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1. Locker chaos. Let’s focus on a particular locker, say locker #20. The first student opens the locker, the
second student closes it, the fourth student opens it, the fifth student closes it, the tenth student opens
it, and the twentieth student closes it for good. The students that change the locker correspond exactly
to the divisors of 20 (1, 2, 4, 5, 10, and 20), and we can see that this will always be the case—the dth
student that touch the mth locker exactly when m is a multiple of d, or equivalently, d is a divisor of m.

To decide which lockers are open at the end of the day, we need to figure out which lockers are changed
by an odd number of students; in other words, we need to decide which numbers m have an odd number
of divisors. If we start working out the problem by hand, we see that of the first ten lockers the ones that
are open at the end are #1, #4, and #9, while the rest are closed at the end. This leads to the following
guess: the lockers that are open at the end are precisely the lockers numbered with a square! To prove
this, we need to show that a number m has an odd number of divisors if and only if m is a square.

“Odd” means “congruent to 1 modulo 2”7, so instead of counting the divisors, let’s just think of what the
number of divisors is modulo 2. If d is a divisor of m satisfying the inequality d < v/m, then m/d is also
a divisor of m, and m/d > /m. Therefore these divisors come in pairs: each divisor less than /m is
paired with one exceeding /m (and vice versa, of course). Since we only care about the number of divisors
modulo 2, a pair of divisors is equivalent to no divisors, and we can forget all these divisors.

Well, if we forget all divisors of m that are less than /m, and also all those that are greater than /m,
there aren’t going to be many left, are there? In fact, if m is a square, say m = k2, then there is exactly one
divisor, namely k, left after pairing the others off; in this case, the total number of divisors is congruent to
one modulo 2, which shows that squares have an odd number of divisors. On the other hand, if m is not
a square, then there are no divisors that haven’t been paired off; in this case, the total number of divisors
is congruent to zero modulo 2, which shows that non-squares have an even number of divisors. So we’ve
proved that our guess is correct!

Another way to show the same fact is to prove a formula for the number of divisors of a number m:
if the prime factorization of m is pj' X p3? X --- X p;j, then the number of divisors of m is exactly
(ri1+1)(re+1)...(r; +1). This number is odd if and only if each factor is odd (put another way, the
product of the numbers r; + 1 is not a multiple of the prime 2 if and only if none of the numbers r; + 1 is
a multiple of 2). For each factor to be odd, we need each r; to be even, say r; = 2s;; and then m is indeed
a square:
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m = (p}'p; pjj) :

This second technique can also answer questions such as the following: Which numbers have the property
that the sum of all of their divisors is odd?

2. Rocks and lockers. Again, by working through the beginning of the problem by hand, we see that the first
few lockers to have rocks placed in them are 2, 3, 5, 7, and 11. This suggests the following guess: the
lockers with rocks in them are precisely the prime numbers.

Again, we switch perspectives: instead of thinking about one student at a time and the lockers he/she
closes, we think about one locker at a time and the students who want that locker closed. The student
who closes locker #m must have put a rock in some locker, say locker #d; and since this student is making
sure that all lockers that are multiples of d are closed, we see that d must be a divisor of m. In fact, the
student who actually closes locker #m (as opposed to merely seeing that it is already closed) must have
put his/her rock in locker #d, where d is the smallest divisor of m other than 1 (since locker #1 started
the day already closed).



So which lockers end up with rocks in them? Well, as we just discovered, locker #m gets a rock if and only
if m equals d, where d is the smallest divisor of m other than 1. Of course, this is precisely the definition
of a prime number reworded slightly. So our guess is correct here as well! (We sure are good guessers.)
Since every student put a rock in some locker and every locker ended up closed, the number of students
was therefore the number of primes between 1 and 100, or 25.

This problem describes a long-existing method for calculating primes called the Sieve of Eratosthenes.
Eratosthenes was a Greek scientist of the third century B.C. (when the Greek empire extended to present-
day Libya, his birthplace) with many accomplishments in astronomy including a fairly accurate calculation
of the circumference of the earth. He worked out this method for determining the primes up to some bound
(we have used the bound 100, the number of lockers), and he noted that as soon as all numbers up to the
square root of the bound have been dealt with, all the remaining numbers are automatically prime—there
is no need to go through them one by one. This is because every composite number m has not just a
prime factor, but indeed a prime factor p < /m. In our example, once the first four students put rocks in
lockers #2, #3, #5, and #7 and close the corresponding lockers, all the lockers up to v/100 = 10 are then
closed, and the lockers remaining open are already all primes.

. Counting change. Let p, d, and ¢ represent the number of pennies, dimes, and quarters, respectively. Since
the total number of coins is 100, we immediately have the equation p + d + ¢ = 100. If we want the total
value of the coins to be $5.00, this gives us the equation p + 10d + 25¢ = 500. Subtracting the first of
these equations from the second eliminates the variable p, and the resulting equation is 9d 4+ 24¢ = 400.

But there are no solutions in integers to this equation! The slickest way to see this is by reducing modulo 3.
We have 9 = 24 = 0 (mod 3) and 400 = 1 (mod 3), so the equation 9d+ 24¢ = 400 implies the congruence
0d + 0¢ = 1 (mod 3), which is impossible. Therefore there are no solutions to the $5.00 version of the
problem.

If instead we want the total value to be $4.99, the second equation becomes p + 10d + 25¢ = 499, and
subtracting the two equations gives 9d 4+ 24¢ = 399. Now everything in sight is divisible by 3, and when
we divide by 3 we are left with the equation 3d 4+ 8¢ = 133.

To find solutions in integers to such a linear equation, we can again use congruences. If we look modulo 8,
the ¢g-term disappears, and we are left with the congruence 3d = 133 =5 (mod 8). Multiplying both sides
of this congruence by 3 yields 9d = 15 (mod 8), which is the same as d = 7 (mod 8) after reducing once
again the numbers modulo 8. Therefore it is necessary for d to be of the form 7 4 8% for some integer k,
and we easily see that setting ¢ = (133 —3(7+8k))/8 = 14 — 3k makes the equation 3d+ 8¢ = 133 satisfied.
Going back to the first equation, we see that we must also set p = 100 — (7 + 8k) — (14 — 3k) = 79 — 5k.

We have found the entire set of solutions to the pair of equations p+d + ¢ = 100, p+ 10d + 25¢ = 499 in
integers; for the solution to be in nonnegative integers, we need to restrict to values k such that the three
quantities 7+ 8k, 14 — 3k, and 79 — 5k are all nonnegative. This restricts k to lie between —7/8 and 14/3,
ie, k=0,1, 2,3, or 4. We conclude that the five solutions to the $4.99 version of the problem are

(p,d,q) = (79,7,14), (74,15,11), (69,23,8), (64,31,5), and (59,39, 2).

. Monkey business. Let z represent the original number of coconuts in the original pile, and define A =
(n —1)/n. After the first castaway goes back to sleep, there are (z — 1)A = Az — A coconuts left in the
pile. After the second castaway goes back to sleep, there are (4z — A — 1)A = A%z — (A% + A) coconuts
left in the pile. Continuing in this way, we see that after the nth castaway goes back to sleep, there are
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coconuts left in the pile. Substituting in the value A = (n — 1)/n and rearranging terms, this gives
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coconuts left over. Since no coconut was ever split by the castaways, this quantity must be an integer.
But n" cannot have any factor in common with (n — 1)”, since no prime can divide the two consecutive
integers n — 1 and n; therefore n™ divides z +n — 1. (This is why we’ve grouped the terms as we have.)

The next morning, the castaways realize that this amount is divisible by n. This means that we have the
congruence

-1
(n— 1)”(%) —n+1=0 (mod n),
nn
or equivalently, since n = 0 (mod n),
-1
2kn-. (=1)"*! (mod n).
nn

From the definition of congruences, we can check that if a/b is an integer and a/b = ¢ (mod d), then
a = be (mod bd). (The converse is true as well.) Therefore we have

z4+n—1=(=1)""n" (mod n"t1),
which tells us that
z=(-1)"""n" —n+1 (mod n"1),
We conclude that all the possible solutions to the problem are given by
T = (—1)”+1n” —n+1+ kn”‘H,
where k is an integer such that the right-hand side is positive.

When n is odd, the smallest such z is obtained by putting k = 0, giving z = n® — n + 1. When n is even,
the smallest such z is obtained by putting £ = 1, giving

r=-n"—n+14+n" =" -1)(n-1).

For example, if there are 5 castaways then the smallest number of coconuts in the original pile is 5° — 4 =
3121 coconuts. If there are 4 castaways then the smallest number of coconuts in the original pile is
(4* — 1)3 = 765 coconuts.

The power of using congruences to solve this problem is really demonstrated when we generalize this prob-
lem to n castaways and r monkeys. Following the same method, we find without too many complications
that the least amount of coconuts is rn™ — r(n — 1) when n is odd and n"(n — r) — r(n — 1) when n is
even. Try it and see!
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Here is the winning strategy for both of the modular arithmetic games, indicating how the player who
chooses who goes first can win every time with perfect play: If the modulus M is odd, tell the other player
to go first. If the modulus M is even, choose to go first yourself.

Although the winning strategy is the same in both cases, the reasons behind the strategy are much different
for the two games. Before explaining why this is a good strategy in each case, notice that both games are
easier to play if you always reduce the running total modulo M after every play, and just keep track of
the reduced totals which lie between 0 and M — 1.

The Modular Addition Game. Although the game is phrased in terms of choosing an integer n» and adding
it to the running total T, one can easily arrange for the running total to become whatever you want: if the
running total is T and you want it to become T”, choose the integer T’ — T on your turn. Therefore, both
players are essentially choosing numbers between 0 and M — 1 on their turns. Nobody wants to choose a
number that has already been chosen, and nobody wants to choose 0; the player who finally runs out of
good choices is the first player if M is odd and the second player if M is even. Thus the strategy here is
“play not to lose”.

The Modular Multiplication Game. If the modulus M is even, the player who starts wins easily and
quickly by simply choosing M /2. If the other player multiplies by an even number on his/her turn, then
the running total will be a multiple of M; on the other hand, if the other player multiplies by an odd
number, then the running total will remain congruent to M/2 since

2k+1)M/2=kM + M/2 = M/2 (mod M),

which still results in a loss for the second player.

On the other hand, suppose that the modulus M is odd. At each stage, one can look at the greatest
common divisor of the running total 7" and the modulus M. For instance, in the example game modulo
15 with the sequence of running totals 2, 12, 24, 216, 648, —3240, the corresponding sequence of “running
ged values” is 1, 3, 3, 3, 3, 15. It turns out that if T is the current running total and you want to make
the new running total equal to 77, then you can find an integer n such that nT =T’ (mod M) if and only
if ged(T', M) is a multiple of ged(T, M). (Check this!) In particular, the “running ged value” can increase
as the game goes along, but it can never decrease. Now we claim that the following “play not to lose”
strategy is a sure win for the second player: always choose an integer n such that the new running ged
value ged(nT', M) is the same as the previous running ged value ged(T, M).

We claim that if you follow this “play not to lose” strategy, you will never be forced into making the running
ged value increase, even if the opponent is also “playing not to lose”. This is because, as it turns out, for
odd numbers M, the number of integers T between 0 and M — 1 such that gcd(T, M) takes a certain value
is even. The reason? Because gcd(M — T, M) = ged(—=T', M) = ged(T, M) (check this too!), these integers
can be paired off (like in the first solution to the “Locker chaos” problem). Therefore if the other player
is the first to attain a particular ged value (including at the very beginning of the game), you can always
outlast him/her until he/she is forced to increase the running gecd value yet again. And if the other player
is always increasing the running gecd value, he/she will be the one who finally makes ged (7T, M) = M,
which means that T is a multiple of M!

For both of these games, think about the following question: If the other player decides who goes first,
how can you take advantage of a mistake by the other player during play? In the Modular Multiplication
Game, a single mistake by the “player in control” will not necessarily make him/her lose unless the other
player plays perfectly from then on.



