
Solutions to Problems 1{10.

Problem 1. The idea is to compare the binomial expansion of

9950 = (100 � 1)50

with that of

10150 = (100 + 1)50:

We have

(100 + 1)50 =

50X
k=0
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�
10050�k =

50X
k=0

50 � 49 � : : : � (50� k + 1)

k!
10050�k =

= 10050 + 50 � 10049 + � � �+ 50 � 100 + 1

(1)

(100 � 1)50 =
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(�1)k10050�k =

=

50X
k=0

50 � 49 � : : : � (50 � k + 1)

k!
(�1)k10050�k =

= 10050 � 50 � 10049 + � � � � 50 � 100 + 1:

(2)

The terms corresponding to the even values of k are the same in (1) and (2), while

those corresponding to the odd values of k di�er by sign. Subtract (2) from (1).

The terms with k even will cancel, while those with k odd will be double of what

they were in (1):

(100 + 1)50 � (100� 1)50 = 2 �
25X
l=1

50 � 49 � : : : � (50� 2l + 2)

(2l � 1)!
10050�2l+1 =

= 2 � (50 � 10049 + a sum of positive terms) > 10050:

This shows that 10150 � 9950 > 10050, so 9950 + 10050 < 10150.

Problem 2. (a) To say that two rooks cannot take each other is the same as

to say that they are not in the same row nor in the same column. Thus to place 8

rooks so that no two can take each other means to place them so that no two lie in

the same row or in the same column. Since there are 8 rooks, 8 rows and 8 columns,

there must be exactly one rook per row and exactly one rook per column. There

are 8 ways of placing a rook in the �rst column. For each one of those 8 possibilities

of placing the �rst rook, there are 7 ways of placing the second rook in the second

column such that rook 1 and rook 2 do not lie on the same row. For each of the

7 � 8 ways of placing the �rst two rooks, there are six ways of placing the third rook
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in the third column so that rook 3 does not lie on the same row with either of the

rooks 1 and 2, and so on. Finally, there are 8 � 7 � 5 � 6 � 4 � 3 � 2 ways of placing the

�rst seven rooks, and then the position of the last rook is uniquely determined by

the �rst seven. Thus the answer is 8! = 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8.
(b) We must place 4 rooks on the 8 � 8 chessboard so that no two are in the

same row nor in the same column. In total, four columns will contain a rook and

four others will not. First, let us choose the set of 4 columns in which rooks will

be placed. There are
�
8

4

�
= 8�7�6�5

4!
= 70 choices for this. Make one such choice,

and let C1, C2, C3 and C4 denote the chosen columns. Now, for each choice of

C1; C2; C3; C4, there are 8 ways to choose one rook from column C1, for each of

those there are 7 ways to choose a rook in C2, then 6 ways to choose a rook in C3

and 5 ways to choose a rook in C4. Final answer:
�
8

4

�
� 8 � 7 � 6 � 5 ways.

Problem 2. The idea is to use the transformation T of the plane. given by

(3) (x; y) !
�

xp
3
; y

�
;

which maps the ellipse onto the circle given by 3x0
2
+3y2 = 3, or x0

2
+y2 = 1, where

x0 = xp
3
is the new coordinate. The line x =

p
6

2
maps to the line x0 =

p
2

2
. The two

intersection points of x =
p
6

2
with the ellipse are mapped to the points

�p
2

2
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p
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�
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2
;�

p
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2

�
on the circle. The points (0; 0),
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2
; 0
�
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2

2
;
p
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2

�
form an

isoceless right triangle, so the segment connecting (0; 0) with
�p

2

2
;
p
2

2

�
forms a 450

angle with the x0-alis. Similarly, the segment connecting
�p

2

2
;�

p
2

2

�
forms a �450

angles with the x0-axis. The sector of the circle bounded by these two segments has

therefore a 450 + 450 = 900 angle, so its area equals one fourth of the full area of

the circle, that is, �

4
. The area of the isoceless right tiragnle with vertices (0; 0),�p

2

2
;
p
2

2

�
and
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2

2
;�

p
2

2

�
is 1

2
, so the part of the circle which lies to the right of

the line x0 =
p
2

2
has area �

4
� 1

2
. Finally, the transformation (3) had the e�ect of

dividing the area of any �gure by
p
3, so the area of the region we wanted to �nd

in the problem is
p
3�

2
�

p
3

2
.

Problem 4. Since X is moved to itself by a rotation by 480 about O, it is also

moved to itself after iterating such a rotation any number of times, that is, by a

rotation by any integer multiple of 480, namely by 960, 1440, 1920, 2400, 2880, 3360,

3840 angles and so on. Since 3840 = 240, X is moved to itself by a 240 rotation,

and hence also by a rotation by any itneger multiple of 240. Since 720 = 240 � 3, a

720 degree rotation about O preserves X.

What about a 900 rotation? Of course, there exist �gures (such as a circle

centered at O), which are preserved both by a 480 rotation and a 900 rotation.

However, we claim that it does not necessarily follow from the assumptions of the

problem that X is preserved by a 900 rotation. To show this, it is enough to give
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at least one example of a �gure X which is preserved by a 480 rotation but not

by a 900 one. Let I0 be a segment of length 1, one of whose endpoints is O. For

0 � k < 15, let Ik be the segment obtained from I0 by a rotation about O by the

angle k � 240. Let X =
14S
k=0

Ik be the union of I0; I1; : : : ; I14. Then X is moved to

itself by a rotation by any integer multiple of 240, but by no other rotation. (Indeed,

any rotation preservingX must move I0 to one of I1; I2; : : : ; I14 and hence the angle

of rotation must be divisible by 240.)

Problem 5. The idea is to rearrange the factors on the left hand side as follows:

(1 � n)(2 � (n � 1)) � : : : � ((n � 1) � 2)(n � 1):

We obtain the product of n factors of the form k(n+1�k), where 1 � k � n. Thus

it is su�cient to prove that each of the n factors is at least n, and if n > 2 then

there are some factors strictly greater than n.

Now, the �rst and the last factors are equal to n. All the other factors correspond

to the values of k from 2 to n� 1, and if n > 2 then there is at least one integer k

such that 2 � k � n� 1. It remains to show that k(n+1� k) > n if 2 � k � n� 1.

Interchanging k with n+ 1 � k, if necessary, we may assume that k � n+1

2
and

n+ 1� k � n+1

2
. Then k(n+ 1� k) � 2 � n+1

2
� n+ 1 > n, as desired.

Problem 6. Zero lines divide the plane in one part, one line in 2 parts, 2 lines

in 4 parts, 3 lines in 7 parts, and so on. From this one can notice that the number

of parts has increased by 1 after introducing the �rst line, by 2 after introducing

the second line, by 3 after introducing the third line, and so on. We can thus form

a conjecture that n lines divide the plane into

1 + 1+ 2 + 3 + � � �+ n =
n(n+ 1)

2
+ 1

parts. We prove this conjecture by induction. For n = 0 and n = 1 the result is

clear.

Now, suppose the result is known for k lines. We want to show that introducing

the (k+1)-st line has the e�ect of adding k+1 new parts. Let L denote the (k+1)-

st line. By assumption, L meets the �rst k lines in exactly k distinct points. The

line L is divided into k + 1 segments by these k points (here a segment is allowed

to be in�nite in one direction). Each of these k + 1 segments passes through one

previously undivided region and divides it in 2. This has the e�ect of adding exactly

k + 1 new regions, as desired.

Problem 7. Finding the last three digits of a number n is the same as �nding its

residue mod 1000 (that is, the remainder after dividing n by 1000 with remainder).

The answer does not change if we add 10000001999 to the sum. Let us divide the

sum

(4) 11999 + 21999 + 31999 + 41999 + � � � + 9999981999 + 9999991999 + 10000001999
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at hand into one thousand parts, namely, the �rst thousand of summands, the

second thousand of summands, and so on, until the thousandth thousand of sum-

mands. Next, let us compare the �rst thousand of summands with the second one.

We observe that 1 is congruent 1001 mod 1000 (that is, they have the same last

three digits), so 11999 is congruent to 10011999 mod 1000, 21999 is congruent to

10021999 mod 1000, and so on, all the way to 10001999 congruent to 20001999 mod

1000. Thus

(5) 11999 + 21999 + 31999 + 41999 + � � �+ 9981999 + 9991999 + 10001999

is congruent to

(6) 10011999+10021999+10031999+10041999+ � � �+19981999+19991999+20001999

mod 1000. Let r be the common residue of the sums (5) and (6) mod 1000 (r is

nothing but the number formed by the last three digits of (5) (or (6)). By the same

reasoning as above,

(7) 20011999+20021999+20031999+20041999+ � � �+29981999+29991999+30001999

is also congruent to r modulo 1000, and so is the sum of every other group of 1000

consecutive terms in (4). Thus modulo 1000 the sum (4) is congruent to a sum of

1000 terms, each of which is congruent to r. We obtain 1000 � r, which is congruent

to 0 mod 1000. Thus the last three digits of the sum (4) are 0 (in fact, it can be

shown that the last �ve digits of this sum are 0).

Problem 8. We have

8 = 5 + 3;(8)

9 = 3 � 3 and(9)

10 = 2 � 5:(10)

Thus 8, 9, and 10 emeralds can each be paid by three and �ve emerald notes. Now,

let n be any number greater than 7. The number n can either be divisible by 3,

or have residue 1 or 2 mod 3. Since 8, 9 and 10 are congruent to 2, 0 and 1 mod

3, exactly one of the numbers n � 8, n � 9 or n � 10 is divisible by 3. Moreover,

since n � 8, the number in the set fn � 8; n � 9; n � 10g which is divisible by 3

is non-negative, hence it can be written in the form 3k, where k is a non-negative

integer. Taking into account (8), (9) and (10), we see that n can be written in one

of these forms:

n = 5 + 3(k + 1) or;

= 3(k + 3) or

= 2 � 5 + 3k:
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Thus n emeralds can be paid either by one 5 emerald and (k + 1) three emerald

notes, or by k + 3 three emerald notes, or by 2 �ve emerald notes and k three

emerald notes. This completes the proof.

Problem 9. We give a proof by induction on n. For n = 0 the result is obvious

(also, for n = 1, one line divides the plane into two parts, so we can color one of

them white and the other red).

Now assume that the result is true for k lines; we will now prove it for k + 1.

Consider k + 1 lines in the plane. By a segment we will mean a maximal interval

I (possibly of in�nite length), contained in one of the lines, such that there are no

intersection points between our lines lying in the interior of I. Endpoints of such

a segment (if they lie in the �nite plane) are intersection points between our lines.

Every segment belongs to the boundary of exactly two regions, which are bounded

by our lines. We will call these regions the parts adjacent to I. Suppose we are

given a coloring of the parts of the plane bounded by the lines. Let I be a segment.

We will say that I is good with respect to the given colouring if the two regions

adjacent to it are coloured in di�erent colours; bad if they have the same colour. A

colouring is called good if all the segments are good for it. We want to show that

a good colouring always exists.

Pick one of the lines and call it L. By the induction assumption, there exists a

good colouring G of the regions de�ned by the remaining k lines. Now, consider

the segments of the given con�guration of k+1 lines. Every segment not contained

in L is also a segment for the set of k lines, and hence is good for G. On the other

hand, every segment I contained in L cuts through one of the regions de�ned by

the k lines. Hence both regions adjacent to I are coloured the same colour in G, so

that I is bad for G. Now let G0 be the following colouring. L divides the plane in

two regions; label them A and B. For every part C of the plane bounded by our

k + 1 lines, contained in A, let C have the same colour as in G. For every part D

of the plane bounded by our k+1 lines, contained in B, let D have di�erent colour

than the one it had in G; this de�nes the colouring G0. We claim that G0 is the

desired good covering. Indeed, consider any segment I of the con�guration of k+1

lines. If I � A nL then I is good for G0 because it was good for G. If I � B nL, I
is good for G0 because it was good for G and the colours of both regions, adjacent

to I, have changed from G to G0. Finally, suppose I � L. Then I was bad for G.

One of the regions adjacent to I lies in A, the other in B. Then one of these regions

has the same colour in G as in G0, while the other changes colour. Thus since I was

bad for G it becomes good for G0. This completes the proof that G0 is good. We

have constructed the desired colouring.

Problem 10. Suppose that x has n+ 1 digits, where n � 1. Write

(11) x = anan�1 : : : a0

in the decimal form, where a0; : : : ; an are digits of x. Then F (x) = an�1an�2 : : : a0,

where we allow the number F (x) to start with zeroes.

(a) Suppose x = 58 � F (x). Then x � F (x) = 57 � F (x) = 3 � 19 � F (x). On the
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other hand, (11) says that x�F (x) = an �10n = an �2n �5n. We obtain the equality

(12) an � 2n � 5n = 3 � 19 � F (x):

Since an is an integer between 1 and 9, it cannot be divisible by 19. Thus the left

hand side of (12) is not divisible by 19, while the right hand side is. Hence such a

number x does not exist.

(b) Reasoning as above, we obtain the equality

(13) an � 2n � 5n = 56 � F (x) = 7 � 23 � F (x):

Since the right hand side of (13) is divisible by 7, so is the left hand side. Since 2

and 5 are prime to 7, we must have

(14) 7 j an:

Since an is an integer from 1 to 9, (14) implies that an = 7. Also, comparing the

left hand side with the right hand side in (13), we obtain n � 3. Trying n = 3, we

�nd a solution: x = 7125.

Note. Reasoning as above, one can prove the following result. Let k be a positive

integer. There exists x such that x = k � F (x) if and only if k is of the form

k = 2a3b5c7d, where a, b, c, d are non-negative integers such that b � 2, d � 1 and

bd = 0.


