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Monopolist’s problem

Given compact sets X ⊂ Rm, Y ⊂ Rn, and ‘direct utility’
b(x , y) = value of product y ∈ Y to buyer x ∈ X
c(y) = monopolist’s cost to produce y ∈ Y
dµ(x) = relative frequency of buyer x ∈ X (as compared to x ′ ∈ X )

Monopolist’s problem: choose price menu v : Y −→ Z to maximize profits

Π̃(v) :=

∫
X

[v(yv (x))− c(yv (x))]dµ(x), where

Agent x ’s problem: choose yv (x) to maximize

yv (x) ∈ arg max
y∈Y

b(x , y)− v(y)

Constraints: v lower semicontinuous, 0 ∈ Y and v(0) = 0.
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Examples

• airline ticket pricing

• insurance

• educational signaling

• optimal taxation: replace profit maximization with a budget constraint
for providing services
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Some history:

Mirrlees ’71, Spence ’73 (n = 1 = m): ∂2b
∂x∂y > 0 implies dyv

dx ≥ 0

Rochet-Choné ’98 (n = m > 1): b(x , y) = x · y bilinear implies
y v (x) = Dv∗(x) convex gradient; bunching

for c(y) = 1
2 |y |

2
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Carlier-Lachand-Robert ’03: b bilinear gives v∗ ∈ C 1(sptµ);

Caffarelli-Lions ’06+ b bilinear gives v∗ ∈ C 1,1
loc (X 0)

Carlier ’01: b(x , y) general implies existence of optimizer v = vbb̃

Chen ’13: u ∈ C 1 under Ma-Trudinger-Wang (MTW) conditions, where

u(x) = vb(x):= max
y∈Y

b(x , y)− v(y)

is called the ‘indirect utility’ to shopper x

Figalli-Kim-M. ’11:
convexity of principal’s problem under strengthening of (MTW) on b(x , y)

M.-Rankin-Zhang ’23+:
u = v∗ ∈ C 1,1

loc ((sptµ)0) under same strengthening

Noldeke-Samuelson (ECTA ’18), Zhang (ET ’19) M.-Zhang (CPAM ’19):
generalize to preferences G (x , y , z) 6= b(x , y)− z and profits
π(x , y , z) 6= z − c(y) nonlinear in price z ∈ R
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Rochet-Choné b(x , y) = x · y in terms of buyers’ utilities u

u(x) := v∗(x) := max
y∈Y

[x · y − v(y)] (1)

implies
Du(x) = Dxb(x , y v (x)) = yv (x)

so we identify
y v (x)

= Du(x)

and maximize

Π̃(v) =

∫
X

(v − c)(Du(x))dµ(x)

=

∫
X

[b(x , y)− u(x)− c(y)]y=Du(x)dµ(x) =: −L(u)

among u of form (1) (i.e. among convex u(·) ≥ 0 with Du ∈ Y )
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A new duality for bilinear preferences

Following Rochet-Choné ’98 choose b(x , y) = x · y and X ,Y ⊂ Rn convex
so profit

−L(u) =

∫
X

[x · Du − u(x)− c(Du(x))]dµ(x)

with

u(x) = v∗(x) := sup
y∈Y

x · y − v(y)

∈ U := {u : X −→ [0,∞] convex | Du(X ) ⊂ Y }
THM (M.-Zhang arXiv:2301.07660 Y a convex cone; c.f.
Kolesnikov-Sandomirskiy-Tsyvinski-Zimin 22+ on Beckmann auctions):

max
u∈U
−L(u) =

min
S∈S

∫
c∗(S(x))dµ(x)

where

S :=
⋂
u∈U

{
S : X −→ Rn |

∫
X

[(x − S(x)) · Du − u(x)]dµ(x) ≤ 0

}
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THM:

max
u∈U
−L(u) = min

S∈S

∫
c∗(S(x))dµ(x)

where

S :=
⋂
u∈U
{S : X −→ Rn | 〈x · Du(x)− u(x)〉µ ≤ 〈S(x) · Du(x)〉µ}

In words: the monopolists maximum profit coincides with the net value of
a co-op able to offer its members good y ∈ Y at price=cost c(y),
minimized over possible distributions S#µ of co-op memberships satisfying

the strange constraint that when members whose true type is S(x)
irrationally display the behaviour of x facing each monopolist price menu,
the expected gross value of the resulting assignment Du(x) to those co-op
members dominates the monopolist’s expected gross revenue
〈x · Du(x)− u(x)〉µ.

Proof: Rockafellar-Fenchel duality; (≤): S ∈ S, u ∈ U and definition of c∗

−L(u) = 〈x · Du(x)− u − c(Du(x))〉µ ≤ · · · ≤ 〈c∗ ◦ S〉µ
�

Robert J McCann (Toronto) On the Monopolist’s Problem 29 May 2024 9 / 30



THM:

max
u∈U
−L(u) = min

S∈S

∫
c∗(S(x))dµ(x)

where

S :=
⋂
u∈U
{S : X −→ Rn | 〈x · Du(x)− u(x)〉µ ≤ 〈S(x) · Du(x)〉µ}

In words: the monopolists maximum profit coincides with the net value of
a co-op able to offer its members good y ∈ Y at price=cost c(y),
minimized over possible distributions S#µ of co-op memberships satisfying
the strange constraint that when members whose true type is S(x)
irrationally display the behaviour of x facing each monopolist price menu,
the expected gross value of the resulting assignment Du(x) to those co-op
members dominates the monopolist’s expected gross revenue
〈x · Du(x)− u(x)〉µ.

Proof: Rockafellar-Fenchel duality; (≤): S ∈ S, u ∈ U and definition of c∗

−L(u) = 〈x · Du(x)− u − c(Du(x))〉µ ≤ · · · ≤ 〈c∗ ◦ S〉µ
�

Robert J McCann (Toronto) On the Monopolist’s Problem 29 May 2024 9 / 30



Partition into convex bunches of different dimension

u ∈ arg max
convex u≥0

−L(u)

minimizes net loss

L(u) :=

∫
[a,a+1]2

(
1

2
|Du(x)− x |2 + u − 1

2
|x |2
)
dµ(x)

(Convex) isoproduct bunch (= equivalence class = contact set = leaf)

x̃ := {x ′ ∈ X | Du(x ′) = Du(x)} ⊂ X

foliate interior of Ωn−i := {x ∈ X | dim(x̃) = i}.

Lemma (Leaves reach boundary; any normal distortion is outward)

(o) Ω0 = {x ∈ X | u = 0} interior non-empty,∗ foliated by a single leaf.
(i) if x ∈ Ω1 ∪ · · ·Ωn−1 there exists x ′ ∈ x̃ ∩ ∂X
(ii) if x ∈ Ωn−1 (or X is strictly∗ convex) then n̂(x ′) · (Du(x ′)− x ′) ≥ 0.
(iii) Ωn is relatively open in X , foliated by points, i.e. u is strictly convex.
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Rochet-Choné’s square example revisited; c(y) = 1
2 |y |

2
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Variational calculus for obstacle problem plus convexity

Setting ui := u on Ωi := {x ∈ X | Dim(x̃) = n − i} (now n = 2) gives

• on Ω0 exclusion: u0 = 0 (c.f. Armstrong ’94)

• on Ω1, Euler-Lagrange ODE: if u1(x1, x2) = 1
2k(x1 + x2) then

k(s) = 3
4s

2 − as − log |s − 2a|+ const
subject to boundary conditions u1 = u0 and Du1 = Du0 at lower boundary.

• on Ω2 Euler-Lagrange PDE: ∆u2 = 3 subject to boundary conditions

(Du2(x)− x) · n̂Ω2(x) = 0 on ∂X ∩ Ω̄2

(Du2 − Du1) · n̂Ω2(x) = 0 on ∂Ω2 ∩ ∂Ω1 (Neumann)

u2 = u1 on ∂Ω2 ∩ ∂Ω1 (Dirichlet)

OVERDETERMINED!
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c.f. Boerma-Tsyvinski-Zimin 22+ blunt Ω0
1 vs targeted Ω+

1 bunching
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Free boundary problem

u = ui on Ωi where

• on Ω0 exclusion: u0 = 0

• on Ω0
1, Rochet-Choné’s ODE: u1(x1, x2) = 1

2k(x1 + x2) where
k(s) = 3

4s
2 − as − log |s − 2a|+ const

subject to boundary conditions k = 0 and k ′ = 0 at lower boundary.

• on Ω+
1 , u1 = u+

1 given by a NEW system of ODE (for height h(·) and
length R(·) of isochoice segments together with profile of u+

1 (·) along
them), with boundary conditions

u+
1 (x1, x2) = k(x1 + x2) and

Du+
1 = (k ′, k ′) on ∂Ω0

1 ∩ ∂Ω+
1

• on Ω2, PDE: ∆u2 = 3 with Rochet-Choné’s overdetermined conditions

(Du2(x)− x) · n̂Ω2(x) = 0 on ∂X ∩ Ω̄2 and on {x1 = x2}
(Du2 − Du+

1 ) · n̂Ω2(x) = 0 on ∂Ω2 ∩ ∂Ω+
1 (Neumann)

u2 = u+
1 on ∂Ω2 ∩ ∂Ω+

1 (Dirichlet)
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Precise Euler-Lagrange equation in the ‘missing’ region Ω+
1

Index each isochoice segment in Ω+
1 by its angle θ ≥ −π

4 to horizontal.
Let (a, h(θ)) denote its left-hand endpoint and parameterize the segment
by distance r ∈ [0,R(θ)] to (a, h(θ)). Along this segment of length R(θ),

u+
1

(
(a, h(θ)) + r(cos θ, sin θ)

)
= m(θ)r + b(θ).

For h ∈ [a, a+1], R : [−π
4
,
π

2
]→ [0, a

√
2) with R(−π

4
) =

1√
2

(h − a), solve

(m′′(θ) + m(θ)− 2R(θ))(m′(θ) sin θ−m(θ) cos θ+ a) =
3

2
R2(θ) cos θ (2)

m(−π
4 ) = 0, m′(−π

4 ) = 1√
2
k ′(a + h). Then set (3)

h(t) = h +
1

3

∫ t

−π/4
(m′′(θ) + m(θ)− 2R(θ))

dθ

cos θ
, (4)

b(t) =
1

2
k(a + h) +

∫ t

−π/4
(m′(θ) cos θ + m(θ) sin θ)h′(θ)dθ. (5)
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• for h ∈ [a, a + 1], R : [−π
4 ,

π
2 ]→ [0, a

√
2) Lipschitz (say) and

R(−π
4 ) = 1√

2
(h − a) we can solve (2)–(12) to find Ω+

1 and u1
+.

• we can then solve the resulting Neumann problem for ∆u2 = 3 on Ω2

• what is work-in-progress is that some choice of h and R(·) also yields
u1 − u2 = const on ∂Ω2 \ ∂X ,

• given that such a choice exists, and absorbing the constant into u2, the

resulting u given by u
(±)
i on Ω

(±)
i for i ∈ {0, 1, 2} is in U , our duality can

be used to certify that u is the desired optimizer

WHY IS IT NATURAL FOR SUCH A CHOICE TO EXIST?

• a unique optimizer ū ∈ U is known to exist (Rochet-Choné) and
ū ∈ C 1,1

loc (X 0) (Caffarelli-Lions); if the sets Ωi where its Hessian is rank i
are smooth enough, and Ω1 has the expected 3 components, then (2)–(12)
and the overdetermined Poisson problem ∆u2 = 3 must be satisfied

• but maybe Ωi are not smooth enough, or Ω1 is not (simply) connected
and/or has more than three components (some too small for the numerics
to resolve); this is excluded by our work-in-progress...
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(±)
i on Ω

(±)
i for i ∈ {0, 1, 2} is in U , our duality can

be used to certify that u is the desired optimizer

WHY IS IT NATURAL FOR SUCH A CHOICE TO EXIST?

• a unique optimizer ū ∈ U is known to exist (Rochet-Choné) and
ū ∈ C 1,1

loc (X 0) (Caffarelli-Lions); if the sets Ωi where its Hessian is rank i
are smooth enough, and Ω1 has the expected 3 components, then (2)–(12)
and the overdetermined Poisson problem ∆u2 = 3 must be satisfied

• but maybe Ωi are not smooth enough, or Ω1 is not (simply) connected
and/or has more than three components (some too small for the numerics
to resolve); this is excluded by our work-in-progress...
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The bunching regions have Lipschitz free boundary

Recall: Caffarelli-Lion’s ’06+ assert u ∈ C 1,1
loc (X 0).

• sharp: examples for n = 1 = m show u 6∈ C 2
loc(X 0)

• if we can quantify u 6∈ C 2 along free boundary, Clarke’s Lipschitz implicit
function theorem applied to the normal derivative ∂u

∂r will allow us to write
the free boundary separting Ω1 from Ω2 as a Lipschitz graph over θ

• on Ω2 side have ∆u = 3.

• on Ω1 return to variational analysis of min{L(u) | 0 ≤ u convex} where

L(u) =
1

2

∫
[a,a+1]2

(
|Du − x |2 + u − |x |

2

2

)
dH2(x)

Rochet-Choné characterized minimizer by L(u + w) ≥ L(u) for all convex
w ≥ 0.
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Equivalently w ≥ 0 convex implies
∫
wdσ ≥ 0 for variational derivative:

dσ =
δL

δu
= (3−∆u)dH2|X + (Du − x) · n̂dH1|∂X .

Thus positive and negative parts of σ in convex order! σ−(w) ≤ σ+(w)

Use the equivalence relation x ∼ x ′ ⇔ Du(x) = Du(x ′) given by product
selected to disintegrate σ, so σ̃ = (Du)#(σ+) and ∀φ ∈ C ([a, a + 1]2),∫

[a,a+1]2

φ(x)dσ(x) =

∫
[a,a+1]2/Du

d σ̃(x̃)

∫
x̃⊂[a,a+1]2

φ(x)dσx̃(x),

Rochet-Choné ’98: convex order inherited by σ̃-a.e. conditional measure:
σ−x̃ (w) ≤ σ+

x̃ (w)∀w convex. Thus σ±x̃ have the same mass & center of
mass; get σ+

x̃ from σ−x̃ by sweeping / balayage / mean-preserving spreads
if x̃ 6= 0 (Cartier-Fell-Meyer ’56).

• In the region x ∈ Ω0
1, this tells uniform negativity of dσx̃(r) ∼ dr over

the segment interior is balanced by positive Dirac masses at the endpoints.

• In the region x ∈ Ω+
1 , it tells dσx̃(r) ∼ (3r − 2R)dr increases affinely in

0 < r < R(θ), balancing a positive Dirac mass at r = 0.

• The resultant discontinuity in ∆u at r = R(θ) implies R(θ) is Lipschitz!
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Proof sketch (assuming (r , θ) are good coordinates):

Now x(r , θ) = (a, h(θ)) + r(cos θ, sin θ) and u+
1 (x) = m(θ)r + b(θ) yield

Jacobians dH2|X = |h′ cos θ + r |drdθ
dH1|∂X = |h′(θ)|dθ

Laplacian ∆u =
m′′ + m

h′ cos θ + r

so − dσ = −δL
δu

= (∆u − 3)dH2|X − n̂ · (Du − x)dH1|∂X .

factors into conditional measures given by

∓dσx̃ = [m′′ + m − 3(h′ cos θ + r)− n̂(x) · (Du − x)h′(θ)δ0(r)]dr

• the last term represents a point mass where the segment x̃ intersects ∂X
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∓dσx̃
dr

= m′′ + m − 3(h′ cos θ + r)− n̂(x) · (Du − x)h′(θ)δ0(r)

Since σ−x̃ � σ
+
x̃ in convex order,

∫ R
0 wdσx̃ = 0 for ±w(r) ∈ {1, r},

(m′′ + m − 3h′ cos θ)R − 3

2
R2 = n̂(x) · (Du − x)h′(θ) (6)

(m′′ + m − 3h′ cos θ) = 2R (7)

Choosing w(r) strictly convex shows σ+
x̃ must be obtained from σ−x̃ by

mean-preserving spread; hence the point mass is in σ+
x̃ not σ−x̃ . From

(6)-(7),

0 ≤ 1

2
R(θ)2 = n̂(x) · (Du − x)h′(θ). (8)

Now dH1|∂X
dθ = |h′(θ)| = +h′(θ) ≥ 0 hence normal distortion is outward;

Also R > 0 implies point mass (8) 6= 0 hence 0 6= ∆u − 3 = 2R−3r
h′ cos θ+r .
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Lemma (Leaves reach boundary; any normal distortion is outward)

(o) Ω0 = {x ∈ X | u = 0} interior non-empty,∗ foliated by a single leaf.
(i) if x ∈ Ω1 ∪ · · ·Ωn−1 there exists x ′ ∈ x̃ ∩ ∂X
(ii) if x ∈ Ωn−1 (or X is strictly∗ convex) then n̂(x ′) · (Du(x ′)− x ′) ≥ 0.
(iii) Ωn is relatively open in X , foliated by points, i.e. u is strictly convex.
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Also x(r , θ) = (a, h(θ)) + r(cos θ, sin θ) and u+
1 (x) = m(θ)r + b(θ) yield

Du ≡

(
∂u
∂x1

(x(r , θ))
∂u
∂x2

(x(r , θ))

)
=

(
cos θ − sin θ
sin θ cos θ

)(
m(θ)
m′(θ)

)
.

hence

e(θ) :=
∂u

∂x2
= m′ cos θ + m sin θ

f (θ) := n̂ · (Du − x) = (m′ sin θ −m cos θ + a).

Using f in (8) to replace h′ = R2

2f in the first moment condition (7) yields

m′′(θ) + m(θ)− 2R(θ) =
3R2(θ)

2f (θ)
cos θ
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Euler-Lagrange equation in overlooked region Ω+
1

Index each isochoice segment in Ω+
1 by its angle θ ≥ −π

4 to horizontal.
Let (a, h(θ)) denote its left-hand endpoint and parameterize the segment
by distance r ∈ [0,R(θ)] to (a, h(θ)). Along this segment of length R(θ),

u+
1

(
(a, h(θ)) + r(cos θ, sin θ)

)
= m(θ)r + b(θ).

For h ∈ [a, a+1], R : [−π
4
,
π

2
]→ [0, a

√
2) with R(−π

4
) =

1√
2

(h − a), solve

(m′′(θ) + m(θ)− 2R(θ))(m′(θ) sin θ−m(θ) cos θ+ a) =
3

2
R2(θ) cos θ (9)

m(−π
4 ) = 0, m′(−π

4 ) = 1√
2
k ′(a + h). Then set (10)

h(t) = h +
1

3

∫ t

−π/4
(m′′(θ) + m(θ)− 2R(θ))

dθ

cos θ
, (11)

b(t) =
1

2
k(a + h) +

∫ t

−π/4
(m′(θ) cos θ + m(θ) sin θ)h′(θ)dθ. (12)
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THANK YOU!
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A regularity result: Lipschitz product selection

Theorem (M.-Rankin-Zhang ’23+)

If b and b̃(y , x) = b(x , y) both satisfy (B0-B3), c satisfies (C0-C2) and
dµ(x) = fdx with log f ∈ C 0,1 then u ∈ C 1,1

loc (X 0).

• extends Caffarelli-Lions ’06+ to b & c non-quadratic
• improves Chen ’13 from C 1

loc to C 1,1
loc

• sharp: examples for n = 1 = m show u 6∈ C 2
loc(X 0)

• idea: use energetic comparison to pinch u between parabolas
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Lemma (A geometric lemma)

Given d > 0, there exists C0,C1,C2 > 0 such that if u = ub̃b is optimal
and d(x0, ∂X ) > d and y0 = ȳb(Du(x0), x0) then if r < C0 and

h = sup
x∈Br (x0)

u(x)− [u(x0) + b(x , y0)− b(x0, y0)] > 0

then some A(·) = b(·, y ′) + a′ makes S := {x ∈ X | u < A} a
neighourhood of x0 with

sup
x∈S

A(x)− u(x) ≤ h

and

1

|S |

∫
S

[
c(y)− b(x , y)

]y=ȳ(Du(x),x)

y=y ′
f (x)dx ≥ −C1h + C2

h2

r2
.
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Proof:
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