
CHAPTER II

Greatest Common Divisors

1. Introducing greatest common divisors

We call the integer a a common divisor of b and c, naturally enough, if it is a divisor
that b and c have in common|that is, if a j b and a j c. Among all these common divisors,
the largest one plays an important role in number theory, and so we give it a name. The
largest number among all of the common divisors of b and c is called the greatest common

divisor or gcd of b and c, and we denote it by gcd(b; c)

Example. The divisors of 140 are 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, and 140
(along with their negatives); the (positive) divisors of 168 are 1, 2, 3, 4, 6, 7, 8,
12, 14, 21, 24, 28, 42, 56, 84, and 168. The common divisors of 140 and 168 are
the integers that appear in both of these lists, namely �1, �2, �4, �7, �14, and
�28. Therefore, their greatest common divisor gcd(140; 168) equals 28.

Example. The divisors of �15 are �1, �3, �5, and �15. The divisors of 0
are|well, all the integers! (see Problem 1.2) Therefore, all of the divisors of �15
are common divisors of �15 and 0, and so gcd(�15; 0) = 15.

Before you try it and get into trouble, we'll tell you that gcd(0; 0) is unde�ned|this is the
only case where two integers can have in�nitely many common divisors. If b is a nonzero
integer, then b only has �nitely many divisors (in fact, none of them are bigger than jbj,
by Fact 1.8), and the same for c; so we see that if even one of b and c is nonzero, then it
makes sense to talk about gcd(b; c). Certainly 1 is always a common divisor of b and c (as
we showed in Problem 1.2), so at least we know that gcd(b; c) � 1.

Many textbooks use the briefer notation (b; c) for the greatest common divisor of b and c.
This saves space, although the possibility for confusion can arise, since points in the plane
(x; y) are denoted with the same notation, for example. So we'll stick to the notation gcd(b; c)
in these notes.

We'll start this section right o� with a theorem about greatest common divisors that we will
use a lot in the future. Theorem 2.1 is probably the �rst fact about numbers you've come
across in these notes that isn't simply intuitively true : : : we're seeing the beginning of the
good side of proof-based mathematics, the side that tells us things about numbers that we
didn't already know.

Theorem 2.1. Let b and c be integers, not both zero, and set d = gcd(b; c). Then we can
�nd integers u0 and v0 such that d = bu0 + cv0.
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6 II. GREATEST COMMON DIVISORS

Proof: Consider the collection of all positive integers a that can be written in the form bu+ cv,
for some integers u and v. This collection has at least one element: taking u = b and v = c,

we see that b2 + c2 is a positive integer that can be written that way. Therefore, by Fact 1.1,

this collection has a smallest element s. Pick two integers u0 and v0 such that s = bu0 + cv0.

Let's try to show that s divides b. Using the Division Algorithm, we can write b = qs+ r with

0 � r < s. We're trying to show that s j b, and so by Fact 1.10 all we need to show is that

r = 0. Well, suppose not|suppose that 0 < r < s. We can write

r = b� qs = b� q(bu0 + cv0) = b(1� qu0) + c(�qv0):

But this can't be, because then r would be a positive number smaller than s that can be written

in the form bu+ cv! Since it's impossible that 0 < r < s, we conclude that really r = 0, and so

s divides b.

The exact same argument shows that s divides c as well, and so s is a common divisor of b and

c. Since d is the greatest common divisor of b and c, it's de�nitely true that s � d.

On the other hand, we can show that d divides s! This is because d j b and d j c, and so

d divides every integer of the form bu + cv (Fact 1.7)|including s. Well, if d divides s then

d � jsj = s (Fact 1.8); and since s � d and d � s, we conclude that d = s. In particular,

d = bu0 + cv0, which is what we wanted to show.

We know that every common divisor of b and c is no bigger than gcd(b; c) : : : but in fact
even more is true:

Fact 2.2. Every common divisor of b and c divides gcd(b; c).

For instance, in the example on page 5, all of the common divisors �1, �2, �4, �7, �14,
and �28 of 140 and 168 are not only less than or equal to gcd(140; 168) = 28, but they all
divide 28. And we can prove that this always happens.

Proof: If we let d = gcd(b; c), then from Theorem 2.1, there are integers u0 and v0 such that

d = bu0 + cv0. Now let a be any common divisor of b and c. Since a j b, we can write b = as

for some integer s; and since a j c, we can similarly write c = at for some integer t. Hence

d = (as)u0 + (at)v0 = a(su0 + tv0);

which shows that a is a divisor of d.

By now, we have seen three di�erent ways of describing the same number gcd(b; c):

� gcd(b; c) equals the largest of all the common divisors of b and c (this was the de�nition);
� gcd(b; c) equals the smallest number that can be written in the form bu+ cv for integers
u and v (this was Theorem 2.1);

� gcd(b; c) equals the positive common divisor of b and c, such that every common divisor
of b and c divides it (this was Fact 2.2).

(Actually, to be technically correct there is one detail about the last statement that we
haven't proved yet. Can you see what it is?)
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Example. From the equation 15 � (�5) + 38 � 2 = 1, we see that 1 can be
written in the form 15u+38v. Since 1 is the smallest number of all, 1 is certainly
the smallest number that can be written in that form, and so we know that
gcd(15; 38) = 1. We can verify this by writing down all of the positive divisors of
15 (they are 1, 3, 5, and 15) and 38 (they are 1, 2, 19, and 38), and seeing that 1
is the only one in common.

We've remarked that 1 and �1 are always common divisors of any two integers a and b. As
it turns out, the situation where these are the only common divisors of b and c has great
importance in the study of number theory|de�nitely important enough to warrant a name
of its own: if a and b are two integers such that gcd(a; b) = 1, then we say that a and b are
relatively prime, or coprime. For instance, the previous example shows that 15 and 38
are relatively prime. We can also say that 15 is relatively prime to 38 (and vice versa).

If we just restate what we've already said in this section using this new terminology, we
obtain a consequence of Theorem 2.1 that will be very useful to us:

Consequence 2.3. Two integers a and b are relatively prime if, and only if, there are
integers u and v such that au+ bv = 1.

Here's an example of how we can use this Consequence to prove something interesting: if n
has no divisors (other than �1) in common with a nor with b, then in fact n has no divisors
(other than �1) in common with the product ab. To say this another way:

Fact 2.4. The product of two integers coprime to a third integer is again coprime to the
third integer: If gcd(a; n) = 1 and gcd(b; n) = 1, then gcd(ab; n) = 1.

Proof: Because of Consequence 2.3, there are integers x0 and y0 such that ax0 + ny0 = 1, and

there are integers x1 and y1 such that bx1 + ny1 = 1. This means

1 = 1� 1 = (ax0 + ny0)(bx1 + ny1) = (ab)(x0x1) + n(bx1y0 + ax0y1 + ny0y1):

(How often do you get any mileage out of the fact that 1 � 1 = 1?) Letting u = x0x1 and

v = bx1y0 + ax0y1 + ny0y1, we see that 1 can be written in the form (ab)u+ nv. Therefore,

using Consequence 2.3 again, gcd(ab; n) = 1.

Fact 2.5. If a is relatively prime to b, and a j bc, then actually a j c.
Proof: Because of Consequence 2.3, there are integers u and v such that au+bv = 1. Multiplying

this equation by c, we get c = c(au+ bv) = a(cu)+ (bc)v. Now a certainly divides a, and we're

also assuming that a divides bc. This means, using Consequence 1.7, that a divides any number

of the form am + (bc)n. In particular, a divides a(cu) + (bc)v, and since this last expression

equals c we are done with the proof.

Perhaps you're getting a sense of this already, but the facts about greatest common divisors
in this section are sort of a set of tools for doing \algebra" within the theory of divisibility.
By having a list of little facts like these, we will be able to manipulate formulas involving
gcds more mechanically, just as we use algebraic manipulations to simplify equations. Here
are a few more facts in this vein.

Fact 2.6. If n is any integer, then gcd(na; nb) = n gcd(a; b).
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The proof is left as an exercise for you. 3

Fact 2.7. If c is any common divisor of a and b, then gcd(a
c
; b
c
) = 1

jcj
gcd(a; b).

The proof is left as an exercise for you. 3

Consequence 2.8. If d = gcd(a; b), then the integers a

d
and b

d
are relatively prime.

Proof: Just by applying Fact 2.7 with c = d, we see that gcd(a
d
;
b

d
) = 1

d
gcd(a; b) = 1.

This last consequence states something very intuitive: if you go to the trouble of dividing two
numbers through by their highest common factor, then the resulting numbers aren't going
to have any more factors in common. We take this for granted all the time|for instance,
when we're reducing fractions to lowest terms. Using the tools we have now, we can actually
prove that every fraction can be reduced to lowest terms in this way, and in fact there is
only one fraction in lowest terms (up to the signs of the numerator and denominator) that
equals any given fraction:

Consequence 2.9. Every rational number has a unique representation in the form a

b
, where

b is positive and a and b have no common factors (other than �1).
The proof is left as an exercise for you. 3

2. Solving the linear equation ax+ by = c

Let a, b, and c be given integers. We wish to �nd all pairs of integers x and y for which the
linear equation ax+ by = c is satis�ed. Let's forget about the case where a = b = 0, because
then it doesn't matter what x and y are, the left-hand side will equal zero; in this case every
pair (x; y) is a solution if c = 0, or else no pair (x; y) is a solution if c 6= 0.

So let's look at the interesting case, where a and b are not both zero. This means we can
take their greatest common divisor, so we de�ne d = gcd(a; b). We notice right away that if
d does not divide c, then the equation has no solution: since d j a and d j b, we know that
d divides ax + by no matter what x and y are (Fact 1.7), and therefore it is impossible for
ax+ by to equal c if c is not even a multiple of d.

Example. There are no solutions in integers to the equation 15x + 24y = 112,
because no matter what integers x and y we choose, the left-hand side will be a
multiple of 3, while 112 is not a multiple of 3. In other words, the problem is that
gcd(15; 24) = 3 does not divide 112.

On the other hand, what if d j c? If we de�ne a0 = a

d
, b0 = b

d
, and c0 = c

d
, then we can divide

the entire equation ax+ by = c through by d to get the equation a0x + b0y = c0, which has
exactly the same solutions as the original equation. The reason this is helpful is because we
have made the coe�cients of the variables relatively prime: by Consequence 2.8, the integers
a0 and b0 satisfy gcd(a0; b0) = 1.
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Example. By dividing through by gcd(60; 152) = 4, we see that the solutions
to the equation 60x + 152y = �28 are exactly the same as the solutions to the
equation 15x + 38y = �7.

Now remember that when two numbers a0 and b0 are relatively prime, then we can �nd
numbers u and v such that a0u + b0v = 1 (Consequence 2.3). All we have to do now is
multiply the equation through by c0 to obtain a0(uc0) + b0(vc0) = c0. And there we go! We
have found a solution (x0; y0) to the equation a

0x+b0y = c0 (and thus to the original equation
ax+ by = c0 as well), namely x0 = uc0 and y0 = vc0.

Example. We saw in an example on page 7 that 15 � (�5) + 38 � 2 = 1.
Multiplying through by �7, we see that 15� 35+38� (�14) = �7. Thus x = 35,
y = �14 is a solution in integers to the equation 15x + 38y = �7, and thus (by
the previous example) to the equation 60x+ 152y = �28 as well.

There are two things left to say about solving linear equations. First, we've seen that �nding
a solution to a linear equation, in the case where a0 and b0 are relatively prime, depends on
�nding two integers x and y such that a0x+b0y = 1. We know from Consequence 2.3 that such
integers x and y exist , but how do we actually �nd them? This question will be answered
in the next section, with the Euclidean Algorithm. Second, just because we've found one
solution doesn't mean it's the only solution:

Example. The pairs of integers

x = �3; y = 1

x = 73; y = �19
x = �117; y = 46

x = 15;235; y = �6;014
are all solutions to the equation 60x + 152y = �28, in addition to the solution
found in the previous example.

Let's see how to start with the one solution (x0; y0) that we know and �nd all the others.

First of all, we can point out a property that any other solution (x1; y1) must have. If
(x1; y1) is to be a solution, that means a0x1+ b0y1 = c0; and subtracting our known equation
a0x0 + b0y0 = c0 from this, we obtain a0(x1 � x0) + b0(y1 � y0) = 0, or

a0(x1 � x0) = b0(y0 � y1):

Now notice that b0 certainly divides the right-hand side, and so it must divide the left-hand
side as well, so b0 j a0(x1� x0). Remember, though, that a0 and b0 are relatively prime. This
means that we can apply Fact 2.5 to deduce that b0 j (x1 � x0).

Therefore, there is some number k satisfying (x1 � x0) = b0k, or equivalently x1 = x0 + b0k.
In other words, if (x1; y1) is going to be another solution to a0x+ b0y = c0, then x1 has to be
a number you can obtain from x0 by adding a multiple of b0.
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On the other hand, any such number x1 = x0 + b0k actually works! This is because we can
simply solve for y1:

a0x1 + b0y1 = c0

a0(x0 + b0k) + b0y1 = a0x0 + b0y0

b0y1 = b0y0 � a0b0k

y1 = y0 � a0k:

So for any number x1 that di�ers from x0 be a multiple of b0, there is a corresponding number
y1 that di�ers from y0 by a multiple of a0 (makes sense) such that (x1; y1) is another solution
to the equation.

Example. Every pair of integers of the form

x = 35 + 38k; y = �14� 15k

is a solution to the equation 15x + 38y = �7 (or, equivalently, to the equation
60x+ 152y = �28), and these are all of the solutions in integers to this equation.
(Notice that the original solution, found in an example on page 9, corresponds to
k = 0, and the particular solutions listed in the previous example can be obtained
from this formula by setting k = �1, k = 1, k = �4, and k = 400, respectively.)

We summarize all that we've discovered about solving the linear equation ax + by = c in
integers in the following theorem:

Theorem 2.10. Let a, b, and c be integers, with a and b not both equal to 0.

a. If gcd(a; b) does not divide c, then the equation ax+ by = c has no solutions in integers
x, y.

b. If gcd(a; b) j c, then the equation ax + by = c has exactly the same solutions as the
equation a0x + b0y = c0, where a0 = a= gcd(a; b), b0 = b= gcd(a; b), and c0 = c= gcd(a; b).
Furthermore, a0 and b0 are relatively prime, so to solve the new equation we just go on
to the next case:

c. If gcd(a; b) = 1, then ax+ by = c is satis�ed for in�nitely many pairs of integers (x; y).
Furthermore, if (x0; y0) is a particular integer solution of ax + by = c, then every pair
of integers of the form (x0 + bk; y0 � ak) (where k is an integer) is also a solution of
ax+ by = 1, and these are all the solutions in integers.

3. The Euclidean Algorithm

The whole procedure of the previous section revolves around �nding integers x and y such
that ax + by = 1, where a and b are two given coprime integers. Even more generally,
Theorem 2.1 tells us that integers x and y exist satisfying the equation ax+ by = gcd(a; b),
but it doesn't really tell us how to �nd them. For that matter, we haven't even seen
a systematic way to simply calculate the greatest common divisor of two numbers! We
certainly don't want to have to list all of the divisors of both numbers, and compare the lists
by hand, every time we want to �nd a gcd.
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As it turns out, there is a single algorithm that will do all of these things for us, called
the Euclidean Algorithm. This process was known to Euclid, who phrased it in terms of
starting with two line segments and �nding a common \ruler segment" so that each of the
original segments could be measured exactly with a whole number of these ruler segments.
First we'll describe how the algorithm �nds greatest common divisors, and then we'll show
how to fancy it up to �nd a solution to the equation ax+ by = gcd(a; b).

As you're used to from these notes by now, we can't just launch straight into the good
stu�|we need to write down a few more simple \algebraic" properties of gcds.

Fact 2.11. We hvae gcd(n;�1) = 1 for any integer n, and gcd(n; 0) = jnj for any nonzero
integer n.

The proof is left as an exercise for you. 3

Fact 2.12. For any integers a and b, we have the equalities gcd(a; b) = gcd(b; a) and

gcd(a; b) = gcd(�a;�b).
The proof is left as an exercise for you. 3

Fact 2.13. The greatest common divisor of two integers does not change if we add a multiple
of one of them to the other: For any integers a, b, and n, we have the equality gcd(a; b) =
gcd(a; b+ na).

Proof: This one we'll actually prove, since it's the least intuitive fact of the three in this section,

as well as the most important. We'll prove it by showing that all common divisors of a and b

are also common divisors of a and b + na, and vice versa; hence the greatest common divisor

must be the same in each case.

So let c be a common divisor of a and b. Then by Fact 1.7, c divides any expression of the form

b + na. Therefore any common divisor of a and b is also a common divisor of a and b + na.
But this argument goes the other direction too, since any common divisor of a and b+na also

divides any expression of the form

(b+ na) + (�n)a = b;

(again by Fact 1.7) and so is a common divisor of a and b as well.

Now, given two positive integers a and b, how can we calculate their greatest common divisor
d = gcd(a; b)? First of all, Fact 2.12 tells us that we can switch the sign(s) of a and/or b
without a�ecting their gcd, so we can assume that both a and b are positive. Fact 2.12 also
tells us that we can switch a and b without a�ecting their gcd, so we can assume that a � b

(if not, we just interchange the two numbers and rename them).

The Euclidean Algorithm goes like this: at each step we have a pair of numbers (a; b). We
get a new pair of numbers as follows:

a. We use the Division Algorithm to write a = qb+ r with 0 � r < b;
b. We replace the old pair of numbers (a; b) with the new pair (b; r);
c. We keep doing those two steps over and over, until the second number of newest pair

equals 0.
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We claim that when this happens, the �rst number of the newest pair is the greatest common
divisor of the original pair (a; b)!

Sounds a little like magic : : : we had better back up such a bold claim. In fact there are two
things we'd better establish: �rst, that we eventually will get a pair whose second number
equals 0; and second, that the �rst number of that pair really will be the gcd of the original
two numbers.

Notice that every time we replace the old pair (a; b) with the new pair (b; r), the newer pair
has a smaller second number than the old pair's second number. This is simply an outcome
of the Division Algorithm|the remainder is always smaller than the number we're dividing
by. So every time we perform steps 1 and 2 of the Euclidean Algorithm, the second number
gets smaller. This is exactly the situation that Fact 1.2 talks about: if we start writing down
a sequence of nonnegative numbers one by one (in this case, the second numbers in all these
pairs), and each number is smaller than the previous one, then eventually we must hit 0.
This shows that at some point, we will get a pair of the form (d; 0).

Good so far, but why will that �rst number d actually equal gcd(a; b)? Notice that at each
step, we replace the old pair of numbers (a; b) by the new pair (b; r) = (b; a � qb). But
adding a multiple of one number to another number doesn't change their greatest common
divisor|Fact 2.13 tells us that gcd(b; a � qb) = gcd(b; a), which Fact 2.12 tells us is itself
equal to gcd(a; b). In other words, every time we repeat the �rst two steps of the Euclidean
Algorithm, the new pair of numbers has the same gcd as the old pair of numbers! And of
course, if this is true for each individual step, then it doesn't matter how many steps we
perform|every single pair has the same gcd as the original pair.

Now it's easy to see why d actually equals gcd(a; b): the last pair is (d; 0), and gcd(d; 0) =
d (Fact 2.11); all the pairs have the same gcd, which we now know is d, and therefore
gcd(a; b) = d.

Example. Let's use the Euclidean Algorithm to compute the greatest common
factor of a = 1356 and b = 414.

1356 = 414 � 3 + 114; so gcd(1356; 414) = gcd(414; 114);

414 = 114 � 3 + 72; so gcd(414; 114) = gcd(114; 72);

114 = 72 � 1 + 42; so gcd(114; 72) = gcd(72; 42);

72 = 42 � 1 + 30; so gcd(72; 42) = gcd(42; 30);

42 = 30 � 1 + 12; so gcd(42; 30) = gcd(30; 12);

30 = 12 � 2 + 6; so gcd(30; 12) = gcd(12; 6);

12 = 6� 2 + 0; so gcd(12; 6) = gcd(6; 0):

We stop now, since the second number in this last pair equals 0; the �rst number
in that pair, 6, is the greatest common divisor we're looking for. Indeed, since
gcd(6; 0) = 6 (see Fact 2.11), we conclude that gcd(1356; 414) = 6 as well.

What a great algorithm|we calculate the greatest common divisor of two numbers, without
ever writing down any of the factor of either number! Score one for building big truths upon
little truths.
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It's not too hard to convert this algorithm for calculating greatest common divisors into a
procedure for �nding integer solutions to the equation ax+ by = gcd(a; b). All we have to do
is write out all the steps in the Euclidean algorithm, and then start doing \backwards sub-
stition" and a little bit of bookkeeping. The best way to understand how to work backwards
in this way is through another example.

Example. Since gcd(1356; 414) = 6, the Euclidean Algorithm will allow us to
�nd integers integers u and v such that 6 = 1356u + 414v. We start with the
second-to-last step of the Euclidean Algorithm from the previous example, which
tells us that 6 = 30� 12 � 2. Then, working backwards one line at a time:

12 = 42 � 30� 1; so 6 = 30 � (42 � 30 � 1)� 2

= 42 � (�2) + 30 � 3;

30 = 72 � 42� 1; so 6 = 42 � (�2) + (72 � 42� 1) � 3

= 72 � 3 + 42 � (�5);
42 = 114 � 72� 1; so 6 = 72 � 3 + (114 � 72 � 1)� (�5)

= 114 � (�5) + 72 � 8;

72 = 414 � 114 � 3; so 6 = 114 � (�5) + (414 � 114 � 3) � 8

= 414 � 8 + 114 � (�29);
114 = 1356 � 414 � 3; so 6 = 414 � 8 + (1356 � 414 � 3)� (�29)

= 1356 � (�29) + 414 � 95:

Thus we have found a solution to 6 = 1356u+414v, namely u = �29 and v = 95.

Of course, if the original numbers a and b are actually relatively prime, then this procedure
will �nd numbers x and y such that ax+ by = 1, just as Consequence 2.3 says is possible.

4. Pythagoras and the irrationality of
p
2

When we learned about irrational numbers, we were probably given
p
2 as an example. But

how do we know that this number is really irrational?

Example. We can certainly get very close to
p
2 with rational numbers:p

2 = 1:4142135623730950 : : :
41

29
= 1:4137 : : :

1393

985
= 1:41421319 : : :

47321

33461
= 1:41421356205 : : :

54608393

38613965
= 1:4142135623730948 : : :

So who's to say that if we tried a little harder, we couldn't get
p
2 exactly as a

fraction? Or equivalently, if we looked far enough in the decimal expansion of
p
2,

who's to say that it wouldn't start repeating?
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In fact, the ancient Greeks felt this way|in fact, they thought that every number was
rational (in our modern terminology). But Pythagoras discovered a proof that

p
2 was in

fact irrational! Reportedly, he was so shaken by this discovery that he swore his school/cult of
mathematicians to secrecy; and when one of them leaked the news to outsiders, his betrayed
brethren drowned him. : : : At the risk of su�ering the same fate, we'll show you a proof that
no rational number (fraction) can possibly equal

p
2.

Suppose that
p
2 were a rational number, say

p
2 =

p

q
:

As with any fraction, we can assume that p and q are relatively prime (see Consequence 2.9).
Squaring both sides of this equation, we see that

2 =
p2

q2
;

or, rearranging terms,

2q2 = p2:

Now the left-hand side is an even number, so the right-hand side is also an even number.
This tells us that p is itself an even number, since the square of an even number is even and
the square of an odd number is odd. Since p is even, we can write p = 2r for some number r.
Then we have

2q2 = (2r)2;

which becomes, after cancelling a factor of 2 from both sides,

q2 = 2r2:

Now the right-hand side is clearly even, so by the same reasoning as before, we deduce that
q itself must be even.

But wait a minute! If p is even and q is even, then 2 divides both p and q, and hence 2
divides their greatest common divisor gcd(p; q) : : : the problem is, we started by assuming
that gcd(p; q) = 1, which is not a multiple of 2. This is a contradiction, which is unavoidable

as soon as we assume that
p
2 is a rational number; our only recourse is to grudgingly (like

Pythagoras) admit that
p
2 is in fact an irrational number.

You can use this method to show that, whenever
p
n is not an integer (that is, whenever n

is not a square), then
p
n is in fact irrational. With a little more cleverness, you can even

show that whenever n is not a square, any expression of the form a

b

p
n+ c

d
is irrational if a,

b, c, and d are integers (with b and d nonzero, of course).

5. A geometric detour

We're used to the fact that properties of pairs of real numbers can be viewed by graphing
them as points in the plane; for instance, we know that the pairs of real numbers that are
solutions of certain equations like y = mx + b make up a single straight line when we plot
them in the plane, while others such as (x � a)2 + (y � b)2 = r2 make circles, and so on.
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Similarly, there are some properties of integers that have graphical interpretations in terms
of the corresponding points in the plane.

A pair (x; y) of two integers is called a lattice point of the plane. Lots of lattice points
are pictured in Figure 2.1. Let's say that two lattice points P and Q are mutually visible

(and that Q is visible from P and vice versa) if the line segment joining P and Q contains no
lattice points other than the endpoints P and Q. In other words, if two friends were standing
at the two lattice points P and Q and every other lattice point had a tree, being mutually
visible means that the friends would be able to see each other because there were no trees
blocking their line of sight.

Example. The lattice points P = (1; 1) and Q = (3; 2) of Figure 2.1 are mutually
visible. However, the lattice points (0; 0) and S = (�2;�4) are not mutually
visible, since the line segment joining them contains the point R = (�1;�2).

S

R

P

Q

–4

–2

0

2

4

y

–4 –2 2 4x

Figure 2.1. Mutual visibility of lattice points

It might be somewhat surprising to hear that this property of mutual visibility is directly
related to greatest common divisors!

Theorem 2.14. The lattice point (a; b) is visible from the origin (0; 0) if and only if a and
b are relatively prime.

Proof: First let's assume that a and b are relatively prime, and show that the point (a; b) is

visible from the origin. If we let (c; d) 6= (0; 0) be any nonzero lattice point on the line going

through the points (0; 0) and (a; b), this means that we have to show that (c; d) cannot be

between them.

We know that we can �nd integers x and y such that ax+by = 1 (Consequence 2.3). Multiplying

this equation through by c, we obtain

acx+ bcy = c: (2.1)
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Now if (c; d) is on the line going through the points (0; 0) and (a; b), we know that

d� 0

c� 0
=

b� 0

a� 0
;

or in other words ad = bc. Using this fact in equation (2.1), we see that

acx+ ady = c:

Since a clearly divides the left-hand side of this equation, we see that a divides c. But Fact 1.8

tells us that a nonzero multiple of a is at least as big as a itself|in other words, jcj � jaj, and

there's no way for the point (c; d) to be between the origin and (a; b). Therefore the lattice

point (a; b) is indeed visible from the origin.

Now let's prove the other half of this theorem: assuming that a and b are not relatively prime,

let's show that the point (a; b) is not visible from the origin. If we let d = gcd(a; b), then d > 1

since a and b are not relatively prime. Then it is easy to check that the point (a
d
;
b

d
) is a lattice

point that lies on the line segment between the origin and (a; b) (the details are left for you as

an exercise). Therefore the lattice point (a; b) is not visible from the origin in this case.

In Figure 2.2, we have plotted the lattice points in the �rst quadrant (i.e., those with positive
coordinates) that are visible from the origin. This plot is very �sthetically pleasing (so much
so that it has graced the cover of at least one number theory textbook).
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y

10 20 30 40 50x

Figure 2.2. The lattice points in the �rst quadrant that are visible from the origin

Problems for Chapter II

2.1. Knowing that 31 � 999 � 632 � 49 = 1, �nd all solutions of 999x � 49y = 5000.

2.2. Prove the converse of Fact 2.4. In other words, show that if gcd(ab; n) = 1, then both
gcd(a; n) = 1 and gcd(b; n) = 1.
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2.3. Here's a hint for the following pair of problems: between them, there are �ve possible
solutions.

a. You have some pennies, dimes, and quarters|100 coins in all|totalling $5.00. How
many of each type of coin do you have?

b. You have some pennies, dimes, and quarters|100 coins in all|totalling $4.99. How
many of each type of coin do you have?

2.4. Provide a proof of Fact 2.6.

2.5. Provide a proof of Fact 2.7.

2.6. Provide a proof of Consequence 2.9.

2.7. Suppose a and b are integers that are relatively prime. Let c be any integer. Show that
if a j c and b j c then ab j c. Does this always work if a and b are not relatively prime?

2.8. Let x and y be relatively prime numbers. Show that there are unique numbers a and b

satisfying 0 � a < y, 0 � b < x, and ax� by = 1.

2.9. We saw in an example on page 5 that gcd(140; 168) = 28. Use the Euclidean Algorithm
to verify this, and �nd integers x and y such that 140x + 168y = 28.

2.10. Find the greatest common divisor of 246 and 951. Also, �nd integers u and v such
that 246u + 951v = gcd(246; 951).

2.11. Find the greatest common divisor of 42823 and 6409. Also, �nd integers u and v such
that 42823u + 6409v = gcd(42823; 6409).

2.12. Provide a proof of Fact 2.11.

2.13. Provide a proof of Fact 2.12.

2.14. Show that 1

2
+

p
3

4
is irrational.

2.15. Find all of the lattice points that lie on the line given by the equation y = 5

3
x� 7

3
. Do

the same thing for the line y = 5

3
x� 7

6
.

2.16. Justify the claim made near the end of the proof of Theorem 2.14: if d = gcd(a; b) > 1,
then (a

d
; b

d
) is a lattice point that lies on the line segment between the origin and (a; b).


