ∈ Z} in RPd, its diagonal hyperplanes associated with I are defined by

Pk := span〈vk, vk+i1 , . . . , vk+i1+···+id−1
〉.

Let also R = (r1, . . . , rd−1) be another (d − 1)-tuple of positive integers (an intersection tuple). Then
the pentagram map TI,R is defined as follows: the vertex v̂k of the image of the polygon {vk | k ∈ Z}
under TI,R is given by

v̂k := Pk ∩ Pk+r1 ∩ ... ∩ Pk+r1+...+rd−1
. (28)

Example 6.10 (=6.2′). For I = (2) and R = (1), the associated map TI,R is the usual pentagram
map in RP2.

Example 6.11 (=6.3′). For (d − 1)-tuples I = (2, . . . , 2) and R = (1, . . . , 1), the map TI,R is the
short-diagonal pentagram map in RPd [17].

Example 6.12. Long-diagonal pentagram maps correspond to jump tuples I of the form (m, . . . ,m)
and a special R. Namely, let R be the sequence of differences between consecutive elements in the
union R+ ∪R−, where R+ and R− are two disjoint arithmetic m-progressions with d elements in total.
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Then the map TI,R for such an R and I = (m, . . . ,m) is the associated m-diagonal pentagram map
Tlong.

More explicitly, it is straightforward to see that the set R should be of one of the following
forms: R = (m, ...,m, p,m, ...,m) for any p ∈ Z>0, R = (m, ..,m, q,m − q, q,m − q,m, ...m) or
R = (m, ..,m, q,m− q, q,m− q, q,m, ...m) for any positive integer q < m, or parts thereof.

Example 6.13. For I = (2, 2) and R = (1, 2) we recover the pentagram map in RP3 which was known
to be numerically integrable, see [18, Section 6]. Now it can be regarded as a long-diagonal pentagram
map with R− = {0} and R+ = {1, 3}, while R = (1, 2) is the sequence of differences between elements
of R− ∪R+ = {0, 1, 3}, the union of two arithmetic 2-progressions.

Example 6.14 (=6.4′). Set I = (3, 3) and R = (1, 2) in RP3. Then R = (1, 2) is the sequence
of differences between elements of {0, 1, 3}, regarded as a union of 3-progressions R+ = {0, 3} and
R− = {1}. The corresponding map TI,R in RP3 is shown in Figure 7.

Note that in [18] numerical non-integrability was observed for a pentagram map TI,R in RP3 with
I = (3, 3) and R = (1, 1). It turns out, however, that for I = (3, 3) and R = (1, 2) the map becomes
integrable!

Remark 6.15. The above definition generalizes all previously known examples of integrable pentagram
maps [28, 10, 17, 22, 19]. Indeed, the short-diagonal pentagram maps with I = (2, ..., 2) and R =
(1, ..., 1) corresponds to m = 2 and R = (q,m − q, ..., q,m− q) with q = 1. The dual (deep) dented or
corrugated maps correspond to m = 1, I = (1, ..., 1), and R = (1, ..., 1, p, 1, ..., 1) with any p ∈ Z>0.

Remark 6.16. In the case of closed n-gons with m mutually prime with n, by using renumeration of
vertices, the case of I = (m, ...,m) and R being the steps between two arithmetic m-progressions R±,
can be regarded as I = (1, .., 1) and R = (1, .., 1, p, 1, ..1), i.e. dual of deep dented maps. (It is not clear
if a similar consideration is applicable to a twisted case.) Thus all those integrable cases described in
the refactorization theorem are somewhat similar to the “deep dented” pentagram cases.

Furthermore, consider any pair of arithmetic m-progression (J±) and (I+, I−), where J+ ⊂ I+,
while J− ⊂ I−. Then the map associated to the first pair is a restriction of the map associated to the
second pair, since all maps are given by the same formula. In particular, any map related to a pair (J±)
with m = 1 is a restriction of the (dual) dented map. The same is true for any m, provided that the
convex hulls of J+ and J− do not intersect. If the period m is not equal to 1, then the corresponding
embedding is not Poisson. The case of an arbitrary m can be reduced to the case m = 1 by using
renumeration of vertices.

6.2 Continuous limit of refactorization pentagram maps

Theorem 6.17. The continuous limit of all refactorization pentagram maps is equivalent to the (2, d+
1)-KdV equation, generalizing the Boussinesq equation for d = 2.

To define the continuous limit of refactorization maps we use their realization by long-diagonal
pentagram maps on n-gons in RPd. In the limit as n → ∞ a generic twisted n-gon becomes a
smooth non-degenerate quasi-periodic curve γ(x). The limit of pentagram maps is an evolution on
such curves constructed as follows. Consider the lift of γ(x) in RPd to a curve G(x) in Rd+1 defined
by the conditions that the components of the vector function G(x) = (G1, ..., Gd+1)(x) provide the
homogeneous coordinates for γ(x) = (G1 : ... : Gd+1)(x) in RPd and

det(G(x), G′(x), ..., G(d)(x)) = 1

for all x ∈ R. Furthermore, G(x + 2π) = MG(x) for a given M ∈ SLd+1(R). Then G(x) satisfies the
linear differential equation of order d+ 1:

G(d+1) + ud−1(x)G
(d−1) + ...+ u1(x)G

′ + u0(x)G = 0

with periodic coefficients ui(x), which is a continuous limit of difference equation defining a space
n-gon. Here ′ stands for d/dx.
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Fix a small ε > 0 and let Ī be any (d − 1)-tuple Ī = (i1, ..., id−1) of positive integers. For the
Ī-diagonal hyperplane

Pk := (vk, vk+i1 , vk+i1+i2 , ..., vk+i1+...+id−1
)

its continuous analogue is the hyperplane Pε(x) passing through d points γ(x), γ(x + i1ε), ..., γ(x +
(i1 + ... + id−1)ε) of the curve γ. In what follows we are going to make a parameter shift in x
(equivalent to shift of indices) and define Pε(x) := (γ(x + k0ε), γ(x + k1ε), ..., γ(x + kd−1ε)), for any
real k0 < k1 < ... < kd−1 such that

∑

l kl = 0.
Let ζε(x) be the envelope curve for the family of hyperplanes Pε(x) in RPd for a fixed ε. (Geometri-

cally the envelope can be thought of as the intersection of infinitely close “consecutive” hyperplanes of
this family along the curve.) The envelope condition means that Pε(x) are the osculating hyperplanes
of the curve ζε(x), that is the point ζε(x) belongs to the hyperplane Pε(x), while the vector-derivatives

ζ′ε(x), ..., ζ
(d−1)
ε (x) span this hyperplane for each x. It means that the lift of ζε(x) in RPd to Zε(x) in

Rd+1 satisfies the system of d equations:

det(G(x+ k0ε), ..., G(x+ kd−1ε), Z
(j)
ε (x)) = 0, j = 0, ..., d− 1.

Here the lift Zε(x) is again defined by the constraint det(Zε(x), Z
′
ε(x), ..., Z

(d)
ε (x)) = 1 for all x ∈ R.

One can show that the expansion of the lift Zε(x) has the form

Zε(x) = G(x) + ε2B(x) +A(ε3) ,

where there is no term linear in ε due to the condition
∑

l kl = 0.

Definition 6.18. A continuous limit of the pentagram map is the evolution of the curve γ in the
direction of the envelope ζε, as ε changes: dG/dt = B. More explicitly, the lift Zε(x) satisfies the
family of differential equations:

Z(d+1)
ε + ud−1,ε(x)Z

(d−1)
ε + ...+ u1,ε(x)Z

′
ε + u0,ε(x)Zε = 0,

where Z0(x) = G(x), i.e. uj,0(x) = uj(x). Then the corresponding expansion of the coefficients uj,ε(x)
as uj,ε(x) = uj(x)+ ε2wj(x)+A(ε3), defines the continuous limit of the pentagram map as the system
of evolution differential equations duj(x)/dt = wj(x) for j = 0, ..., d− 1.

This definition of limit via an envelope assumes that we are dealing with consecutive hyperplanes
in the pentagram map, i.e. the intersection tuple is R = 1 := (1, ..., 1) or its multiple. We are going
to apply this to the case R̄ = m1 := (m, ...,m), which gives the same limit upon rescaling ε 7→ mε.
We start with reminding the following theorem, a variation of a result from [19], which is the main
ingredient of the proof of Theorem 6.17.

Remark 6.19. Below we will use the following property of the pentagram map TI,R for arbitrary
(d − 1)-tuples I = (i1, ..., id−1) and R = (r1, ..., rd−1): its inverse T−1

I,R coincides with the map TR∗,I∗

(modulo shift of indices), where R∗ and I∗ are respectively (d − 1)-tuples R and I read backwards:
R∗ = (rd−1, ..., r1) and I

∗ = (id−1, ..., i1), see [19].

Theorem 6.20. (cf. [19]) The continuous limit of any generalized pentagram map TĪ,R̄ for any Ī =
(i1, ..., id−1) and R̄ = m1 (and in particular, of the inverse of any long-diagonal pentagram map) in
dimension d defined by the system duj(x)/dt = wj(x), j = 0, ..., d− 1 for x ∈ S1 is the (2, d+ 1)-KdV
flow of the Adler-Gelfand-Dickey hierarchy on the circle.

Remark 6.21. Recall that the (k, d + 1)-KdV flow is defined on linear differential operators L =
∂d+1+ud−1(x)∂

d−1+ud−2(x)∂
d−2+ ...+u1(x)∂+u0(x) of order d+1 with periodic coefficients uj(x),

where ∂l stands for dl/dxl. One can define the fractional power Lk/d+1 as a pseudo-differential operator
for any positive integer n and take its pure differential part Qk := (Lk/d+1)+. In particular, for k = 2
one has

Q2 = ∂2 +
2

d+ 1
ud−1(x).
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Then the (k, d+1)-KdV equation is the evolution equation on (the coefficients of) L given by dL/dt =
[Qk, L], see [1].

For k = 2 this gives the (2, d+ 1)-KdV system

dL

dt
= [Q2, L] :=

[

∂2 +
2

d+ 1
ud−1(x), L

]

. (29)

For d = 2 and k = 2 the (2,3)-KdV system gives evolution equations on the coefficients u and v of the
operator L = ∂3+u(x)∂+v(x). Upon elimination of v this reduces to the classical Boussinesq equation
on the circle: utt + 2(u2)xx + uxxxx = 0, which appears as the continuous limit of the 2D pentagram
map [28].

Proof of Theorem 6.20. The proof is based on the expansion of the envelope Zε(x) in the parameter
ε: one can show that

Zε(x) = G(x) + ε2Cd,m,Ī

(

∂2 +
2

d+ 1
ud−1(x)

)

G(x) +A(ε3)

as ε→ 0, for a certain non-zero constant Cd,m,Ī . This gives the following evolution of the curve G(x)
given by the ε2-term of this expansion:

dG

dt
=

(

∂2 +
2

d+ 1
ud−1

)

G,

or which is the same, dG/dt = Q2G.
To find the evolution of the differential operator L tracing it recall that for any t, the curve G

and the operator L are related by the differential equation LG = 0. In particular, d(LG)/dt =
(dL/dt)G+ L(dG/dt) = 0, which, in view of dG/dt = Q2G, implies

(

dL

dt
+ LQ2

)

G = 0,

and hence
(

dL

dt
− [Q2, L]

)

G = 0,

where [Q2, L] := Q2L−LQ2. But dL/dt− [Q2, L] is an operator of order ≤ d, so it can only annihilate
the vector-function G(x) ∈ Rd+1 if L satisfies the (2, d+ 1)-KdV equation

dL

dt
= [Q2, L].

which proves Theorem 6.20.

Remark 6.22. A similar argument can be used to prove the refactorization theorem: one first shows
that the left hand-side of (1) applied to the bi-infinite sequence V is equal to the right hand-side of (1)
applied to V , and then observes that the difference of two sides is an operator of order 2 and hence can
only annihilate V if it is zero. This argument replaces the count of number of equations in the proof
of the refactorization theorem (and is essentially equivalent to it). Notice also that not just the proofs
are similar, but also the statements: Theorem 4.1 says that the pentagram is refactorization (which is,
essentially, discrete Lax representation), while Theorem 6.20 states that its continuous limit has a Lax
representation. It would be interesting to expand this similarity.

Proof of Theorem 6.17. To complete the proof we will show that for any pair of arithmetic pro-
gressions J+ and J− with step m in the refactorization theorem one can find an appropriate problem
with intersection of m-consecutive hyperplanes, thus reducing the corresponding continuous limit to
the known case. Indeed, given arithmetic m-progressions J+ and J− we first consider the associated
long-diagonal pentagram map which gives the same dynamics on polygons. This pentagram map has
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the diagonal tuple I = (m, ...,m) and a certain intersection tuple R. Now pass to the inverse long-
diagonal map. For such a map the new diagonal tuple is Ī = R∗, and the new intersection tuple is
R̄ = I∗ = (m, ...m). According to Theorem 6.20 the continuous limit for pentagram maps TĪ,R̄ in RPd

with such Ī and R̄ (including the inverses of long-diagonal maps) is equivalent to the (2, d + 1)-KdV
equation.

Finally, note that the inverse of Equation (29) is the same differential equation with the reversed
time variable. Thus the continuous limit of the long-diagonal (and hence refactorization) pentagram
maps is given by the same (2, d + 1)-KdV equations upon the changing time t → −t, which we treat
on equal footing with the original KdV flows.

Remark 6.23. For intersection of hyperplanes indexed by more than one parameter the continuous
limit is not an envelope and it can be arranged rather arbitrarily. For instance, for some special
choices, one can obtain higher equations of the KdV hierarchy, see [21]. Furthermore, even in the
case of intersecting but not m-consecutive hyperplanes Pk, i.e. for the intersection tuple different from
R̄ = (m, ...,m), there remains some freedom in the definition of the continuous limit. In our case the
continuous limit turned out to be a familiar system thanks to the regular structure of the diagonal
plane I = (m, ...,m).

Remark 6.24. It would be interesting to obtain the (2, d+ 1)-KdV equation as the continuous limit
directly from the Lax form for the pentagram maps, by formally passing to the limit from the linear
difference equations defining polygons to the linear differential equations defining curves in R

d+1,
cf. [26].
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