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The Fibonacci sequence {un} starts with 0 and 1, and then each term is 
obtained as the sum of the previous two:  

u1 1 
u2 1 
u3 2 
u4 3 
u5 5 
u6 8 
u7 13 
u8 21 
u9 34 

u10 55 
u11 89 
u12 144 
u13 233 
u14 377 
u15 610 
u16 987 
u17 1597 
u18 2584 
u19 4181 
u20 6765 
u21 10946 
u22 17711 
u23 28657 
u24 46368 
u25 75025 
u26 121393 
u27 196418 
u28 317811 
u29 514229 
u30 832040 
u31 1346269 
u32 2178309 
u33 3524578 
u34 5702887 
u35 9227465 
u36 14930352 
u37 24157817 
u38 39088169 
u39 63245986 
u40 102334155 
u41 165580141 
u42 267914296 
u43 433494437 
u44 701408733 
u45 1134903170 
u46 1836311903 
u47 2971215073 
u48 4807526976 
u49 7778742049 
u50 12586269025 

   u u  un n n= +− −1 2
The first fifty terms are tabulated at the right.  
 
This is certainly the most famous "sequence" in mathematics––most high 
school students seem to know something about it, and it is also an object 
of continued study by mathematicians. In fact, it has spawned a profes-
sional journal, The Fibonacci Quarterly.  Here we will devote a number 
of sections to a few quite different aspects of this sequence, all the way 
from arithmetic to pine cones.  
 
Here, we look for arithmetic patterns in the numbers––an excellent activ-
ity for small group work.  I simply hand the students the list of the first 50 
numbers, and tell them to Go nuts!   
 
Of course there's lots of patterns having to do with squares.  Such as:  

32 + 52  =  34 
52 + 82  =  89 

and  
52 - 22  =  21 
82 - 32  =  55 

and  
82 - 52  =  39  = 3×13 

132 - 82  =  105  = 5×21 
And here's one with products:  

2×5 + 3×8 = 34 
3×8 + 5×13 = 89 

These become quite satisfying when we use the un notation, because we 
can see how the subscripts relate.  Rather than write the formulae in gen-
eral, I'll rewrite the above cases––it's easier to see the general pattern with 
specific subscripts.  
 

u4
2  + u5

2  =  u9 
u5

2  + u6
2  =  u11 

and  
u5

2  – u3
2  =  u8 

u6
2  – u4

2  =  u10 
and  

u6
2  – u5

2  =  u4×u7 

u7
2  – u6

2  =  u5×u8 

 

u3×u5  +  u4×u6  =  u9 

u4×u6  +  u5×u7  =  u11 
and crazy stuff like: 

u5
3  + u4

3 – u3
3  =  u12 

u6
3  + u5

3 – u4
3  =  u15
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One of my students recently started with the observation that the sequence 34,55,89 is enticingly 

related to the earlier sequence 3,5,8.  Indeed:   .  I'll leave this one with you.   
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Sometimes I find that the students are interested in trying to find "proofs" of these, perhaps with 
some inductive thinking, but often they seem much happier just to explore.  Occasionally a 
“physical” model of the Fibonacci numbers or just the right geometric picture (problem 2 below), 
can give us an unexpected argument for some of these identities.  Those are my favorite proofs.  
But here we will look briefly at the inductive approach. 
 
Mathematical Induction.  
Mathematical induction provides one of the standard ways to establish formulae like those pre-
sented above.  It works particularly naturally for Fibonacci number properties as the numbers 
themselves are generated inductively.  Sometimes the inductive argument is straightforward, and 
sometimes it's not and requires some ingenuity, and that's always fun.  
 
As an example of an inductive argument, I choose the pleasing observation that the square of any 
Fibonacci number differs by 1 from the product of the two adjacent numbers:  

un
2  =  un-1×un+1 ± 1 

Here the signs alternate, being 1 for n odd and –1 for n even.  For example:  
82  =  5×13 – 1 

132  =  8×21 + 1 
 

When I'm doing an inductive proof, I usually work with numbers instead of symbols, keeping in 
mind what the numbers mean.  In this case, I will start with the expression 132 – 8×21  and I want 
to "show" that this is equal to +1 and along the way I want to use the fact that  82 – 5×13  is equal 
to –1.  And the trick is to take the 21 (which plays the role of un+1 which is the “highest” subscript 
to occur) and break it down following the Fibonacci rule.  Thus:  

132 – 8×21  =  132 – 8×(8 + 13)  =  132 – 8×13 – 82  =  5×13 – 82  =  1 
and I'm done.  I maneouvered the expression into a form in which I had an 82 to work with, and in 
the last step I used the fact that 82 – 5×13  =  1.  What I've done, essentially, is to show that the 
expression un

2 – un-1un+1 changes sign when n is increased by 1.  This will establish the formula 
for all n if we just "get it started" and for that we can check that u1

2 – u0u2  =  1, which certainly 
holds.  
 
If I want to construct a rigorous proof using the un  notation, I can now use the above calculation 
as a template.  I start by assuming  

u u un n n
2

1 1 1= ±− +  
We then calculate: 

u u u u u u u u u u un n n n n n n n n n n+ + + + + +− = − + = − − =1
2

2 1
2

1 1 1
2 1( ) ( ) m  

And we are done. 
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Problems  
 
1.  What I often do, after I give the class the table of the first 50 Fibonacci numbers to pour over, 
is to say: who can tell me the sum of all the Fibonacci numbers on the page:  u0+u1+u2+...+u50 ?  
I like this challenge because it recalls the famous question that Gauss was given at age 12 when 
he was asked to sum the first 100 natural numbers.  In that case, the teacher was hoping to keep 
the class quiet for a hour, but Gauss came up with the answer in a few moments.   
 
2.  A formula that looks like it should be easy meat for induction is the sum of squares, for exam-
ple, 

 52 + 82  =  89.   
But I am having trouble with this one!  Can you see how to do it?  
 
 
3.  The difference of squares formula, of which an example is   u7

2  – u6
2  =  u5×u8  is easy to 

prove directly.  The left hand side is dying to be factored.  
 
 
4.(a)  Verify that  

12 + 12 + 22 + 32 + 52 + 82  =  8×13.   
Does this generalize?  Show that a geometric proof of this iden-
tity can be obtained from the picture at the right.  Does this 
proof also generalize?   
 
(b)  This is a particularly simple formula to establish by induc-
tion.  Provide the argument.  
 
 

5.  Is the relationship    part of a general pat-

tern?  [Hint: try to construct a similar relationship with 2,3,5 in 
the right hand bracket instead of 3,5,8.]  
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89 1
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6.  The identity   82  =  5×13 – 1,  and its generalizations dis-
cussed in the math induction example above, give rise to a 
famous geometrical paradox illustrated by the diagram at the 
right.  The rectangle and the square are composed of the same 
4 pieces, yet the rectangle has area 65 and the square has area 
64.  Go figure.  
 
 
7.  Take the Fibonacci sequence 1 1 2 3 5 8 13 etc. and divide 
the first term by 100, the second by 1000, the third by 10000, etc. and then add them all up (to 
infinity)––the sum is 1/89.  Wow.  
[Hint: The standard approach to finding the sum of an infinite geometric series is to multiply the 
series by something (r) and then subtract the two versions of the series, one from the other, and 
see what we get.  The same type of trick might work here.]  
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8.  Verify that (3×13)2  + (2×5×8)2   =  892 .  Is this part of a general relationship?  This is amus-
ing because it gives us a family of Pythagorean triangles.  
 
9.  1×1 + 1×2 + 2×3 + 3×5 + 5×8 + 8×13  =  ?  Generalize?  
 

10.  1
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Can you establish this?   
 
 
11.  Take any row of Pascal's triangle.  Multiply the nth entry of the row by un , and add every-
thing up.  What do you get?  For example, for the fifth row:  

1×1 + 5×1 + 10×2 + 10×3 + 5×5 + 1×8  =  ? 
[You get a formula of Cesaro.]  
 

          1           
         1  1          
        1  2  1         
       1  3  3  1        
      1  4  6  4  1       
     1  5  10  10  5  1      
    1  6  15  20  15  6  1     
   1  7  21  35  35  21  7  1    
  1  8  28  56  70  56  28  8  1   
 1  9  36  84  126  126  84  36  9  1  

1  10  45  120  210  252  210  120  45  10  1 
 
 
12.  Show that the quotients, 1/1, 2/1, 3/2, 5/3, 8/5, ...  of successive Fibonacci numbers approach 
the golden ratio τ defined as the positive root of the equation x2 = x+1.   
[Find a recursive relationship for the quotients rn  = un /un-1 ].  
 
 
13.  The Greeks had the idea that the rectangle of the 
most pleasing proportions is the one with the property 
that if you cut out a square, what you are left with has the 
same shape as before.  That means we can keep going 
removing squares forever, and never lose the shape.  
Show that the two sides of this rectangle are in ratio τ, the 
golden mean.  
 
 
14.  (A problem of Steinhaus)  Consider the sequence 
beginning with x = 1 and x = a  which satisfies the recur-
sion:  

12 −− −= nnn xxx  . 
Find all values of a for which the sequence has only positive terms.  [Hint: solve #12 first, and 
look carefully at how the sequence in #12 approaches its limit.]  
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