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A nonsmooth framework for gravity

• replace Lorentz manifold (M, gij) of relativity with metric spacetime M
(variant on Kunzinger-Sämann’s ’18 Lorentzian prelength spaces)

• ` : M2 −→ {−∞} ∪ [0,∞) is called a time-separation function if

`(x , y) + `(y , z) ≤ `(x , z) ∀x , y , z ∈ M

• ` defines the transitive relations causality and chronology:

≤ := {` ≥ 0} � := {` > 0}
future J+(x) = {y ∈ M | y ≥ x} I+(x) := {y ∈ M | y � x}
past J−(z) := {y ∈ M | y ≤ z} I−(z) := {y ∈ M | y � z}

• assume `(y , y) = 0 ∀y ∈ M, so ≤ also reflexive

• chronological topology: the coarsest topology with I±(y) open ∀y ∈ M
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• a topology is called Polish if it has a complete, separable metrization

Definition (Metric spacetime; time-reversal)

A time-separation function ` : M2 −→ {−∞} ∪ [0,∞) as above makes
(M, `) a metric spacetime if the chronological topology it induces is Polish.
The time-reversal (M, `∗) of (M, `) refers to `∗(y , x) = `(x , y).

• metrizability implies ≤ is partial-order: i.e. (x ≤ z & z ≤ x)⇒ (x = z)

• ≤ is forward-complete ⇔ xi ≤ xi+1 ≤ z(∀i ∈ N) implies lim
i→∞

xi exists

Definition (Forward spacetime — our standing assumption)

A metric spacetime (M, `) (with its causal and chronological relations ≤
and � and Polish chronological topology) is called forward if the partial
order ≤ is forward-complete and ` is upper semicontinuous.

• write (M, `) is backward ⇔ its time-reversal (M, `∗) is forward

• let J+(X ) := ∪x∈X J+(x) and J−(Y ) := ∪y∈Y J−(y)

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 24 September 2024 3 / 24



Definition (Emeralds)

An emerald refers to J(X ,Y ) := J+(X )∩ J−(Y ) with X ,Y ⊂ M compact.

• (M, `) is called globally hyperbolic if every emerald is compact

Example (Manifolds)

Globally hyperbolic Lorentzian length spaces are forward spacetimes (as
are globally hyperbolic smooth Lorentzian manifold spacetimes).

Example (Manifolds with boundary)

The interval [−1, 1] with the time-separation

`(x , y) :=

{
y − x if y ≥ x ,

−∞ else,

is a forward spacetime (but not a Lorentzian length space nor a manifold,
whereas its open subset (−1, 1) is both a globally hyperbolic forward
spacetime and a Lorentzian length space and manifold).
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Calculus of worldlines (i.e. nondecreasing curves)

Definition (Causal curve and speed; c.f. [A90] for (M , d))

σ : [0, 1] −→ M is causal ⇔ σs := σ(s) ≤ σ(t) for all 0 ≤ s < t ≤ 1; (it is
timelike ⇔ we can replace ≤ above with �). Its causal speed refers to the
(pointwise) limit on (0, 1)

|σ̇(s)| := lim
h↓0

`(σs+h, σs)

h

• in a metric (resp. forward) spacetime, discontinuities of a causal curve σ
are countable (and σ may be taken left-continuous without loss, resp.)
• the set LCC ([0, 1];M) of Left-Continuous Causal curves metrized by

D(σ, τ) := d(σ0, τ0) +

∫ 1

0
d(σs , τs)ds

is Polish, where d makes the chronological topology Polish on (M, `)
• Limit-curve theorem: C ⊂ M compact makes LCC ([0, 1];C ) D-compact
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q-Lagrangian action and (rough) `-geodesics

Definition (q-Lagrangian action; geodesics; c.f. [M.20] [MS23])

Given 0 6= q < 1, the action of a causal curve refers to

Aq[σ] :=
1

q

∫ 1

0
|σ̇(s)|qds

≤ 1

q
`(σ(0), σ(1))q

Causal curves maximizing this action (for given endpoints) are called
rough geodesics; if σ ∈ LCC ([0, 1];M) then simply geodesic.
• recall twin paradox
• maximizers are independent of q;
• the set of geodesics is denoted CGeo(M);
• curves in TGeo(M) := {σ ∈ CGeo(M) | Aq[σ] > 0} are called timelike
or `-geodesics.
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Midpoint sets and bi-regularity; characterizing geodesics

Lemma (Indpendence of q; affine parameterization)

A curve σ : [0, 1] −→ M is a rough (`-)geodesic iff for all 0 ≤ s < t ≤ 1,

`(σ(s), σ(t)) = (t − s)`(σ(0), σ(1)) (> 0).

For all x , y ∈ M and s ∈ [0, 1] define the midpoint set

Zs(x , y) = {z ∈ M | `(x , z) = s`(x , y), `(z , y) = (1− s)`(x , y)}.

Definition (right-, left-, and bi-regularity c.f. [M.24])

A metric spacetime (M, `) is called right-regular if Z0(x , y) = {x},

left-regular if Z1(x , y) = {y}, and bi-regular if both hold (∀x � y ∈ M).

• in left-regular forward spacetime, any rough `-geodesic is left-continuous.

• however bi-regularity need not imply countinuity of rough geodesics,
unless the spacetime is backward as well as forward.
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Fuzzy events: lifting the geometry from events to measures

Optimal transport:

`q(µ, ν) := sup
γ∈Γ≤(µ,ν)

(∫
M2

`(x , y)qdγ(x , y)

)1/q

defines a time-separation (and a causal relation [EM17]) between Borel
probability measures µ, ν ∈ Pem(M) on emeralds in M. Here

Γ≤(µ, ν) :=

{
γ ≥ 0 on M2 | γ[{` ≥ 0}] = 1, µ[Y ] =γ[Y ×M]

∀Y ⊂ M, γ[M × Y ] = ν[Y ]

}
• maximizers γ exist if Γ≤(µ, ν) 6= ∅ and are called q-optimal couplings

• the `q-speed along any causal curve (µs)s∈[0,1] of measures is

|µ̇s |q := lim
h↓0

`q(µs , µs+h)

h

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 24 September 2024 8 / 24



Tangent fields; lifting curves (µt)t to measures π on curves

Definition (Rough `q-geodesics can be defined like rough `-geodesics)

Given 0 6= q < 1, the action of a causal curve (µt)t∈[0,1] ⊂ P(M) is

Aq[µ] :=
1

q

∫ 1

0
|µ̇t |qqdt ≤

1

q
`q(µ0, µ1)q <∞ if µ0, µ1 ∈ Pem(M).

Define et : LCC ([0, 1];M) −→ M by et(σ) := σ(t).

We say (µt)0≤t≤1 as
above is induced by a plan π ∈ P(LCC ([0, 1];M)) if µt = (et)#π for all
t ∈ [0, 1]. Then t ∈ [0, 1] 7→ µt is narrowly left-continuous.

Theorem (Lifting curves of measures in forward spacetimes c.f.[Lis07])

Conversely, if (µt)t∈[0,1] ⊂ P(M) is causal, narrowly left-continuous on
[0, 1], and tight on (ε, 1− ε) (∀ε > 0) then it’s induced by a plan
π ∈ P(LCC ([0, 1];M)) with expected action∫

Aq[σ]dπ(σ) = Aq[µ] (= `q(µ0, µ1)q/q if π is “q-optimal”)
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Consequences in forward spacetimes

• these measures π on curves (i.e. ‘plans’) represent tangent fields

Corollary (Optimal plans concentrate on geodesics)

If π ∈ P(LCC ([0, 1];M)) is q-optimal, then π[CGeo] = 1.

• we’ll eventually need criteria which improve this to π[TGeo] = 1

Corollary (Narrow forward-completeness in a forward spacetime)

If µi ≤ µi+1 ≤ ν in (P(M), `q), then limi→∞ µi converges narrowly.

• plays a crucial role in our eventual construction of ‘good’ test plans
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q-dualizability and narrow continuity of rough `q-geodesics

Definition (Strict timelike q-dualizability; c.f. [M.20] [CM24])

The pair µ, ν ∈ Pem(M) is strictly timelike q-dualizable iff every q-optimal
coupling γ ∈ Γ≤(µ, ν) vanishes outside {` > 0}.

Lemma (Narrow continuity of rough `q-geodesics)

If (M, `) is a bi-regular, forward spacetime

and (µt)t∈[0,1] is a rough
`q-geodesic with strictly timelike q-dualizable endpoints µ0, µ1 ∈ Pem(M),
then t ∈ [0, 1] 7→ µt is narrowly continuous wherever it is locally tight.

• local tightness can come from e.g., global hyperbolicity or density
bounds or narrow forward-completeness...
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(Exact, future-directed) cotangent fields; their magnitudes

Definition (Causal functions (nondecreasing); form a convex cone)

f : M −→ [−∞,∞] is causal ⇔ `(x , y) ≥ 0 implies f (x) ≤ f (y).

Definition (Metric-measure spacetimes; test plan; maximal subslope)

Fix a Borel measure m on (M, `) assigning finite mass to each emerald. A
plan π ∈ P(LCC ([0, 1];M)) is called (initially) test ⇔

there is C ∈ R such
that (et)#π ≤ Cm for each (small) t ∈ [0, 1]. A map g : M −→ [0,∞] is
called a weak subslope of f ⇔

f (σ1)− f (σ0) ≥
∫ 1

0
g(σt)|σ̇t |dt

for every test plan π and π-a.e. curve σ. They form a stable lattice. Each
m-measurable causal f admits a maximal weak subslope, denoted g = |df |.

• this very general definition, c.f. [AGS14], good for integration-by-parts
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Infinitesimal Minkowskianity

Lemma (Examples of weak subslopes; TMCP ⇒ Lebesgue theorem)

Continuity of causal f and `+ = max{`, 0} imply m-a.e. y satisfies

lim inf
x�y

f (y)− f (x)

`(x , y)
≤ |df (y)|, lim inf

z�y

f (z)− f (y)

`(y , z)
≤ |df (y)|.

Definition (c.f. infinitesimally Hilbertian [G15] rather than [AGS14d])

A metric-measure spacetime (M, `,m) is infinitesimally Minkowskian ⇔

all
real causal m-measurable functions f , g satisfy the parallelogram law

|d(f + g)|2 + |dg |2 = 2|d(f + 2g)|2 + 2|df |2 m-a.e.

• equivalently, the following polarization is positively bilinear m-a.e.:

2((df , dg)) := |d(f + g)|2 − |df |2 − |dg |2

• distinguishes Lorentz from Lorentz-Finsler metrics on e.g. Rn [BO24]
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Convex analysis; horizontal derivatives; raising indices

Just as causal curves and functions on a smooth Lorentz manifold satisfy

〈df , σ̇〉 ≥1

p
‖df ‖p∗ +

1

q
‖σ̇‖q when p−1 + q−1 = 1

with equality iff 〈σ̇, ·〉 = ‖df ‖p−2
∗ df (·), i.e. iff σ̇ = ‖∇f ‖p−2∇f [M.20],

Theorem (Nonsmooth Fenchel-Young inequality for 0 6= q < 1)

If (es)#π → (e0)#π narrowly, |df |p ∈ L1((e0)#π), and π initially test then

lim
s↓0

∫
f (σs)− f (σ0)

s
dπ(σ)≥

1

p

∫
|df |pd(e0)#π + lim

t↓0

∫ ∫ t

0

|σ̇r |q

qt
drdπ(σ).

• limit on left called horizontal (inner, Lagrangian) derivative of f along π
• aims at bilinear pairing of π with f ; (NB concave p-Dirichlet energy of f )

Definition (Identifying tangent with cotangent fields)

If lims↓0 exists and equality holds, we say π represents the p-gradient of f .
A nonlinear duality between some tangent and cotangent fields (π and f )
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s↓0

∫
f (σs)− f (σ0)

s
dπ(σ)≥1

p

∫
|df |pd(e0)#π + lim

t↓0

∫ ∫ t

0

|σ̇r |q

qt
drdπ(σ).

• limit on left called horizontal (inner, Lagrangian) derivative of f along π
• aims at bilinear pairing of π with f ; (NB concave p-Dirichlet energy of f )

Definition (Identifying tangent with cotangent fields)

If lims↓0 exists and equality holds, we say π represents the p-gradient of f .
A nonlinear duality between some tangent and cotangent fields (π and f )
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Perturbation & variational derivative of p-Dirichlet energy

• given m-measurable E ⊂ M, write g ∈ Pertp(f ,E ) if for all ε > 0 small
enough, f + εg is causal and |d(f + εg)|p ∈ L1(E , dm).

Theorem (Horizontal dominates vertical derivative; c.f. [G15])

If f : M −→ R̄ is causal, g ∈ Pertp(f ,E ), and π represents the p-gradient
of f and is concentrated on curves remaining initially in E , then

lim
s↓0

∫
g(σs)− g(σ0)

s
dπ(σ) ≥ lim

ε↓0

∫
|d(f + εg)|p − |df |p

εp
d(e0)#π

= variation of p-Dirichlet energy =:

∫
d+g(∇f )|df |p−2d(e0)#π

• last is direction g vertical (/ outer / Eulerian) derivative of p-energy at f
• nonlinear in f but becomes linear in g if two-sided limit in ε exists

Corollary (If (M , `,m) is infinitesimally Minkowskian)

and if −g , g ∈ Pertp(f ,E ) then lim
ε→0

and lim
s↓0

exist & equality holds above!
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Curvature bounds via entropy

Given N ∈ (1,∞), define the N-Renyi (power-law) entropy of µ ∈ P(M)
by

SN(µ) := −
∫
M

(
dµ

dm
)1−1/Ndm

• in the smooth globally hyperbolic setting, convexity properties of
t ∈ [0, 1] 7→ SN(µt) along `q-geodesics are well-known to characterize
timelike lower Ricci curvature bounds [B23] [MS23] [M.20]; c.f.
[RS04][CMS01][OV00][M.94]

TMCP±: a poor man’s version of lower Ricci curvature bounds

• we impose only sublinearity of SN(µt) only along `q-geodesics starting or
ending at a Dirac point mass — the timelike measure contraction
properties TMCP± of [B23]; c.f. [CM24] [LV09] [O07] [S06]

• if (µ0, δz) are strictly timelike q-dualizable precisely one `q-geodesic links
µ0 to δz ; moreoever SN(δz) = 0

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 24 September 2024 16 / 24



Curvature bounds via entropy

Given N ∈ (1,∞), define the N-Renyi (power-law) entropy of µ ∈ P(M)
by

SN(µ) := −
∫
M

(
dµ

dm
)1−1/Ndm

• in the smooth globally hyperbolic setting, convexity properties of
t ∈ [0, 1] 7→ SN(µt) along `q-geodesics are well-known to characterize
timelike lower Ricci curvature bounds [B23] [MS23] [M.20]; c.f.
[RS04][CMS01][OV00][M.94]

TMCP±: a poor man’s version of lower Ricci curvature bounds

• we impose only sublinearity of SN(µt) only along `q-geodesics starting or
ending at a Dirac point mass — the timelike measure contraction
properties TMCP± of [B23]; c.f. [CM24] [LV09] [O07] [S06]

• if (µ0, δz) are strictly timelike q-dualizable precisely one `q-geodesic links
µ0 to δz ; moreoever SN(δz) = 0

Robert J McCann (Toronto) Nonsmooth gravity/d’Alembert comparison 24 September 2024 16 / 24



A poorer cousin to timelike lower Ricci curvature bounds

Definition (Future timelike measure contraction property; c.f. [B23])

For K ∈ R write (M, `,m) ∈ TMCP+(K ,N) if ∀µ0 ∈ Pem(M) ∩ L1(m)
and each z ∈ sptm with µ0[I−(z)] = 1, for some (hence all) 0 6= q < 1,
there exists a (rough) `q-geodesic from µ0 to µ1 := δz such that all
t ∈ [0, 1] and N ′ ≥ N satisfy

SN′(µt)≤−
∫
τ

(1−t)
K ,N (`(x , z))

dµ0

dm
(x)1−1/N′dm(x).

Past version: (M, `,m) ∈ TMCP−(K ,N) ⇔(M, `∗,m) ∈ TMCP+(K ,N).

• τ (1−t)
0,N (`) := 1− t for K = 0;

asserts sublinearity of t ∈ [0, 1] 7→ SN′(µt),
and follows from the strong energy condition, a case of primary interest

• a smooth globally hyperbolic Lorentzian manifold Mn satisfies
TMCP±(K ,N) if n ≤ N and Ric(v , v) ≥ Kg(v , v) for all timelike v ∈ TM
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Test plans: finding `q-geodesics having density bounds

Theorem (Initial test plans with Dirac targets; c.f. [B23][CM17][R13])

Fix (K ∈ R or) K = 0 6= q < 1 < N <∞, a bi-regular forward spacetime
(M, `,m) ∈ TMCP+(K ,N) and z ∈ M. If µ0[I−(z)] = 1 for
µ0 ∈ L∞(m) ∩ Pem(M) then there exists a q-optimal plan π inducing (an
`q-geodesic) µt := (et)#π from µ0 to µ1 := δz such that
t ∈ [0, 1] 7→ SN′(µt) is (suitably) sublinear for each N ′ ≥ N and

‖dµt
dm
‖L∞(m) ≤

cK ,N,`
(1− t)N

‖dµ0

dm
‖L∞(m).

• c0,N,` = 1 if K = 0 (else cK ,N,` := exp(t‖`‖L∞(µ0×µ1)

√
K−(N − 1)))

• lack of compactness overcome with order-theoretic ideas of [G+][G04]

• extends to non-Dirac targets provided (µ0, µ1) strictly timelike
q-dualizable and (M, `,m) is (q-essentially) timelike nonbranching,

COROLLARY (Busemann and Lorentz distance functions have unit slope)
g(·) = −`(·, z) satisfies |dg | = 1 m-a.e. on I−(z)
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When is the p-gradient of f represented by a test plan π?

f (q)(z):= sup
x∈I−(z)

f (x) +
`(x , z)q

q
gq(x) := inf

z∈I+(x)

g(z)− `(x , z)q

q

• write f : M −→ R̄ is `q

q -concave if f = gq for some g : M −→ R̄;
• then f is causal, upper semicontinuous, and ∂`q/qf relatively closed in �

∂`q/qf := {x � z | f (q)(z) = f (x) + `(x ,z)q

q ∈ R} ⊂ M2, if `+ ∈ C (M)

Theorem (A metric Brenier-M. thm; cf.[CM24][MS23][M.20][AGS14])

Fix 0 6= q < 1 and p−1 + q−1 = 1. Let (M, `,m) be forward, `+

continuous and f = (f (q))q. If (e0, e1)#π[∂`q/qf ] = 1 for some q-optimal
initial test plan π such that (et)#π[E ] = 1 for each small t ≥ 0 and
|df |p ∈ L1(E ,m), then π represents the p-gradient of f , [and the maximal
weak subslope of f tells how far to transport, i.e., π-a.e. curve σ satisfies

|df |(σ0) = `(σ0, σ1)q−1.]
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dom ∂`q/qf := {x ∈ M | ∂`q/qf ∩ ({x} ×M) 6= ∅}

Theorem (d’Alembert comparison theorem: �pf ≤ N if K = 0)

Fix 0 6= q < 1 = p−1 + q−1 < N <∞, a bi-regular forward spacetime
(M, `,m) ∈ TMCP+(K ,N) with `+ ∈ C (M), K ∈ R and f = (f (q))q. Let
(M, `,m) be (q-essential) timelike nonbranching unless ∃z ∈ M with

f (x) =

{
−`(x , z)q/q ∀x ∈ I−(z),

+∞ else.

If 0 ≤ φ ∈ Pertp(f ) ∩ L∞, compact support and m[sptφ \ dom ∂`q/qf ] = 0
then ∫

M
d+φ(∇f )|df |p−2dm ≤

∫
M
τ̃K ,N(|df |p−1)φdm

τ̃K ,N(r) := N
∂τ tK ,N(r)

∂t|t=1
=

{
N if K = 0

1 + r
√

(N − 1)|K | cot(r
√

K
N−1 ) else.
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Corollary

In the same nonsmooth sense and setting, we establish a chain rule yielding

�p(−`(·, z)) ≤ N − 1

`(·, z)
on I−(z)

• Analogous results also hold true in backward spacetimes. After
time-reversing them, the forward (M, `,m) ∈ TMCP−(K ,N) satisfies

�p(`(x , ·)) ≥ −N − 1

`(x , ·)
on I+(x)

• It is conceivable that Pertp(f ,M) is sometimes too sparse to be of use

• However,

in smooth globally hyperbolic spacetimes, Pertp(f ,M) is rich
enough to imply the preceding conclusions in the usual, distributional sense

• Eschenburg (1988) proved such estimates hold where `(·, z) is smooth

• our results extend his across the timelike cutlocus for the first time

• Calabi (1958) proved 2-Laplacian comparison and extended it across the
Riemannian cutlocus; (his formulation and technique foreshadowed the
theory of viscosity solutions, but are utterly different from ours)
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Defining the p-d’Alembertian

• thus even on smooth globally hyperbolic manifolds we obtain new results

• functional analysis: �qf is a measure, but nonunique unless infinitesimal
Minkowskianity LTMCP±(K ,N) holds and Pertp(f ,E ) is dense; c.f. [G15]

• localization: [B24+] establishes many fundamental properties of �p by
developing an approach based on needle decompositions; c.f. [CM20]
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