
SOLUTIONS TO THE PROBLEMS.

Problem 1. Let B denote the whole 20 � 20 � 20 block and U the unit cube of

the problem, whose assigned number is 10. Let S1, S2 and S3 denote the three

1 � 20 � 20 slices of B, parallel to the faces of B and containing U . Consider

the three columns of B, containing U and parallel to the edges of B. These are

the pairwise intersections of S1, S2 and S3. Let us denote these three columns by

E12 = S1 \S2, E13 = S1 \S3 and E23 = S2\S3. Let T = S1[S2 [S3 and let C be

the set whose sum of the numbers we want to �nd out: C = B n T . Let us denote

the sum of the numbers of unit cubes in each of these sets by a corresponding small

letter, so that b is the sum of the numbers of cubes in B, s1 is the sum of the

numbers of cubes in S1, etc.

Each 1�20�20 slice S parallel to a face of B can be broken up into 20 columns,

each of size 1� 1� 20. The sum of the numbers in each column is 1 by assumption,

hence the sum of all the numbers in S is s = 20 � 1 = 20; in particular, the sum s

is the same for all such slices S. Now, 20 such slices make up all of B, so the sum

total of all the numbers in B is b = 20� 20 = 400. We want to �nd the number c.

We have c = b � t = 400 � t. It remains to �nd t. To do that, consider the sum

s1 + s2 + s3. The di�erence between this sum and t is that in s1 + s2 + s3, each

of the columns E12, E13 and E23 has been counted twice. To compensate for that,

consider the number s1+ s2+ s3� e12� e13� e23. In this expression, the number of

each unit cube in T has been counted once, except for u, which has been counted

1+ 1+ 1� 1� 1� 1 = 0 times. Making the �nal correction to account for that, we

obtain t = s1 + s2 + s3 � e12 � e13 � e23 + u = 20 + 20 + 20� 1� 1� 1 + 10 = 67,

so c = b � t = 400� 67 = 333 is the desired number.

Problem 2. Let n be an integer such that n2 has 9 as the units digit and 0 as

the tens digit. Then n2 is odd, so n must also be odd. Let us investigate residues

modulo 8.

Write n = 2k + 1 for some integer k. Then n2 = (2k + 1)2 = 4k2 + 4k + 1 =

4k(k+1)+1. Now, k(k+1) is even for all integer k (since one of k and k+1 must

be even). Hence 4k(k+1) is divisible by 8 and n2 � 1 mod 8 for all odd integers n.

Since 100 � 4 mod 8, any odd multiple of 100 is congruent to 4 mod 8. We have

9 � 1 mod 8. Let d denote the hundreds digit of n2. If d were odd, we would have

n2 � 4d+9 � 4+ 1 � 5 mod 8, which is impossible by the above. This proves that

d is even, as desired.

Problem 3. Let us denote the twelve statements by the respective candidates by

S1, S2 and so on until S12.

Lemma.

(1) If the number of lies told before Si is greater than i then the number of lies
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told before Si+1 is greater than i+ 1.

(2) If the number of lies told before Si is less than or equal to i then the number

of lies told before Si+1 is less than i+ 1.

Proof. (1) In this case Si is a lie. When Si is said the number of lies increases by

1 and thus becomes greater than i + 1.

(2) First, suppose the number of lies told before Si was strictly less than i. When

Si is said, the number of lies goes up by one, and thus the resulting number of lies

is strictly less than i+ 1.

If the number of lies tolde before Si was exactly i then Si is true so the number

of lies told before Si+1 is i < i+ 1. �

Corollary. The statement Si+1 is a lie for 1 � i � 11.

Thus S2, S3, : : : S12 are all lies. Since at least of the Si was true by assumption,

S1 must be true. Thus exactly 1 lie was told before Si, exactly 11 lies after S1, and

S1 itself was true, the total number of lies is 1 + (12� 1) = 12.

Problem 4. We proceed by induction on the number n +m. For convenience in

setting up the induction, we will allow one of n or m to be zero (the statement of

the problem is true also in this case).

Base of the induction. Assume that one of m and n is even and the other is

odd (this includes the case n +m = 1, in which case one of n and m is zero, the

other 1). In this situation, the in�nite chessboard with the usual black and white

pattern will do. Indeed, saym is even and n is odd. Then, if the crocodile starts on

a black square, after moving m squares in one direction it lands on a black square.

Moving n squares in another direction, it lands on a white square, as desired.

The induction step. Fix m and n and assume that the statement is known for

all the smaller values of m+n. The case when one of m and n is even and the other

odd is already solved above. It remains to consider the cases when either both m

and n are odd or they are both even.

First, suppose m and n are both odd. Let us number the rows and columns of

our chessboard by integers from �1 to +1. Paint all the even columns white and

all the odd columns black. When the crocodile moves an odd number of squares

vertically, it stays on the square of the same colour, and when it moves an odd

number of squares horizontally, it lands on a square of a di�erent colour than the

one it started on.

Finally, suppose both m and n are even. Divide all the squares of the chessboard

into the following four sets. Let C1 be the set of squares such that both row and

column number is even, C2 the squares such that both row and column are odd,

C3 the squares in an even row and odd column and C4 the squares in an odd row

and even column. Since both m and n are even, the crocodile which starts out in

one of the sets Ci will always remain in the same set Ci. Thus it su�ces to solve

the problem for each of the sets Ci separately. Clearly the problem is the same

for each of the four sets, so it is enough to solve it for C1. Now, C1 itself can be

identi�ed with an in�nite chessboard. Renumber the rows of this new chessboard
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so that they are again numbered by all the integers from �1 to +1, instead of

just the even ones. We see that in this new chessboard our piece becomes a mere�
n
2
; m
2

�
-crocodile, so the desired painting of the chessboard exists by the induction

assumption.

Problem 5. Let n and n+1 be two consequtive positive integers and 2m, 2m+2

two consequtive even positive integers. Suppose that n(n + 1) = 2m(2m+ 2). We

have

(1) n2 + n = 4m2 + 4m > 4m2 + 2m;

hence

(2) 2m < n:

By (2), n � 2m+ 1, so n2 + n � (2m+ 1)2 + 2m+ 1 = 4m2 + 4m+ 1 + 2m+ 1 =

4m2 + 6m+ 2 > 4m2 + 4m. This is a contradiction, so this situation is impossible.

Problem 6. Let us consider the usual unit cube in the three-dimensional Eucledian

space, whose eight vertices are precisely the set of all points, all of whose coordinates

are either 0 or 1. Now, no two vertices whose sum of coordinates is even are joined

to each other by an edge. Similarly for vertices whose sum of coordinates is odd.

On the other hand, every vertex whose sum of coordinates is even is joined by

edges to three vertices with odd sum of coordinates and vice-versa. Now take four

distinct prime numbers, say, 2,3,5 and 7, and place them in the vertices with even

sum of coordinates. Say, we place 2 at (0,0,0), 3 at (0,1,1), 5 at (1,0,1) and 7 at

(1,1,0). Finally, in every vertex v whose sum of coordinates is odd we place the

product of the three prime numbers from the three vertices connected to v by an

edge. Speci�cally, in the case at hand we place 70 at (1,0,0), 42 at (0,1,0), 30 at

(0,0,1) and 105 at (1,1,1).

We claim that such a cube satis�es the requirements of the problem. First,

consider a pair of numbers connected by an edge. Then one of these numbers a, is

assigned to a vertex with an even sum of coordinates and the other, b, to a vertex

with an odd sum of coordinates. By construction, a is prime and a j b, as desired.

In two vertices with even sum of coordinates we have two distinct prime numbers,

so clearly they do not divide each other. In two vertices with odd sum of coordinates

we have products of two distinct sets of three primes, so they cannot divide each

other. Finally, given a vertex v with even sum of coordinates and the vertex v0 with

odd sum of coordinates lying on the same main diagonal as v0, we have a prime

number p at v and a product of three primes di�erent from p in v0, so, again, they

do not divide each other. This provides the desired example.

Problem 7. Let us colour our 16 � 16 square into black and white squares, as

in the usual chessboard. The neighbours of every black square are all white and

the neighbours of every white square are all black. Thus if we can �nd the sum of

the numbers of all black squares, the sum of all white squares will be the same by

symmetry and the problem will be solved.
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Let us denote each square by its row and column number. The idea is to divide

the eight black squares into several disjoint sets, in such a way that each set is a

complete set of neighbours of some white square.

Namely, let A be the set consisting of (1,2) and (2,1): these are all the neighbours

of (1,1). Let B = f(1; 4); (2; 3); (3; 4)g: these are all the neighbours of (2,4). Let

C = f(4; 1); (3; 2); (4; 3)g: these are all the neighbours of (4,2). The sum of all the

numbers in A is 1 by assumption, similarly for B and C. Thus the sum of all the

numbers on the black squares is 3, hence the sum on the white squares is also three

by symmetry and the total sum is 6.

Problem 8. The idea is to consider the smallest eight among the 100 numbers.

First, we prove a lemma which will be used in both parts (a) and (b).

Lemma. Consider any collection of 100 numbers (which may or may not be dis-

tinct). Let a1 � a2 � a3 � a4 � a5 � a6 � a7 � a8 be the smallest eight

numbers, arranged in the increasing order. Assume that there exist nine numbers

b1; b2; b3; b4; b5; b6; b7; b8; b9 among the given hundred whose arithmetic mean equals

the arithmetic mean of a1; a2; a3; a4; a5; a6; a7; a8. Then all the ai and all the bj are

equal to each other.

Proof. Arrange the bi also in the increasing order. By the choice of the numbers

ai, we have

(3) ai � bi

for all i from 1 to 8. We also know that

(4) bi � b9

for all i from 1 to 8. Adding (4) to (3) multiplied by 8, we deduce that

(5) 9ai � 8bi + b9 for i 2 f1; 2; : : : ;8g:

Letting i range from 1 to 8 and adding up the resulting eight inequalities (5), we

obtain 9(a1+a2+a3+a4+a5+a6+a7+a8) � 8(b1+b2+b3+b4+b5+b6+b7+b8)+8b9,

so

(6)
a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8

8
�

b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9

9
:

By assumption, (6) is, in fact, an equality. Hence (3) and (4) must also be equalities

for all i. Thus all of the ai and bi are equal to b9. �

Proof of (a). If of all the 100 numbers are di�erent then the nine smallest

numbers cannot all be equal so, by the Lemma, the arithmetic mean of the smallest

eight numbers a1; a2; a3; a4; a5; a6; a7; a8 cannot equal the arithmetic mean of any 9

of the written numbers.
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(b) We will give a proof assuming all the 100 numbers are rational. I still do not

know how to do the general case (that of real numbers) without using linear algebra.

We give a proof by contradiction. Start with 100 rational numbers, not all equal,

satisfying the assumptions of the problem. In particular, the arithmetic mean of

the smallest eight numbers equals the arithmetic mean of some nine numbers, so

by the Lemma the smallest nine numbers are all equal to each other.

Multiplying all the numbers by the same constant or adding the same constant

to all the numbers does not change the problem. Adding a suitable constant to

all the numbers, we may assume that the nine smallest numbers are all equal to 0.

Multiplying by the lowest common denominator of all the numbers, we may assume

that all the numbers are integers.

We want to show all the numbers are equal to 0. Suppose not. Dividing by the

greatest common divisor of all the numbers, we may assume that no integer greater

than one divides all the numbers. In particular, not all 100 numbers are divisible

by 8. Let a0

8 be a number not divisible by 8. Let

a0

1 = a0

2 = a0

3 = a0

4 = a0

5 = a0

6 = a0

7 = 0:

Let b01; b
0

2; b
0

3; b
0

4; b
0

5; b
0

6; b
0

7; b
0

8; b
0

9 be nine numbers such that

(7)
a0

1 + a0

2 + a0

3 + a0

4 + a0

5 + a0

6 + a0

7 + a0

8

8
=

b01 + b02 + b03 + b04 + b05 + b06 + b07 + b08 + b09
9

:

Then

(8) 9(a0

1+a0

2+a0

3+a0

4+a0

5+a0

6+a0

7+a0

8) = 8(b01+b02+b03+b04+b05+b06+b07+b08+b09):

Since b01; b
0

2; b
0

3; b
0

4; b
0

5; b
0

6; b
0

7; b
0

8; b
0

9 are all integers, a
0

1+a0

2+a0

3+a0

4+a0

5+a0

6+a0

7+a0

8 =

a0

8 is divisible by 8, which is a contradiction.

Problem 9. We will describe a solution for both (a) and (b) simultaneously. The

idea of using binary to number the coins was suggested by SIMMER participants

during the discussion.

In Case (a), number the coins from 0 to 31. In Case (b), number the coins from

0 to 10 and from 21 to 31. Write all the numbers out in binary. All the resulting

numbers have at most �ve digits; let us refer to them as \�ve digit numbers". In

both cases (a) and (b), the resulting set S of �ve digit binary numbers can be

divided into pairs (x; y) such that x + y = 11111 (in binary). This means that the

i-th digit of x is 0 if and only if the i-th digit of y is 1, for i 2 f1; 2; 3; 4; 5g. Thus

for each i 2 f1; 2; 3; 4; 5g there are as many numbers in S with the i-th digit 0 as

there are numbers with the i-th digit 1.

Now consider the following four weighing operations. Let the operation number

i consist of weighing all the coins with i-th digit 1 against all the coins with i-th

digit 0. If in one of the operations the two sets of coins have the same weight, there

is nothing more to do. Suppose in each of the four operations the two groups of

coins are not equal. This mean, in each case, that the counterfeit coins cannot be
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divided between the two groups being weighed: both counterfeit coins must be on

the same side in each weighing (we do not know which one).

In the �rst weighing operation, this means that both counterfeit coins have the

same �rst digit. Similarly, the second, third and fourth weighings show that they

must have the same second, third and fourth digits. Therefore the two counterfeit

coins must di�er from each other by their last digit. Hence the set of coins whose

numbers have 0 as their last digit has the same weight as those having 1 as their

last digit and we are done.

Problem 10. Without loss of generality, assume that a � b � c � d. We cannot

have a = b = c = d (for that would imply l:c:m(a; b; c; d) = d). Hence

(9) d < a+ b+ c+ d < 4d:

Since d j (a + b+ c+ d) by assumption, (9) leaves two possibilities:

(10) a + b+ c+ d = 3d

or

(11) a+ b+ c+ d = 2d:

If (10) holds, 3 j 3d = l:c:m(a; b; c; d) j abcd and we are done. From now on we will

assume that (11) holds. Then

(12) a + b+ c = d:

If we had a = b = c then d = 3a = 3b = 3c, so d is divisible by a; b and c and

(13) l:c:m(a; b; c; d) = d;

contradiction. Thus at least one of a and b must be strictly less than c. Then

d = a + b+ c < 3c, so

(14) 2c < 2d < 6c:

Since c j l:c:m(a; b; c; d) = 2d, inequality (14) leaves the possibilities 2d = 3c, 2d = 5c

or

(15) 2d = 4c:

In the �rst two cases, 3 j d or 5 j d and we are done. Assume that (15) holds. Then

d = 2c. By (12), we have a + b = c. Again, the case a = b is impossible since then

a, b and c divide d and we get the contradiction (13). Thus a < b so 2c > 2b > c.

Then

(16) 8b > 4c = 2d > 4b:
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Since b j 2d, (16) leaves the possibilities 5b = 2d, 6b = 2d or

(17) 7b = 2d:

In the �rst two cases d is divisible by 3 or by 5 and we are done. Assume that (17)

holds. Then 4(a + b) = 4c = 2d = 7b, so 4a = 3b. Thus 3 j a and the proof is

complete.

Remark. In fact, using this reasoning it is easy to give a complete list of all the

quadruples a; b; c; d, satisfying the conditions of the problem. Multiplying all of

a; b; c; d by the same integer does not change the problem, so we may assume that

g:c:d(a; b; c; d) = 1. Under this assumption, the possible answers are (1,3,4,4),

(2,3,3,4), (1,1,4,6), (1,6,14,21), (1,3,8,12), (1,2,6,9), (2,3,10,15), (1,2,2,5) and

(1,4,5,10).

Problem 11. The idea, as in many optimization problems, is to look for as sym-

metric a situation as possible. First, we give an example with 2000 students. Num-

ber the problems from 1 to 6. Our plan is as follows. Every student will solve

exactly three problems. Consider the set of all triples of distinct integers between

1 and 6. There are
�
6

3

�
= 6�4�5

3!
= 20 of them. We will choose a subset S consisting

of ten triples with the following properties:

(1) Each integer from 1 to 6 appears in exactly �ve triples in S (this property

is needed to ensure that each problem got solved by exactly 1000 students)

(2) the union of any two triples from S does not equal f1; 2; 3; 4; 5; 6g (this

property is needed to ensure that no two students together have solved all

the six problems).

Then we will divide our 2000 students into ten groups of 200 students each and

assign to each group a triple from S. The problems solved by the students in each

group will be the problems whose numbers appear in the corresponding triple. This

will provide the desired example.

It remains to describe a set of ten triples satisfying (1) and (2). For instance, we

can take the set of all triples whose sum is congruent to 0, 1 or 4 mod 6:

S = f(123); (246); (156); (345); (124); (235); (136); (145); (256); (346)g:

Since 1+2+3+4+5+6= 21 � 3 j mod 6, our conditions on the residue of the sum

ensure that no two triples in S combined make up f1; 2; 3; 4; 5; 6g. This completes

the construction of the example.

Now we must show that 2000 is the smallest number of students for which an

example is possible. Indeed, let x denote the total number of students. We will

show that x � 2000. By assumption, no student solved all six problems. There are

three cases to consider.

Case 1. There exists a student A who solved exactly �ve problems. Without loss

of generality, assume that A solved the problems 1,2,3,4,5. Let B be a student who

solved problem 6 (by assumption, there are 1000 such students). Then A and B
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together solved all the problems, which contradicts the assumptions of the problem.

Hence Case 1 is imposiible.

Case 2. There exists a student A who solved exactly four problems. Without loss

of generality, assume that A solved the problems 1,2,3,4. Let B5 denote the set of

all the students who solved problem 5. Let B6 denote the set of all the students

who solved problem 6. Each of the sets B5 and B6 contains exactly 1000 students

by assumption. We have A =2 B6 [ B5. Furthermore, if there existed a student

C 2 B5 \ B6 then together A and C would have solved all the problems, which is

impossible. Thus B5 \B6 = ;. Then the total number of students in B5 [B6 [ A

is 1000 + 1000 + 1 = 2001 > 2000, so x > 2000.

Case 3. No student solved more than three problems. Consider the set of all

ordered pairs of the form (C; i) where C is a student and i 2 f1; 2; 3; 4; 5; 6g is a

problem solved by student C. Since every one of the six problems was solved by

exactly 1000 students, the total number of such pairs is exactly 6 � 1000 = 6000.

On the other hand, since each one of the x students solved at most three problems,

the total number of pairs is at most 3x. Thus 6000 � 2x so x � 2000 as desired. �


