Trading linearity for ellipticity: a nonsmooth approach to Einstein's theory of gravity and Lorentzian splitting theorems

Robert J McCann

University of Toronto

with T Beran, M Braun, M Calisti, N Gigli, A Ohanyan, F Rott, C Sämann (8 and 5)

www.math.toronto.edu/mccann/Talk3.pdf

23 September 2024

Example (convex functions, not necessarily smooth)

If the graph of a convex function $u: \mathbf{R}^n \longrightarrow \mathbf{R}$ contains a full line, say $\frac{\partial^2 u}{\partial t^2}(t,0,\ldots,0) = 0$ for all $t \in \mathbf{R}$, then $u(x) = U(x_2,\ldots,x_n)$ for all $x \in \mathbf{R}^n$

Example (convex functions, not necessarily smooth)

If the graph of a convex function $u: \mathbf{R}^n \longrightarrow \mathbf{R}$ contains a full line, say $\frac{\partial^2 u}{\partial t^2}(t,0,\ldots,0) = 0$ for all $t \in \mathbf{R}$, then $u(x) = U(x_2,\ldots,x_n)$ for all $x \in \mathbf{R}^n$

Example (smooth Riemannian manifolds; Cheeger-Gromoll '71)

If a connected complete Ricci nonnegative Riemannian manifold (M^n, g_{ij}) contains an isometric copy of a line (\mathbf{R}, dr^2) , then M is a geometric product of (\mathbf{R}, dr^2) with a submanifold $(\Sigma^{n-1}, h_{ij} = g_{ij}|_{\Sigma})$: i.e.

Example (convex functions, not necessarily smooth)

If the graph of a convex function $u: \mathbf{R}^n \longrightarrow \mathbf{R}$ contains a full line, say $\frac{\partial^2 u}{\partial t^2}(t,0,\ldots,0) = 0$ for all $t \in \mathbf{R}$, then $u(x) = U(x_2,\ldots,x_n)$ for all $x \in \mathbf{R}^n$

Example (smooth Riemannian manifolds; Cheeger-Gromoll '71)

If a connected complete Ricci nonnegative Riemannian manifold (M^n, g_{ij}) contains an isometric copy of a line (\mathbf{R}, dr^2) , then M is a geometric product of (\mathbf{R}, dr^2) with a submanifold $(\Sigma^{n-1}, h_{ij} = g_{ij}|_{\Sigma})$: i.e. there is an isometry $(r, y) \in \mathbf{R} \times \Sigma \mapsto x(r, y) \in M$ with $g_{ij}dx^idx^j = dr^2 + h_{kl}dy^kdy^l$.

Toponogov '64: proved earlier assuming nonnegative sectional curvature

Example (convex functions, not necessarily smooth)

If the graph of a convex function $u: \mathbf{R}^n \longrightarrow \mathbf{R}$ contains a full line, say $\frac{\partial^2 u}{\partial t^2}(t,0,\ldots,0) = 0$ for all $t \in \mathbf{R}$, then $u(x) = U(x_2,\ldots,x_n)$ for all $x \in \mathbf{R}^n$

Example (smooth Riemannian manifolds; Cheeger-Gromoll '71)

If a connected complete Ricci nonnegative Riemannian manifold (M^n,g_{ij}) contains an isometric copy of a line (\mathbf{R},dr^2) , then M is a geometric product of (\mathbf{R},dr^2) with a submanifold $(\Sigma^{n-1},h_{ij}=g_{ij}|_{\Sigma})$: i.e. there is an isometry $(r,y)\in\mathbf{R}\times\Sigma\mapsto x(r,y)\in M$ with $g_{ij}dx^idx^j=dr^2+h_{kl}dy^kdy^l$.

Toponogov '64: proved earlier assuming nonnegative sectional curvature

Gigli '13+: nonsmooth version for infinitesimally Hilbertian metric-measure spaces (M, d, m) satisfying curvature-dimension condition RCD(0, N) à la Sturm '06, Lott & Villani '09, (... M. '94)

This talk: Lorentzian analogs relevant to Einstein's theory of gravity

Let $\gamma: \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line.

Busemann '32:
$$b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$$
 and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- ullet note b_r is 1-Lipschitz and $|
 abla b_r|=1=|
 abla b^\pm|$ a.e.; for r>0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Let $\gamma: \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line.

Busemann '32:
$$b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$$
 and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- ullet note b_r is 1-Lipschitz and $|
 abla b_r|=1=|
 abla b^\pm|$ a.e.; for r>0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' $\mathrm{Ric} \geq 0$ implies

$$\Delta b_r =
abla \cdot (
abla b_r) \leq rac{n-1}{d(\cdot,\gamma(r))}$$
 in

Let $\gamma: \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line.

Busemann '32:
$$b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$$
 and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- note b_r is 1-Lipschitz and $|\nabla b_r| = 1 = |\nabla b^{\pm}|$ a.e.; for r > 0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' Ric > 0 implies

 $\Delta b_r = \nabla \cdot (\nabla b_r) \le \frac{n-1}{d(\cdot, \gamma(r))}$ in viscosity (= support) sense across cut locus;

• hence $\pm b^{\pm}$ are both superharmonic: $\Delta b^{+} \leq 0 \leq \Delta b^{-}$

Let $\gamma: \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line.

Busemann '32:
$$b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$$
 and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- ullet note b_r is 1-Lipschitz and $|
 abla b_r|=1=|
 abla b^\pm|$ a.e.; for r>0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' $\text{Ric} \geq 0$ implies $\Delta b_r = \nabla \cdot (\nabla b_r) \leq \frac{n-1}{d(\cdot,\gamma(r))}$ in viscosity (= support) sense across cut locus;

- ullet hence $\pm b^{\pm}$ are both superharmonic: $\Delta b^{+} \leq 0 \leq \Delta b^{-}$
- strong maximum principle gives $b^+ = b^-$ hence harmonic & smooth

Bochner '46:
$$\operatorname{Tr}[(\operatorname{Hess} b)^2] + \operatorname{Ric}(\nabla b, \nabla b) = \Delta \frac{|\nabla b|^2}{2} - g(\nabla b, \nabla \Delta b)$$

Let $\gamma: \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line.

Busemann '32:
$$b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$$
 and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- ullet note b_r is 1-Lipschitz and $|
 abla b_r|=1=|
 abla b^\pm|$ a.e.; for r>0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' $\text{Ric} \geq 0$ implies $\Delta b_r = \nabla \cdot (\nabla b_r) \leq \frac{n-1}{d(\cdot,\gamma(r))}$ in viscosity (= support) sense across cut locus;

- ullet hence $\pm b^{\pm}$ are both superharmonic: $\Delta b^{+} \leq 0 \leq \Delta b^{-}$
- strong maximum principle gives $b^+ = b^-$ hence harmonic & smooth

Bochner '46:
$$\operatorname{Tr}[(\operatorname{Hess} b)^2] + \operatorname{Ric}(\nabla b, \nabla b) = \Delta \frac{|\nabla b|^2}{2} - g(\nabla b, \nabla \Delta b) = 0$$

• Ric > 0 gives Hess b = 0 for $b := b^{\pm}$

Let $\gamma: \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line.

Busemann '32:
$$b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$$
 and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- ullet note b_r is 1-Lipschitz and $|
 abla b_r|=1=|
 abla b^\pm|$ a.e.; for r>0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$; all vanish at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem' $\text{Ric} \geq 0$ implies $\Delta b_r = \nabla \cdot (\nabla b_r) \leq \frac{n-1}{d(\cdot,\gamma(r))}$ in viscosity (= support) sense across cut locus;

- ullet hence $\pm b^\pm$ are both superharmonic: $\Delta b^+ \leq 0 \leq \Delta b^-$
- ullet strong maximum principle gives $b^+=b^-$ hence harmonic & smooth

Bochner '46:
$$\operatorname{Tr}[(\operatorname{Hess} b)^2] + \operatorname{Ric}(\nabla b, \nabla b) = \Delta \frac{|\nabla b|^2}{2} - g(\nabla b, \nabla \Delta b) = 0$$

- Ric \geq 0 gives $\frac{\text{Hess }b}{\text{es}}=0$ for $b:=b^{\pm}$
- hence ∇b is a 'Killing' vector field (its flow gives a local isometry)
- $\Sigma := \{x \in M^n \mid b(x) = 0\}$ is totally geodesic (its normal ∇b is parallel)
- along Σ , metric splits into tangent $g_{ij}dy^idy^j$ and normal components dr^2
- $(r,y) \in \mathbf{R} \times \Sigma \mapsto \exp_y r \nabla b(y)$ is surjective hence a global isometry

General relativity: Einstein's gravity and field equation

• Einstein's gravity is formulated on smooth Lorentzian manifolds, but often predicts such manifolds are geodesically incomplete (nonsmooth) Gravity not a force, but rather a manifestation of curvature of spacetime "Spacetime tells matter how to move" (along timelike/null geodesics...)

Field equation "Matter tells spacetime how to bend"

```
geometry = physics
curvature = flux of energy and momentum
```

General relativity: Einstein's gravity and field equation

• Einstein's gravity is formulated on smooth Lorentzian manifolds, but often predicts such manifolds are geodesically incomplete (nonsmooth) Gravity not a force, but rather a manifestation of curvature of spacetime "Spacetime tells matter how to move" (along timelike/null geodesics...)

Field equation "Matter tells spacetime how to bend"

$$\begin{array}{lll} \textit{geometry} & = & \textit{physics} \\ & \text{curvature} & = & \text{flux of energy and momentum} \\ \text{Ric}_{ij} - \frac{1}{2}\textit{Rg}_{ij} & = & 8\pi\textit{T}_{ij} & \text{(replaces } \Delta\phi = \rho \text{ and } \textit{F} = -\nabla\phi \text{)} \end{array}$$

• understanding Ricci and Einstein (à la Kip Thorne) $i, j \in \{0, 1, 2, 3\}$

General relativity: Einstein's gravity and field equation

• Einstein's gravity is formulated on smooth Lorentzian manifolds, but often predicts such manifolds are geodesically incomplete (nonsmooth) Gravity not a force, but rather a manifestation of curvature of spacetime "Spacetime tells matter how to move" (along timelike/null geodesics...)

Field equation "Matter tells spacetime how to bend"

curvature = flux of energy and momentum
$$\mathrm{Ric}_{ij} - \frac{1}{2} R g_{ij} = 8\pi T_{ij} \qquad \text{(replaces } \Delta \phi = \rho \text{ and } F = -\nabla \phi \text{)}$$

- ullet understanding Ricci and Einstein (à la Kip Thorne) $i,j\in\{0,1,2,3\}$
- just integrate this local conservation law for $T_{ij}(x)$ to find g_{ij} ...

What if matter distribution is unknown?

geometry = physics

Can look at initial value problem (nonlinear wave equation); linearization produces gravity waves; no smoothing; singularities propagate. . .

Elliptic vs hyperbolic geometry

ELLIPTIC: \mathbf{R}^n equipped with Euclidean norm $|\mathbf{v}|_E := (\sum v_i^2)^{1/2}$

 $\bullet |v+w|_E \le |v|_E + |w|_E$

HYPERBOLIC: Minkowski space \mathbb{R}^n equipped with the hyperbolic 'norm'

$$|v|_F := \begin{cases} (v_1^2 - \sum_{i \ge 2} v_i^2)^{1/2} & v \in F := \begin{cases} v \in \mathbf{R}^n \mid v_1 \ge (\sum_{i \ge 2} v_i^2)^{1/2} \\ -\infty & \textit{else} \end{cases}$$

• $|v + w|_F \ge |v|_F + |w|_F$, but terribly asymmetric

the future $F \subset \mathbb{R}^n$ is a convex cone; $v \in F$ called *causal* or *future-directed*

Elliptic vs hyperbolic geometry

ELLIPTIC: \mathbf{R}^n equipped with Euclidean norm $|\mathbf{v}|_E := (\sum v_i^2)^{1/2}$

 $\bullet |v+w|_E \leq |v|_E + |w|_E$

HYPERBOLIC: Minkowski space \mathbb{R}^n equipped with the *hyperbolic 'norm'*

$$|v|_F := \begin{cases} (v_1^2 - \sum_{i \ge 2} v_i^2)^{1/2} & v \in F := \begin{cases} v \in \mathbf{R}^n \mid v_1 \ge (\sum_{i \ge 2} v_i^2)^{1/2} \\ -\infty & \textit{else} \end{cases}$$

- $|v + w|_F \ge |v|_F + |w|_F$, but terribly asymmetric
- the future $F \subset \mathbb{R}^n$ is a convex cone; $v \in F$ called *causal* or *future-directed*
- v is *timelike* if $v \in F \setminus \partial F$
- v is lightlike (or null) if $v \in \partial F \setminus \{0\}$
- (• v is spacelike iff $\pm v \notin F$ and past-directed if $-v \in F$)
- smooth curves are called timelike (etc.) if all tangents are timelike (etc.)

A crash course in differential geometry: action principles

Manifold M^n with symmetric nondegenerate C^k -smooth tensor $g_{ij} = g_{ji}$

RIEMANNIAN: $(g_{ij}) > 0$ defines Euclidean norm on each tangent space

• its geometry is also encoded in the (symmetric) distance function

$$d(x,y)^q := \inf_{\sigma(0)=x,\sigma(1)=y} \int_0^1 |\dot{\sigma}_t|_{E_g}^q dt \qquad q > 1$$

LORENTZIAN: $g \sim (+1, -1, \dots, -1)$ defines hyperbolic norm on $T_x M$

• its asymmetric geometry is also encoded in the time-separation function

$$\ell(x,y)^q := \sup_{\sigma(0)=x,\sigma(1)=y} \int_0^1 |\dot{\sigma}_t|_{F_g}^q dt \qquad 0 \neq q < 1$$

A crash course in differential geometry: action principles

Manifold M^n with symmetric nondegenerate C^k -smooth tensor $g_{ij} = g_{ji}$

RIEMANNIAN: $(g_{ij}) > 0$ defines Euclidean norm on each tangent space

• its geometry is also encoded in the (symmetric) distance function

$$d(x,y)^q := \inf_{\sigma(0)=x,\sigma(1)=y} \int_0^1 |\dot{\sigma}_t|_{E_g}^q dt \qquad q > 1$$

LORENTZIAN: $g \sim (+1, -1, \dots, -1)$ defines hyperbolic norm on $T_x M$

• its asymmetric geometry is also encoded in the time-separation function

$$\ell(x,y)^q := \sup_{\sigma(0)=x,\sigma(1)=y} \int_0^1 |\dot{\sigma}_t|_{F_g}^q dt \qquad 0 \neq q < 1$$

- $(-\infty)^q := -\infty$ so $\ell(x,y) = -\infty$ unless a causal curve links x to y
- extremizers are independent of q; they are called geodesics
- $\ell(x,z) \ge \ell(x,y) + \ell(y,z)$ (analog of the triangle inequality d satisfies)

The Riemann curvature tensor

Given (timelike) geodesics $(\sigma_s)_{s \in [0,1]}$ and $(\tau_t)_{t \in [0,1]}$ with $\sigma_0 = \tau_0$ and $\dot{\tau}_0, \dot{\sigma}_0, \dot{\tau}_0 - \dot{\sigma}_0 \in F \setminus \partial F$,

$$\ell(\sigma_s, \tau_t)^2 = |t\dot{\tau}_0 - s\dot{\sigma}_0|_{F_g}^2 - \frac{Sec}{6}s^2t^2 + O((|s| + |t|)^5)$$

where sectional curvature $Sec = R(\dot{\sigma}_0, \dot{\tau}_0, \dot{\sigma}_0, \dot{\tau}_0)$ is quadratic in $\dot{\sigma}_0 \wedge \dot{\tau}_0$ and measures the leading order correction to Pythagoras

• polarization of this quadratic form gives the *Riemann* tensor $R(\cdot,\cdot,\cdot,\cdot)$

The Riemann curvature tensor

Given (timelike) geodesics $(\sigma_s)_{s \in [0,1]}$ and $(\tau_t)_{t \in [0,1]}$ with $\sigma_0 = \tau_0$ and $\dot{\tau}_0, \dot{\sigma}_0, \dot{\tau}_0 - \dot{\sigma}_0 \in F \setminus \partial F$,

$$\ell(\sigma_s, \tau_t)^2 = |t\dot{\tau}_0 - s\dot{\sigma}_0|_{F_g}^2 - \frac{Sec}{6}s^2t^2 + O((|s| + |t|)^5)$$

where sectional curvature $Sec = R(\dot{\sigma}_0, \dot{\tau}_0, \dot{\sigma}_0, \dot{\tau}_0)$ is quadratic in $\dot{\sigma}_0 \wedge \dot{\tau}_0$ and measures the leading order correction to Pythagoras

- polarization of this quadratic form gives the *Riemann* tensor $R(\cdot,\cdot,\cdot,\cdot)$
- its trace $\operatorname{Ric}_{ik} = g^{jl} R_{ijkl}$ yields the *Ricci* tensor; $\operatorname{Ric}(v,v)$ measures the correction to Pythagoras averaged over all triangles including side v
- second trace $R = g^{ik} \mathrm{Ric}_{ik}$ yields the *scalar curvature*; in the elliptic case it gives leading order correction to the area of a sphere of radius r (and to the volume of a ball of radius r)
- $d\mathrm{vol}_g(x) = \sqrt{|\det(g)|} d^n x$ in coordinates; (in the Riemannian case it coincides with the *n*-dimensional Hausdorff measure associated to *d*)

Energy conditions and singularity theorems

```
WEC (weak energy condition): T(v, v) \ge 0 for all future v \in F (physical) SEC (strong energy condition): \text{Ric}(v, v) \ge 0 for all future v \in F (less ") NEC (null energy condition): 0 \ge 0 for all lightlike v \in \partial F
```

Energy conditions and singularity theorems

```
WEC (weak energy condition): T(v, v) \ge 0 for all future v \in F (physical)
SEC (strong energy condition): Ric(v, v) \ge 0 for all future v \in F (less ")
NEC (null energy condition):
                                      > 0 for all lightlike v \in \partial F
[Cosmological constant (dark matter): \geq (n-1)Kg(v,v)]
THM: Hawking '66 (big bang) singularities are generic:
SEC + mean curvature bound H_{\Sigma} \ge h > 0 on a suitable hypersurface \Sigma
implies finite-time singularities along all timelike geodesics through \Sigma
Cavalletti-Mondino '20+: also in TCD(0, N) metric-measure spacetimes
THM: Penrose '65 (stellar collapse) singularities are generic
NEC + trapped codimension-2 compact surface S + suitable noncompact
hypersurface \Sigma imply finite-time singularity along some null geodesic
Graf '20 holds for g_{ii} \in C^1;
```

Open: version for TCD(0, N) metric-measure spacetimes?

Smooth Lorentzian splitting theorems

- 'spacetime': a connected Lorentzian manifold (M^n, g_{ij}) which admits a continuous choice of F_g (distinguishing future from past).
- 'strong energy condition' SEC: g(v, v) > 0 implies $Ric(v, v) \ge 0$
- 'line': doubly-infinite, maximizing, timelike geodesic
- 'timelike geodesically complete': all (unit speed) timelike geodesics admit doubly-infinite extensions (maximizing locally but not necessarily globally)

Theorem (conjectured by Yau '82; proved by Newman '90)

Let (M^n, g_{ij}) be a SEC spacetime containing a line. If M is (a) timelike geodesically complete, then M is a geometric product of **R** with a (Ricci nonnegative, complete) Riemannian submanifold Σ^{n-1}

Smooth Lorentzian splitting theorems

- 'spacetime': a connected Lorentzian manifold (M^n, g_{ij}) which admits a continuous choice of F_g (distinguishing future from past).
- 'strong energy condition' SEC: g(v, v) > 0 implies $Ric(v, v) \ge 0$
- 'line': doubly-infinite, maximizing, timelike geodesic
- 'timelike geodesically complete': all (unit speed) timelike geodesics admit doubly-infinite extensions (maximizing locally but not necessarily globally)

Theorem (conjectured by Yau '82; proved by Newman '90)

Let (M^n, g_{ij}) be a SEC spacetime containing a line. If M is (a) timelike geodesically complete, then M is a geometric product of \mathbf{R} with a (Ricci nonnegative, complete) Riemannian submanifold Σ^{n-1}

Galloway '84: proved assuming compact Cauchy surfaces exist

Beem, Ehrlich, Galloway, Markvorsen '85: proved under sectional curvature bounds assuming (b) global hyperbolicity; (nonsmooth: BeOR & Solis '23)

Eschenburg '88: proved under (a) + (b)

Galloway '89: proved under (b) without (a) using Bartnik '88

Recall proof of Cheeger-Gromoll splitting theorem:

Let $\gamma: \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line.

Busemann '32:
$$b_r(x) := d(x, \gamma(r)) - d(\gamma(0), \gamma(r))$$
 and $\pm b^{\pm} := \lim_{r \to \pm \infty} b_r$

- ullet note b_r is 1-Lipschitz and $|\nabla b_r|_E=1=|\nabla b^\pm|_E$ a.e.; for r>0,
- ullet triangle inequality gives $b_r \geq b^+ \geq b^- \geq -b_{-r}$ with equality at $x = \gamma(0)$

Calabi '58: 'Laplacian comparison theorem'

$$\Delta b_r = \nabla \cdot (\nabla b_r) \le \frac{n-1}{d(\cdot,\gamma(r))}$$
 in viscosity (= support) sense across cut locus;

- ullet hence $\pm b^{\pm}$ are both superharmonic: $\Delta b^{+} \leq 0 \leq \Delta b^{-}$
- strong maximum principle gives $b^+ = b^-$ hence harmonic & smooth

Bochner '46:
$$\operatorname{Tr}[(\operatorname{Hess} b)^2] + \operatorname{Ric}(\nabla b, \nabla b) = \Delta \frac{|\nabla b|_E^2}{2} - g(\nabla b, \nabla \Delta b) = 0$$

- Ric ≥ 0 gives $\frac{1}{b} = 0$ for $b := b^{\pm}$
- ullet hence abla b is a Killing vector field (its flow gives a local isometry)
- $\Sigma := \{x \in M^n \mid b(x) = 0\}$ is totally geodesic (its normal ∇b is parallel)
- along Σ , metric splits into tangent $g_{ij}dy^idy^j$ and normal components dr^2
- $(r,y) \in \mathbf{R} \times \Sigma \mapsto \exp_y r \nabla b(y)$ is surjective hence a global isometry

Elliptic proof of the Newman (and Galloway) theorems

- BGMOS quintet 24+ $g_{ij} \in C^{\infty}(M^n)$; in-progress $g_{ij} \in C^1(M^n)$ Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line and follow Busemann et al: $b_r^+(x) := -\ell(x, \gamma(r)) + \ell(\gamma(0), \gamma(r))$ and $b^{\pm} := \lim_{r \to \pm \infty} b_r^{\pm}$ where $b_r^-(x) := \ell(\gamma(r), x) - \ell(\gamma(r), \gamma(0))$
- ullet reverse Lipschitz $b_r^\pm(y)-b_r^\pm(x)\geq \ell(x,y)$ and $|
 abla b_r^\pm|_F=1$ a.e.; orall r>0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$, all vanishing at $\gamma(0)$

Elliptic proof of the Newman (and Galloway) theorems

- BGMOS quintet 24+ $g_{ij} \in C^{\infty}(M^n)$; in-progress $g_{ij} \in C^1(M^n)$ Let $\gamma : \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line and follow Busemann et al: $b_r^+(x) := -\ell(x, \gamma(r)) + \ell(\gamma(0), \gamma(r))$ and $b^{\pm} := \lim_{r \to \pm \infty} b_r^{\pm}$ where $b_r^-(x) := \ell(\gamma(r), x) - \ell(\gamma(r), \gamma(0))$
- ullet reverse Lipschitz $b_r^\pm(y)-b_r^\pm(x)\geq \ell(x,y)$ and $|\nabla b_r^\pm|_F=1$ a.e.; orall r>0,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$, all vanishing at $\gamma(0)$

Theorem (BBCGMORS 24+ 'nonsmooth p-d'Alembert comparison')

For p < 1, the operator $\Box_p u := -\nabla \cdot (|\nabla u|_F^{p-2} \nabla u)$ is nonuniformly elliptic and (SEC) implies $\Box_p b_r^+ \leq \frac{n-1}{\ell(\cdot,\gamma(r))}$ distributionally, i.e. $\forall \ 0 \leq \phi \in C_c^1(M)$

Elliptic proof of the Newman (and Galloway) theorems

- BGMOS quintet 24+ $g_{ij} \in C^{\infty}(M^n)$; in-progress $g_{ij} \in C^1(M^n)$
- Let $\gamma: \mathbf{R} \longrightarrow M^n$ be the isometrically embedded line and follow Busemann et al: $b_r^+(x) := -\ell(x, \gamma(r)) + \ell(\gamma(0), \gamma(r))$ and $b^\pm := \lim_{r \to +\infty} b_r^\pm$

where
$$b_r^-(x) := \ell(\gamma(r), x) - \ell(\gamma(r), \gamma(0))$$

- reverse Lipschitz $b_r^\pm(y) b_r^\pm(x) \ge \ell(x,y)$ and $|\nabla b_r^\pm|_F = 1$ a.e.; $\forall r > 0$,
- triangle inequality gives $b_r \ge b^+ \ge b^- \ge -b_{-r}$, all vanishing at $\gamma(0)$

Theorem (BBCGMORS 24+ 'nonsmooth p-d'Alembert comparison')

For p < 1, the operator $\Box_p u := -\nabla \cdot (|\nabla u|_F^{p-2} \nabla u)$ is nonuniformly elliptic and (SEC) implies $\Box_p b_r^+ \leq \frac{n-1}{\ell(\cdot,\gamma(r))}$ distributionally, i.e. $\forall \ 0 \leq \phi \in C_c^1(M)$

$$\int_M g\left(\nabla \phi, \frac{\nabla b_r^+}{|\nabla b_r^+|_F^{2-p}}\right) d\mathrm{vol}_g \leq (n-1) \int_M \frac{\phi(\cdot) d\mathrm{vol}_g(\cdot)}{\ell(\cdot, \gamma(r))}.$$

- for the distributional limit $r \to \infty$, need $\nabla b_r^+ \longrightarrow \nabla b^+$ strongly
- need uniform ellipticity; must bound $\{\nabla b_r^+\}_{r\geq R}$ away from lightcone

Convex *p*-energy: trading linearity for ellipticity

Additional conditions may ensure $\ell \neq +\infty$ and extremizers exist

- complete or proper (boundedly compact) in the Riemannian case
- (b) globally hyperbolic in the Lorentzian case (i.e. compact diamonds, future F varies continuously over M, no closed future-directed curves)

Convex *p*-energy: trading linearity for ellipticity

Additional conditions may ensure $\ell \neq +\infty$ and extremizers exist

- complete or *proper* (boundedly compact) in the Riemannian case
- (b) globally hyperbolic in the Lorentzian case (i.e. compact diamonds, future F varies continuously over M, no closed future-directed curves)

Convex Hamiltonian $H(w) = -\frac{1}{p}|w|_{F^*}^p$ (and Lagrangian $L(v) = -\frac{1}{q}|v|_F^q$) satisfy $DH = (DL)^{-1}$ if $p^{-1} + q^{-1} = 1$ (here p < 0 iff 0 < q < 1)

- note $L=H^*$ jumps from 0 to $+\infty$ across future cone boundary ∂F (but H diverges continuously at the boundary of the dual cone F^*)
- nonsmooth already on smooth Lorentzian manifolds

Convex *p*-energy: trading linearity for ellipticity

Additional conditions may ensure $\ell \neq +\infty$ and extremizers exist

- complete or *proper* (boundedly compact) in the Riemannian case
- (b) globally hyperbolic in the Lorentzian case (i.e. compact diamonds, future F varies continuously over M, no closed future-directed curves)

Convex Hamiltonian
$$H(w) = -\frac{1}{p}|w|_{F^*}^p$$
 (and Lagrangian $L(v) = -\frac{1}{q}|v|_F^q$) satisfy $DH = (DL)^{-1}$ if $p^{-1} + q^{-1} = 1$ (here $p < 0$ iff $0 < q < 1$)

- note $L=H^*$ jumps from 0 to $+\infty$ across future cone boundary ∂F (but H diverges continuously at the boundary of the dual cone F^*)
- nonsmooth already on smooth Lorentzian manifolds

Beran Braun Calisti Gigli M. Ohanyan Rott Sämann (octet): extremizers of p-Dirichlet energy $u\mapsto \int_M H(du)d\mathrm{vol}_g$ rel. to compactly supported perturbations satisfy a new nonuniformly elliptic nonlinear PDE

• trade linearity of d'Alembertian for ellipticity of p-d'Alembertian!

Nondivergence expression of (nonuniform) ellipticity

$$\Box_{p}b = \nabla_{i}\left(\frac{\partial H}{\partial w_{i}}\Big|_{db}\right) = H^{ij}\nabla_{i}\nabla_{j}b$$

$$H(w) = -\frac{1}{p}|w|_{F^{*}}^{p}$$

$$H^{i} := \frac{\partial H}{\partial w_{i}} = -|w|^{p-2}g^{ik}w_{k}$$

$$H^{ij} := \frac{\partial^{2}H}{\partial w_{i}\partial w_{j}} = |w|^{p-2}\left[(2-p)g^{ik}g^{jl}\frac{w_{k}w_{l}}{|w|^{2}} - g^{ij}\right]$$

$$\sim |w|^{p-2}\begin{bmatrix} 2-p-1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & \cdots & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} > 0 \quad \text{if } p < 1$$

choosing normal coordinates around $\gamma(0)$ in which w = db is the time axis

Nomizu-Ozeki '61 give a complete Riemannian metric \tilde{g} on (M, g).

Theorem (Eschenburg '88 . . . Galloway-Horta '96)

Under (a) and/or (b), $\gamma(0)$ admits a neighbourhood X and constants R, C such that if $r \geq R$ then (i) a maximizing geodesic σ connects each $x \in X$ to $\gamma(r)$; (ii) each such geodesic satisfies $\tilde{g}(\sigma'(0), \sigma'(0)) \leq Cg(\sigma'(0), \sigma'(0))$ hence $\{b_r^+\}$ is timelike and uniformly equiLipschitz on X.

• intersecting ellipsoid and hyperboloid uniformize ellipticity on X

Lemma (BGMOS quintet: equi-semiconcavity (one derivative better))

Nomizu-Ozeki '61 give a complete Riemannian metric \tilde{g} on (M, g).

Theorem (Eschenburg '88 . . . Galloway-Horta '96)

Under (a) and/or (b), $\gamma(0)$ admits a neighbourhood X and constants R, C such that if $r \geq R$ then (i) a maximizing geodesic σ connects each $x \in X$ to $\gamma(r)$; (ii) each such geodesic satisfies $\tilde{g}(\sigma'(0), \sigma'(0)) \leq Cg(\sigma'(0), \sigma'(0))$ hence $\{b_r^+\}$ is timelike and uniformly equiLipschitz on X.

intersecting ellipsoid and hyperboloid uniformize ellipticity on X

Lemma (BGMOS quintet: equi-semiconcavity (one derivative better))

For another constant C', all $u \in \{b_r^+\}_{r \geq R}$ and $(v, x) \in TX$ satisfy

$$\lim_{t\to 0} \frac{u(\exp_X^{\tilde{g}} tv) + u(\exp_X^{\tilde{g}} - tv) - 2u(x)}{\tilde{g}(v,v)} \le C'$$

- (• p-d'Alembert comparison result then follows from smooth calculations)
- ullet gives $db_r^+ o db^+$ pointwise a.e., hence $|db^\pm|_{F^*} = 1$ a.e. and
- $\pm b^{\pm}$ are distributionally *p*-superharmonic $\Box_p b^+ \leq 0 \leq \Box_p b^-$

- now strong maximum principle improves $b^+ \geq b^-$ to $b^+ = b^- \in C^{1,1}(X)$
- ullet (elliptic regularity (i.e. Schauder theory) gives $b:=b^\pm\in C^\infty(X)$)

Homogeneity 2p-2<0 variant on Bochner Ohta '14, Mondino-Suhr '23: $|du|_{F^*}=1$ and $\square_p u=0$ imply

- now strong maximum principle improves $b^+ \geq b^-$ to $b^+ = b^- \in C^{1,1}(X)$
- (elliptic regularity (i.e. Schauder theory) gives $b:=b^\pm\in C^\infty(X)$)

Homogeneity 2p-2<0 variant on Bochner Ohta '14, Mondino-Suhr '23: $|du|_{F^*}=1$ and $\square_p u=0$ imply

$$\begin{aligned} & 0 = \nabla_{i}(H^{ij}|_{du}\nabla_{j}(H|_{du})) - H^{i}\nabla_{i}(\nabla_{j}(H^{j}|_{du})) \\ & = H^{ij}u_{jk}H^{kl}u_{li} + R_{ij}H^{i}H^{j} \\ & = \operatorname{Tr}\left[\left(\sqrt{D^{2}H}\nabla^{2}u\sqrt{D^{2}H}\right)^{2}\right] + \operatorname{Ric}(DH, DH) \end{aligned}$$

• timelike Ricci nonnegative (i.e. SEC) gives Lorentzian $\operatorname{Hess} b = 0$ in X

- now strong maximum principle improves $b^+ \geq b^-$ to $b^+ = b^- \in C^{1,1}(X)$
- (elliptic regularity (i.e. Schauder theory) gives $b:=b^\pm\in C^\infty(X)$)

Homogeneity 2p-2<0 variant on Bochner Ohta '14, Mondino-Suhr '23: $|du|_{F^*}=1$ and $\square_p u=0$ imply

$$\begin{aligned} & 0 = \nabla_{i}(H^{ij}|_{du}\nabla_{j}(H|_{du})) - H^{i}\nabla_{i}(\nabla_{j}(H^{j}|_{du})) \\ & = H^{ij}u_{jk}H^{kl}u_{li} + R_{ij}H^{i}H^{j} \\ & = \operatorname{Tr}\left[\left(\sqrt{D^{2}H}\nabla^{2}u\sqrt{D^{2}H}\right)^{2}\right] + \operatorname{Ric}(DH, DH) \end{aligned}$$

- timelike Ricci nonnegative (i.e. SEC) gives Lorentzian $\operatorname{Hess} b = 0$ in X
- hence ∇b is a Killing vector field (its flow gives a local isometry on X)
- $\Sigma := \{x \in X \mid b(x) = 0\}$ is totally geodesic (its normal ∇b is parallel)
- on Σ , metric splits into tangent $g_{ij}dy^idy^j < 0$ & normal component dr^2
- simplify Eschenburg '88, Galloway '89, Newman '90, to get from X to M

THANK YOU VERY MUCH!