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Monopolist's problem

Given compact sets X C R™, Y C R", and ‘direct utility’

b(x,y) = value of product y € Y to buyer x € X

¢(y) = monopolist’s cost to produce y € Y

dp(x) = relative frequency of buyer x € X (as compared to x’ € X)

Monopolist's problem: choose price menu v : Y — Z to maximize profits
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Monopolist's problem

Given compact sets X C R™, Y C R", and ‘direct utility’

b(x,y) = value of product y € Y to buyer x € X

¢(y) = monopolist’s cost to produce y € Y

dp(x) = relative frequency of buyer x € X (as compared to x’ € X)

Monopolist's problem: choose price menu v : Y — Z to maximize profits
i) i= [ 1v0u0) = el (M), where
Agent x's problem: choose y,(x) to maximize

yv(x) € argmax b(x,y) — v(y)
yey

Constraints: v lower semicontinuous, 0 € Y and v(0) = 0.
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Examples

e airline ticket pricing
e insurance
e educational signaling

e optimal taxation: replace profit maximization with a budget constraint
for providing services
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Mirrlees '71, Spence '73 (n=1= m): % > 0 implies % >0
Rochet-Choné '98 (n = m > 1): b(x,y) = x - y bilinear implies
yv(x) = Dv*(x) convex gradient; bunching
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Mirrlees '71, Spence '73 (n=1=m): OBXL(';)/ > 0 implies % >0
Rochet-Choné '98 (n = m > 1): b(x,y) = x - y bilinear implies
yv(x) = Dv*(x) convex gradient; bunching for c(y) = 1|y|?

.X= ‘[A, D.u’ll Cir\\x\-’ 1317:\ Ul"‘.(
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Carlier-Lachand-Robert '03: b bilinear gives v* € C1(spt p);
Caffarelli-Lions '06+ b bilinear gives v* € C22(X?)

loc

Carlier '01: b(x,y) general implies existence of optimizer v = v>?

Chen '13: u € C! under Ma-Trudinger-Wang (MTW) conditions, where

u(x) = v¥(x)= max b(x. ) = ()
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Carlier-Lachand-Robert '03: b bilinear gives v* € C1(spt p);
Caffarelli-Lions '06+ b bilinear gives v* € C22(X?)

loc

Carlier '01: b(x,y) general implies existence of optimizer v = v>?

Chen '13: u € C! under Ma-Trudinger-Wang (MTW) conditions, where

u(x) = v¥(x)= max b(x. ) = ()

is called the ‘indirect utility' to shopper x

Figalli-Kim-M. "11:
convexity of principal’s problem under strengthening of (MTW) on b(x, y)

M.-Rankin-Zhang '23+:
u=v*e C-((sptp)°) under same strengthening

loc
Noldeke-Samuelson (ECTA '18), Zhang (ET '19) M.-Zhang (CPAM '19):
generalize to preferences G(x,y, z) # b(x,y) — z and profits
7(x,y,z) # z — c(y) nonlinear in price z € R
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Rochet-Choné b(x,y) = x - y in terms of buyers’ utilities u

u(x) = v*(x) 1= maxlx -y = v(y)] (1)

implies
Du(x) = Dxb(x, yv(x)) = yv(x)
so we identify
yv(x)
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Rochet-Choné b(x,y) = x - y in terms of buyers’ utilities u

u(x) = v*(x) 1= maxlx -y = v(y)] (1)

implies
Du(x) = Dyb(x,y,(x)) = yv(x)
so we identify
yv(x) = Du(x)

and maximize
fiy) = /X (v — o) (Du(x))dp(x)
- /X [b6(x. ) — u(x) — c(¥)],—pu(ydu(x) =: —L()

among u of form (1) (i.e. among convex u(-) > 0 with Du € Y)
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A duality for bilinear preferences

Following Rochet-Choné '98 choose b(x,y) = x -y and X, Y C R" convex
so profit

~L(w) = | [ Du = u(x) — c(Dux)ldn(x)
with

u(x) =v*(x):=supx-y — v(y)
yYey
eU :={u: X —[0,00] convex | Du(X) C Y}
THM (M.-Zhang arXiv:2301.07660 Y a convex cone; c.f.
Kolesnikov-Sandomirskiy-Tsyvinski-Zimin 224 on Beckmann auctions):

—L —
ey )
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A duality for bilinear preferences

Following Rochet-Choné '98 choose b(x,y) = x -y and X, Y C R" convex
so profit
~L(0) = [ Ix Du u(x)  c(Du())ldux)

X

with
u(x) =v*(x):=supx-y — v(y)
yYey
eU :={u: X —[0,00] convex | Du(X) C Y}

THM (M.-Zhang arXiv:2301.07660 Y a convex cone; c.f.
Kolesnikov-Sandomirskiy-Tsyvinski-Zimin 224 on Beckmann auctions):

max —L(u) = min/c*(S(x))d,u(x)

ueld SeSs
where

s= {5 X R /X[(x— S(x)) - Du — u(x)]dp(x) < o}

uel
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THM:
max —L(u) = min / c*(S(x))du(x)

uelU Ses
where
S = ﬂ {§: X — R"| (x-Du(x) — u(x)), < (5(x) - Du(x)),}
ueld
In words: the monopolists maximum profit coincides with the net value of

a co-op able to offer its members good y € Y at price=cost c(y),
minimized over possible distributions Sx /1 of co-op memberships satisfying
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THM:
max —L(u) = min /c*(S(x))d,u(x)

uelU Ses§
where

S = ﬂ {§: X — R"| (x-Du(x) — u(x)), < (5(x) - Du(x)),}
ueld

In words: the monopolists maximum profit coincides with the net value of
a co-op able to offer its members good y € Y at price=cost c(y),
minimized over possible distributions Sx /1 of co-op memberships satisfying
the strange constraint that when members whose true type is S(x)
irrationally display the behaviour of x facing each monopolist price menu,
the expected gross value of the resulting assignment Du(x) to those co-op
members dominates the monopolist’s expected gross revenue

(x - Du(x) — u(x)),.
Proof: Rockafellar-Fenchel duality; (<): S € S, u € U and definition of c¢*
~L(u) = {x - Du(x) — u — c(Du(x)))y < -+ < (" 0 ),
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Partition into convex bunches of different dimension

ue argmax —L(u)
convex u>0

minimizes net loss
1 1
L(u) := / (\Du(x) — x|+ u— |x]2) dp(x)
[a,a+1]? 2 2
(Convex) isoproduct bunch (= equivalence class = contact set = leaf)

% :={x" € X | Du(x") = Du(x)} C X

foliate interior of Q,_; := {x € X | dim(X) = i}.

Lemma (Leaves reach ; any normal distortion is

(o) Qo = {x € X | u= 0} interior non-empty,* foliated by a single leaf.
(i) ifx € QU---Q,_1 there exists x' € XN X

(i) if x € Qn_1 (or X is strictly* convex) then fi(x") - (Du(x") — x") > 0.
(iii) 2, is relatively open in X, foliated by points, i.e. u is strictly convex.
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Rochet-Choné'’s square example revisited; c(y) = 3|y|?

G

kﬂ‘h\L D‘L\r‘ = \L ap 'Qh\;

(W\I&T\: \Sl;l'sh?\ \—\}\ X V-L
L
10,1313
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Variational calculus for obstacle problem plus convexity

Setting u; := v on Q; := {x € X | Dim(X) = n— i} (now n = 2) gives
e on Qg exclusion: ug = 0 (c.f. Armstrong '94)

e on €y, Euler-Lagrange ODE: if uy(x1,x2) = fk(xl + x2) then
k(s) = 352 — as — log|s — 2a| + const
subject to boundary conditions u; = g and Duy = Duo at lower boundary.
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Variational calculus for obstacle problem plus convexity

Setting u; := v on Q; := {x € X | Dim(X) = n— i} (now n = 2) gives
e on Qg exclusion: ug = 0 (c.f. Armstrong '94)

e on €y, Euler-Lagrange ODE: if uy(x1,x2) = fk(xl + x2) then
k(s) = 352 — as — log|s — 2a| + const
subject to boundary conditions u; = g and Duy = Duo at lower boundary.

e on  Euler-Lagrange PDE: Aup = 3 subject to boundary conditions

(Duz(x) — x) - ig,(x) =0 on 9XNQy
(Dup — Duy) - fig,(x) =0 on 02N 0Q; (Neumann)
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Variational calculus for obstacle problem plus convexity

Setting u; := v on Q; := {x € X | Dim(X) = n— i} (now n = 2) gives
e on Qg exclusion: ug = 0 (c.f. Armstrong '94)

e on €y, Euler-Lagrange ODE: if uy(x1,x2) = fk(xl + x2) then
k(s) = 352 — as — log|s — 2a| + const
subject to boundary conditions u; = g and Duy = Duo at lower boundary.

e on  Euler-Lagrange PDE: Aup = 3 subject to boundary conditions
(Duz(x) — x) - ig,(x) =0 on 9XNQy
(Dup — Duy) - fig,(x) =0 on 02N 0Q; (Neumann)
up=u; on 02 NI (Dirichlet)

OVERDETERMINED!
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Fig. 1 Numerical approximation U of the solution of the classical Monopolist’s problem ('I), o
on a 50 x 50 grid. Left level sets of U, with U = 0 in white. Center left level sets of det(V2U) (with
U/ = 0 in whire): note the degenerate region §2; whe redet(V21/) = 0. Center right distribution of p

sold by the monopolist. Right profit margin of the monopolist for each type of product (margins ar
on the one dimensional part of the product line, at the bottom left). Color scales on Fig. 10 (col

onling)

U.-M. Mirebeau (2016)
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c.f. Boerma-Tsyvinski-Zimin 22+ blunt Q9 vs targeted Qf bunching
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Free boundary problem

u = u; on §2; where
e on g exclusion: ug =0
e on QF, Rochet-Choné’s ODE: u1(x1,x2) = %k(xl + xp) where
k(s) = 252 — as — log |s — 2a| + const
subject to boundary cond|t|ons k =0 and k' = 0 at lower boundary.
e on Q, 1y = uj” given by a NEW system of ODE (for height h(-) and

length R(-) of isochoice segments together with profile of v, (-) along
them), with boundary conditions
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Free boundary problem

u = u; on §2; where
e on g exclusion: ug =0
e on Q9, Rochet-Choné's ODE: u1(x1, x0) = %k(xl + xp) where
k(s) = 252 — as — log |s — 2a| + const
subject to boundary cond|t|ons k =0 and k' = 0 at lower boundary.
e on Q, 1y = uj” given by a NEW system of ODE (for height h(-) and
length R(-) of isochoice segments together with profile of v, (-) along

them), with boundary conditions u; (x1, x2) = k(x1 + x2) and
Duif = (K', k") on 0Q9 N o9

e on 2, PDE: Aup = 3 with Rochet-Choné’s overdetermined conditions
(Dup(x) — x) - fig,(x) =0 on 00X N Q5 and on {x1 = x}

(Duy — Duf) - Ag,(x) =0 on 92 NdQ; (Neumann)
up=u on 0N (Dirichlet)
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Precise Euler-Lagrange equation in the ‘missing’ region Q7

Index each isochoice segment in Qf by its angle 6 > —7 to horizontal.
Let (a, h(#)) denote its left-hand endpoint and parameterize the segment
by distance r € [0, R(0)] to (a, h(#)). Along this segment of length R(0),

uf ((a, h(8)) + r(cosd, sin 9)) = m(8)r + b(0).
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Precise Euler-Lagrange equation in the ‘missing’ region Q7

Index each isochoice segment in Qf by its angle 6 > —7 to horizontal.
Let (a, h(#)) denote its left-hand endpoint and parameterize the segment
by distance r € [0, R(0)] to (a, h(#)). Along this segment of length R(0),

uf ((a, h(8)) + r(cosd, sin 9)) = m(8)r + b(0).

1

For h € [a,a+1], R : [—%, g] — [0, av/2) with R(f%) = 5(h—2), solve

(m"(0) + m(0) —2R(0))(m'(0) sin — m(0) cos O + a) = ng(Q) cosf (2)

m(-5) =0, m(=5)= LK(a+1h).
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Precise Euler-Lagrange equation in the ‘missing’ region Q7

Index each isochoice segment in Qf by its angle 6 > —7 to horizontal.
Let (a, h(#)) denote its left-hand endpoint and parameterize the segment
by distance r € [0, R(0)] to (a, h(#)). Along this segment of length R(0),

uf ((a, h(8)) + r(cosd, sin 9)) = m(8)r + b(0).

T 1
——)=—=(h— 1
4) \ﬁ(* a), solve

(m"(0) + m(0) —2R(0))(m'(0) sin — m(0) cos O + a) = ng(Q) cosf (2)

For h € [a,a+1], R : [—%, g] — [0, av/2) with R(

m(—7%) =0, m'(=%) = %k’(a + h). Then set (3)
WO = hag [ (04 me) 2RO (*)

b(t) = ;k(a+h)+/t

/ (m'(0) cos @ + m(0)sinO)H' (0)db. (5)
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o for helaa+1], R:[-%,5]— [0,av2) Lipschitz (say) and

R(—%) = %(h — a) we can solve (2)—(12) to find Q] and u?.

e we can then solve the resulting Neumann problem for Auy, = 3 on €25
e what is work-in-progress is that some choice of h and R(-) also yields
uy — up = const on 0L \ OX,
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o for helaa+1], R:[-%,5]— [0,av2) Lipschitz (say) and

R(—%) = %(h — a) we can solve (2)—(12) to find Q] and u?.

e we can then solve the resulting Neumann problem for Auy, = 3 on €25

e what is work-in-progress is that some choice of h and R(-) also yields
uy — up = const on 0L \ OX,

e given that such a choice exists, and absorbing the constant into wu, the
resulting u given by ufi) on Qgi) for i € {0,1,2} is in U, our duality can
be used to certify that u is the desired optimizer

WHY IS IT NATURAL FOR SUCH A CHOICE TO EXIST?
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o for helaa+1], R:[-%,5]— [0,av2) Lipschitz (say) and

R(-%) = %(h — a) we can solve (2)—(12) to find Q] and u?.

e we can then solve the resulting Neumann problem for Auy, = 3 on €25

e what is work-in-progress is that some choice of h and R(-) also yields
uy — up = const on 0L \ OX,

e given that such a choice exists, and absorbing the constant into wu, the
resulting u given by ufi) on Qgi) for i € {0,1,2} is in U, our duality can
be used to certify that u is the desired optimizer

WHY IS IT NATURAL FOR SUCH A CHOICE TO EXIST?

e a unique optimizer & € U is known to exist (Rochet-Choné) and
RS C,:L’Cl(XO) (Caffarelli-Lions); if the sets ; where its Hessian is rank i

are smooth enough, and €; has the expected 3 components, then (2)—(12)
and the overdetermined Poisson problem Au; = 3 must be satisfied

e but maybe Q; are not smooth enough, or Q; is not (simply) connected
and/or has more than three components (some too small for the numerics
to resolve); this is excluded by our work-in-progress...
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The bunching regions have Lipschitz free boundary

Recall: Caffarelli-Lion’s '06+ assert u € Cpot(X©).

loc

e sharp: examples for n =1 = m show u & C2_(X?)

e if we can quantify u & C? along free boundary, Clarke’s Lipschitz implicit
function theorem applied to the normal derivative % will allow us to write
the free boundary separting Q1 from Q5 as a Lipschitz graph over 6

e on €2, side have Au = 3.

e on Q; return to variational analysis of min{L(v) | 0 < u convex} where

_1 2 tu— BB g2
L(u) = |Du — x| + u dH(x)
2 [a7a+1]2 2

Rochet-Choné characterized minimizer by L(u+ w) > L(u) for all convex
w > 0.
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Equivalently w > 0 convex implies f wdo > 0 for variational derivative:
oL
do=<=(3- Au)dH?|x + (Du — x) - AdH!|ox.

Thus positive and negative parts of o in convex order! o~ (w) < o™ (w)
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Equivalently w > 0 convex implies f wdo > 0 for variational derivative:
oL

do = 5 = (3 — Au)dH?|x + (Du — x) - AdH|sx.

Thus positive and negative parts of o in convex order! o~ (w) < o™ (w)

Use the equivalence relation x ~ x" < Du(x) = Du(x") given by product
selected to disintegrate o, so & = (Du)y(c") and V¢ € C([a,a + 1]?),

/ 6(x)do(x) = / d5(%) / 6(x)doz(),
[a,a+1]2 [a,a+1]2/Du %Cla,a+1]2
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Equivalently w > 0 convex implies f wdo > 0 for variational derivative:

SL
do = 5 = (3 — Au)dH?|x + (Du — x) - AdH|sx.

Thus positive and negative parts of o in convex order! o~ (w) < o™ (w)

Use the equivalence relation x ~ x" < Du(x) = Du(x") given by product
selected to disintegrate o, so & = (Du)y(c") and V¢ € C([a,a + 1]?),

/ 6(x)do(x) = / d5(%) / 6(x)doz(),
[a,a+1]2 [a,a+1]2/Du %Cla,a+1]2

Rochet-Choné '98: convex order inherited by G-a.e. conditional measure:
oz (w) < of (w)¥w convex. Thus o have the same mass & center of
mass; get 0§ from o by sweeping / balayage / mean-preserving spreads
if X # 0 (Cartier-Fell-Meyer '56).

e In the region x € QY, this tells uniform negativity of dog(r) ~ dr over
the segment interior is balanced by positive Dirac masses at the endpoints.

e In the region x € Qf, it tells dog(r) ~ (3r — 2R)dr increases affinely in
0 < r < R(#), balancing a positive Dirac mass at r = 0.

e The resultant discontinuity in Au at r = R(0) implies R(0) is Lipschitz!
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Fig. 1 Numerical approximation U of the solution of the classical Monopolist’s problem ('I), o
on a 50 x 50 grid. Left level sets of U, with U = 0 in white. Center left level sets of det(V2U) (with
U/ = 0 in whire): note the degenerate region §2; whe redet(V21/) = 0. Center right distribution of p

sold by the monopolist. Right profit margin of the monopolist for each type of product (margins ar
on the one dimensional part of the product line, at the bottom left). Color scales on Fig. 10 (col

onling)

U.-M. Mirebeau (2016)
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Proof sketch (assuming (r, ) are good coordinates):

Now x(r,0) = (a, h(0)) + r(cos®,sin6) and u; (x) = m(0)r + b(0) yield

Jacobians dH?|x = | cos b + r|drdf
dHox = |H'()|d6
m//+m

Laplaci Au= ——
aplacian u Weosh 7
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Proof sketch (assuming (r, ) are good coordinates):

Now x(r,0) = (a, h(0)) + r(cos®,sin6) and u; (x) = m(0)r + b(0) yield

Jacobians dH?|x = | cos b + r|drdf
dHox = |H'(0)|d6

m//+m
Laplaci Ay= ———
aplacian U= ot
oL 2 A 1
S0 —da:—(s—:(Au—3)d’H |x — A (Du— x)dH" |gx.
u

factors into conditional measures given by
Fdog =[m" + m—3(h cosf + r) — A(x) - (Du — x)h (8)do(r)]dr

e the last term represents a point mass where the segment X intersects 90X
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doy
+ dr

Since o =< o in convex order, fOR wdog = 0 for £w(r) € {1, r},

=m"+m—3(hcos +r) — A(x) - (Du— x)h'(0)do(r)

(m" 4+ m—3h cosO)R — gRZ = A(x) - (Du — x)H' () (6)
(m" + m—3h cosf) = 2R (7)
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doy
+ dr

=m"+m—3(hcos +r) — A(x) - (Du— x)h'(0)do(r)

Since o =< o in convex order, fOR wdog = 0 for £w(r) € {1, r},

(m" 4+ m—3h cosO)R — gRZ = A(x) - (Du — x)H' () (6)
(m" + m—3h cosf) = 2R (7)
Choosing w(r) strictly convex shows o must be obtained from o by

mean-preserving spread; hence the point mass is in a; not o . From
(6)-(7), .
0< 5R(9)2 = A(x) - (Du — x)h'(6). (8)

Now % = |W'(6)| = +H(0) > 0 hence normal distortion is outward;

Also R > 0 implies point mass (8)# 0 hence 0 # Au — 3 = %'

Robert J McCann (Toronto) On the Monopolist's Problem 29 May 2024 23/30



Lemma (Leaves reach ; any normal distortion is

(o) Qo = {x € X | u= 0} interior non-empty,* foliated by a single leaf.
(i) ifx € QU---Q,_1 there exists x' € XN OX

(i) if x € Qn_1 (or X is strictly* convex) then fi(x") - (Du(x") — x") > 0.
(iii) 2, is relatively open in X, foliated by points, i.e. u is strictly convex.
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Also x(r,0) = (a, h(0)) + r(cos®,sin0) and u; (x) = m(0)r + b(0) yield

o= (B0 )= (50 ) (%)

hence P
e(d) = a—;; = m’ cosf + msin@

f(0) :=A-(Du—x)=(m'sinf — mcosf + a).
Using f in (8) to replace h' = %ﬁ in the first moment condition (7) yields
3R%(9

( )cos(9

''(0) + m(6) = 2R(60) =
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Euler-Lagrange equation in overlooked region Qf

Index each isochoice segment in Qf by its angle 6 > —7 to horizontal.
Let (a, h(#)) denote its left-hand endpoint and parameterize the segment
by distance r € [0, R(0)] to (a, h(#)). Along this segment of length R(0),

uy ((a7 h(8)) + r(cos @, sin 9)) = m(0)r + b(0).

1
For h € [a,a+1], R : [—g, g] — [0, av/2) with R(—%) = —(h — a), solve

2
(m"(0) + m(6) — 2R(0))(m'(8) sin 6 — m(6) cos 6 + a) — g/aﬂ(e) cosd) (9)
m(=%) =0, m'(=%) = %k’(a + h). Then set (10)
Lot do
WO = hag [ () mo) -2RO) (11)

b(t) = ;k(a—i-h)—i—/t

) (m'(0) cos @ + m(0)sin O)H' (6)db. (12)
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THANK YOU!
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A regularity result: Lipschitz product selection

Theorem (M.-Rankin-Zhang '23+)

If b and b(y, x) = b(x, y) both satisfy (B0-B3), ¢ satisfies (C0-C2) and
du(x) = fdx with log f € CO' then u € CoH(XO).

e extends Caffarelli-Lions '06+ to b & ¢ non-quadratic
e improves Chen '13 from CL_ to C,}j’cl
e sharp: examples for n =1 = m show u ¢ C2_(X?)

e idea: use energetic comparison to pinch u between parabolas
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Lemma (A geometric lemma)

Given d > 0, there exists Cy, C1, Co > 0 such that if u = u®® is optimal
and d(xg,0X) > d and yp = yp(Du(x0), x0) then if r < Cy and

h= sup u(x)—[u(xo)+ b(x,y) — b(x0,y0)] >0
xEBr(x0)

then some A(:) = b(-,y’) + & makes S :={x € X |u < A} a
neighourhood of xo with

sup A(x) —u(x) < h
x€S

and

1 y:)_/(DU(X),X) h2
Tcl C(y)_b(Xay) f(X)dXZ —C]_h—l— C2—
|S| S y=y’ r2
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Proof:
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