
Chaos in symmetric Hamiltonians applied to

some exact solutions of the semi-geostrophic

approximation of 2D Incompressible Euler

equations

Dorian Goldman

April 06, 2006

Abstract

Certain symmetry properties of Hamiltonian systems possessing hy-
perbolic fixed points with homoclinic and heteroclinic saddle connections
are exploited to conclude chaotic dynamics are present under time peri-
odic perturbations. Specifically, the theorems are applied to a set of exact
solutions to the semi-geostrophic equations in an elliptical elliptical tank.

Introduction

We start this paper off by giving a brief introduction to chaos so that it is clear
in the subsequent section what is meant by a chaotic system. We do this by
finding a reference topological space that we define to be chaotic, and defining
any other system to be chaotic if it is topologically equivalent to this space. We
then proceed in section 2 to conclude that Hamiltonian systems that possess
certain symmetries allow us to conclude chaotic dynamics are present when there
are homoclinic and heteroclinic saddle connections to hyperbolic fixed points.
We then give a brief introduction to the semi-geostrophic approximation that
is used in oceanography and meteorology to make weather predictions. Finally,
we apply the theorems developed in section 2 to a set of exact solutions to
the semi-geostrohpic approximation of the 2D incompressible euler equations to
conclude chaotic dynamics are present.

1 Chaos and Nonlinear Dynamics

1.1 Topological basis for chaos
Consider the following topological space. Let Σ2 denote the set of all bi-

infinite sequences s = (. . . , s−2, s−1, s0, s1, s2, . . .), si ∈ {1, 2}.

To define a topology we need the notion of open sets. We do this by defin-
ing a metric on Σ2, so that (Σ2, d) is a metric space. We define d as,
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d(s, t) =
∑
i∈Z

|si − ti|
2i

Then we can define open neighborhoods of points t ∈ Σ2 as Ui = {s ∈ X|sk =
tk, |k| < i}.
Now consider the shift map σ : Σ2 → Σ2, σ(. . . , s−2, s−1, s0, s1, s2, . . .) =
σ(. . . , s−1, s0, s1, s2, s3, . . .) The metric space (Σ2, σ) is called the full shift on
two symbols. So the shift map moves all elements one place to the left. Note
that based on the metric above, even if two points, s and t are made arbitrarily
close together (ie. sk = tk for all |k| < N , for arbitrarily large N), after a finite
number of iterations of the shift map, nothing can be said about how close the
points will be. This is one of the main ideas that chaos is based on, which is
sensitive dependence on initial conditions.

Definition 1 A metric space (X, d) is said to have sensitive dependence on
initial conditions if there is a δ > 0 such that for any x ∈ X and any ε > 0,
there is a y ∈ X and some n ∈ N such that d(x, y) < ε and d(fn(x), fn(y)) > δ

Now should we say that a system is chaotic when it exhibits sensitive de-
pendence to initial conditions? That this definition for chaos would be insuffi-
cient is shown in the following common example. Let M = (0,∞) and define
f(x) = (1+µx), µ > 0. Then (M,d), where d is the standard euclidian metric on
R exhibits sensitive dependence on initial conditions, but each point converges
to ∞. (Example taken from [5]).

We want our definition of chaos incorporate the difficulty in making any sort
of long term predictions about the behavior. Since we have already said that
points close together must move away from each other quickly, we now say that
any two points will at some time be arbitrarily close together. In this way we
avoid the possibility of all points moving away from each other and approaching
the same limit. Hence we want our dynamical system to have a dense orbit,
meaning that there is some x ∈ X such that for all y ∈ X, given any ε > 0 there
exists an N > 0 such that d(fN (x), y) < ε. Note that that (σ,Σ2) possesses a
dense orbit (see [5]). So we want a way of saying that a system is chaotic if it
is in some sense topologically equivalent to the metric space (Σ2, σ). To make
this precise, we define the notion of a topological conjugate,

Definition 2 Two maps f : A→ A and g : B → B are topologically conjugate
if there exists a homeomorphism φ : A→ B such that φ ◦ f = g ◦ φ

Now we can make precise what we mean by a chaotic system, in the context
of a planar diffeomorphism φ : R2 → R2, which is what will be the only map
for this paper.

Definition 3 A planar diffeomorphism φ : R2 → R2 with the standard euclidian
metric in R2 is said to be chaotic if it is topologically conjugate to the full shift
on 2 symbols, (Σ2, σ).
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Hence the full shift on two symbols is our topological basis for chaos, and
determining if a system is chaotic will amount to establishing the existence of
a topological conjugate to the full shift on two symbols, (Σ2, σ).

1.2 Chaos in dynamical systems

Although the disucssion above was limited to iterative maps, we can still
apply it in the case of continuous flows, given by a first order ODE such as

ẋ = f(x) (1.21)

To resolve this we extend our phase space by one dimension, and consider
time as a coordinate, so that our system becomes

ẋ = f(x, t) = f(x) (1.22)

ṫ = 1 (1.23)

Since f is autonomous, we can arbitrarily choose a period of T = 1 and wrap our
phase space onto R2 × S1. By considering the Poincare map, Pt0 : Σt0 → Σt0

where Σt0 = {(x, t0) ∈ R2 × S1}, ie. the projection of points (x, t) ∈ R2 × S1

onto the plane t = t0, we obtain an iterative map of the flow (1.22)-(1.23). Our
goal from now on will be to establish when the Poincare map is a topological
conjugate to the full the shift on two symbols, and we will say that a system
such as (1.21) is chaotic if it possesses a Poincare map that is such a topological
conjugate.

Smale [6] came up with a precise sufficient condition for a planar diffeomor-
phism to be topologically conjugate to the shift on two symbols. We state it
below.

Theorem 1 (Smale Birkhoff) Suppose f is a diffeomorphism with a hyperbolic
fixed point p and a corresponding transversal homoclinic point q. Then some
iterate fn has a hyperbolic invariant set I on which it is topologically equivalent
(conjugate) to the bi-infinite shift on two symbols.

By a transversal intersection of the stable and unstable manifolds of the
hyperbolic fixed point p, denoted Wu

0 (p) and W s
0 (p) respectively is meant that

the two manifolds intersect such a way that the union of the tangent spaces,
Tu(p) and Ts(p) for the unstable and stable manifolds respectively, spans R2 at
the point of intersection q ∈Wu

0 (p) ∩W s
0 (p).

Of course in the case that f(x) is autonomous, the Poincare map is of little
assistance since the projection onto any plane normal to the time axis is the
same for all times. However, consider what happens when we introduce a time
periodic perturbation of (1.21), εg(x, t) where g(x, t + T ) = g(x, t) for fixed
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Figure 1: A homoclinic tangle. There are an infinite number of transversal
intersection of the manifolds.

period T, 0 < T < ∞. Given a hyperbolic fixed point p ∈ R2 of f , if ε is
sufficiently small, the hyperbolic fixed point of the Poincare map, p, perturbs
to a nearby hyperbolic fixed point pε = p0 +O(ε) (precise statement and proof
are given in [1], section 4.5).

Now treating our system as

ẋ = f(x) + εg(x, t) (1.24)

ṫ = 1 (1.25)

we turn our system into a non-autonomous flow in R2 × S1. So the idea of a
poincare map is more useful in this scenario. Since we can imagine setting up
planes, perpendicular to the time axis at every t0 + nT for n ∈ N. The plot of
the poincare map will be the intersection points of the solution curves (x(t), t)
in R2 × R with the planes Σt0 .

We provide an intuitive motivation for the Smale-Birkhoff theorem. For
precise details the reader is referred to [1]. From before, the hyperbolic fixed
point p of the unperturbed poincare map gets perturbed to a nearby hyperbolic
fixed point pε. Denote Wu

ε (pε) and W s
ε (pε) as the unstable and stable manifolds

of the perturbed system (1.24)-(1.25) respectively at the new hyperbolic fixed
point pε. Now what happens if these manifolds intersect transversally? Consider
the poincare map acting on the point of intersection q ∈ R2. Then by the
invariance of the manifolds Pn

t0(q) ∈ W
u
ε (pε) ∩W s

ε (pε) for all n ∈ Z. Hence the
iterative map produces an infinite number of intersection points, as shown in
Figure 1, and the manifolds tangle around each other. This is where the term
homoclinic tangle comes from.

By associating a 1 or a 0 depending on the path chosen, as shown in Figure
1, it is clear why there is a bijection between points in the map and points in the
space of all by infinite sequences Σ. Also, a forward iteration of the poincare map
is equivalent to the shift operator acting on the space of bi-infinite sequences.
A rigorous justification of these arguments can be found in [1].

Now we have seen why transversal intersections are important, and have de-
fined what we mean by chaotic while also finding a sufficient condition for chaos
to occur (transversal intersection of stable and unstable manifolds of hyperbolic
fixed points).

The problem is, how can one go about showing that something as compli-
cated as transversal intersections occur? This is where melnikov comes to the
rescue. Melnikov [6] stated the following sufficient condition for time periodic
perturbed system with a saddle connection.

We define the Melnikov function

M(t0) =
∫ ∞

−∞
f(q0(t)) ∧ g(q0(t), t+ t0)dt
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Figure 2: How a symmetrical perturbation will imply a transversal intersection
of the stable and unstable manifolds

Where q0(t) denotes the paramaterized saddle connection between two hyper-
bolic fixed points of the unperturbed system. We state Melnikov’s Theorem

Melnikov’s Theorem Given that f ,g are Cr, r ≥ 2, and for ε = 0, (1.1)
possesses a homoclinic saddle connection to a hyperbolic fixed point p. Then for
ε sufficiently small if M(t0) has simple zeros then W s

ε (pε) and Wu
ε (pε) intersect

transversally.

The proof of the above theorem and derivation of the Melnikov integral is
ubiquitous and can be found in [1].

The idea is that the integral measures the separation of the perturbed stable
and unstable manifolds. If a simple zero is found, by the above theorem there
is a transversal intersection. Hence by the Smale-Birkoff theorem (Theorem
1), the Poincare map possesses an invariant set on which some iteration of the
map is topologically conjugate to the shift on two symbols, and hence chaotic
as defined in the preceding section.
We now wish to give an intuitive idea of how exploiting symmetry of Hamil-

tonian systems can allow one to conclude systems are chaotic by Melnikov’s
Theorem.

1.3 Hamiltonian Symmetry leading to chaos
Assume for the moment that we have a sufficiently smooth Hamiltonian, H :
R2 → R, such that H(−x, y) = H(x, y), so that our Hamiltonian is symmetric
about the y-axis. This leads to

f2(−x, y) =
∂H

∂x
(−x, y) = −∂H

∂x
(x, y) = −f2(x, y))

−f1(−x, y) =
∂H

∂y
(−x, y) =

∂H

∂y
(x, y) = −f1(x, y)

where f(x, y) =
(
f1(x, y)
f2(x, y)

)
And imagine we had a homoclinic orbit as shown

in Figure 3. Then consider a perturbation εg(x, y, t) = ε

(
g1(x, y, t)
g2(x, y, t)

)
as was

used above but such that g1(x, y, t) = g1(−x, y, t) and g2(x, y, t) = −g2(−x, y, t)
so that the perturbation shares the same symmetry as the system. Then for a
particular value of t0, we look at the perturbed poincare map P ε

t0 : Σt0 → Σt0 .
The stable and unstable manifolds will break apart. If neither the stable or un-
stable manifold intersected the y-axis again, then they would clearly not remain
within O(ε) of each other, which would contradict the fact that the perturbed
stable and unstable manifolds stay within O(ε) of the unperturbed manifolds,
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a result proven in [1], p. 186. Hence because of the symmetry of the Hamil-
tonian and the perturbation, the Poincare slice, Σt0 must look something like
Figure 2, and so we get a transversal intersection of the manifolds in this case on
the y-axis. This suggests that by looking at symmetry alone one can conclude
that certain systems are chaotic. This is made precise in the next section.

2 Main results

2.1 Chaos in the case of a symmetrical perturbation of a symmetrical
Hamiltonian system possessing a homoclinic saddle connection to a
hyperbolic fixed point

In Theorem 2, we present sufficient symmetry conditions on the Hamiltonian,
and perturbation of the Hamiltonian in the case that the system possesses a
homoclinic orbit. The theorem allows us to guarantee our system is chaotic
in the sense of section 1, without the need to evaluate the melnikov integral
explicitly, given in Melnikov’s theorem in section 1.

Theorem 2 : (Homoclinic case) Given the planar, Hamiltonian system

ẋ = f(x), x ∈ R2 (2.0)

with Hamiltonian H, where (2.0) has a homoclinic point p lying on the y-axis. If

(a) q0 : R → R2, the homoclinic orbit, crosses the y-axis at some point other
than p

(b) f ∈ Cr(D), r ≥ 2 for some bounded domain D such that q0(t) ∈ D for
all t ∈ R and f(q0(t)) ∈ L2(R) (hereafter referred to as ’sufficiently smooth and
integrable’)

(c) H(−x, y) = H(x, y) (we say the Hamiltonian has reflection symmetry
about y)

F Then for any function h(x, y) that also satisfies (b) such that

h1(−x, y) = h1(x, y)

h2(−x, y) = −h2(x, y)

the melnikov integral,

M(t0) =
∫ ∞

−∞
f(q0(t)) ∧ g(q0(t), t+ t0)dt
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Figure 3: Homoclinic orbit symmetrical about the y-axis (Case 1)

Figure 4: Homoclinic orbit symmetrical about the y-axis (Case 2)

where
g(x, y, t) = ε cos(kt)h(x, y)

has simple zeroes for some k ∈ R and ε sufficiently small. It follows that the
system (2.0) is chaotic under small perturbations.

Proof: First note that

f2(−x, y) =
∂H

∂x
(−x, y) = −∂H

∂x
(x, y) = −f2(x, y) (2.1a)

−f1(−x, y) =
∂H

∂y
(−x, y) =

∂H

∂y
(x, y) = −f1(x, y) (2.1b)

Since the homoclinic trajectory cross the y-axis at some point other than p,
based on the symmetry of f in (2.1a)− (2.1b), we must have an orbit as shown
in Figure 3 or Figure 4, depending on whether the homoclinic orbit crosses the
y-axis above or below the homoclinic point p. It is of no loss of generality to
assume the orbit takes the form in Figure 3, as will be obvious in the proof.

Referring to this figure, paramaterize the homoclinic orbit as q0(t − t0) so
that at time t = t0 the orbit cross the y-axis at the point q0(0).

We now compute the wedge product that is in the melnikov integral.(
f1(x)
f2(x)

)
∧

(
g1(x, t)
g2(x, t)

)
= ε cos(kt)[f1(x, y)h2(x, y)− f2(x, y)h1(x, y)] (2.12)

Now based on the symmetry arguments above, it is clear that (2.12) has odd
symmetry about the y-axis. Then we have

f(q0(t))∧g(q0(t), t+t0) = ε cos(k(t+t0))[f1(q0(t))h2(q0(t))−f2(q0(t))h1(q0(t))] (2.13)

Where we can ignore the ε term in the melnikov integral since we are trying
to find it’s zeros. Now from (2.12) and the fact that we paramaterized q0(t)
so that q0(0) lies on the y axis, it is clear that (3) considered as a function of
q0(t)),

[f1(q0(t))h2(q0(t))− f2(q0(t))h1(q0(t))]

is an odd function of time. Now from (2.13), upon expanding the cosine
sum, one notes that the integral is broken up into two parts, and the part

cos(kt0)
∫ ∞

−∞
cos(kt)[f1(q0(t))h2(q0(t))− f2(q0(t))h1(q0(t))]dt
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vanishes since it is an integral from −∞ to +∞ of an odd function. Hence
the part that remains is

M(t0) = sin(kt0)
∫ ∞

−∞
sin(kt)[f1(q0(t))h2(q0(t))−f2(q0(t))h1(q0(t))]dt := sin(kt0)M(k) (2.14)

But (2.14) is just the sin fourier transform of an L1(R) function. This follows
since f(q0(t)), h(q0(t)) ∈ L2(R) and so f(q0(t))h(q0(t)) ∈ L1(R).

Hence based on the properties of the sin fourier transform of an L1(R) func-
tion [2, pp. 120-131] there exists an interval [k1, k2] where M(k) is nonzero. For
all k ∈ [k1, k2], M(t0) has simple zeros since sin(kt0) does. Hence by Melnikov’s
theorem, given in Section 1, the system (2.0) is chaotic. 2

We now extend the argument to the case of two hyperbolic fixed points p1,
p2, p1 6= p2, such that p1 and p2 are connected by a heteroclinic saddle connec-
tion.

2.2 Chaos in the case of a symmetrical perturbation of a Hamil-
tonian system with a heteroclinic saddle connection between two hy-
perbolic fixed points

Theorem 3 : (Heteroclinic case) Given the planar, Hamiltonian system

ẋ = f(x), x ∈ R2 (1)

with Hamiltonian H, where (1) has a heteroclinic saddle connection between two
hyperbolic fixed points p1 and p2 both lying on the y-axis. If

(a) p1 and p2 are reflections across the x-axis of each other.
(b) f ∈ Cr(D), r ≥ 2 for some bounded domain D such that q0(t) ∈ D for

all t ∈ R and f(q0(t)) ∈ L2(R) (hereafter referred to as ’sufficiently smooth and
integrable’)

(c) H(−x, y) = H(x, y) and H(x,−y) = H(x, y) (symmetry across both x
and y-axes)

F Then for any function h(x, y) that also satisfies (b) such that

h1(x,−y) = −h1(x, y)

h2(x,−y) = h2(x, y)

the melnikov integral,

M(t0) =
∫ ∞

−∞
f(q0(t)) ∧ g(q0(t), t+ t0)dt
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Figure 5: Heteroclinic orbit symmetrical about the y-axis and x-axis

where
g(x, y, t) = ε cos(kt)h(x, y)

has simple zeroes for some k ∈ R and ε sufficiently small.

Proof: First note that

f2(x,−y) =
∂H

∂x
(x,−y) =

∂H

∂x
(x, y) = f2(x, y) (2.2a)

−f1(x,−y) =
∂H

∂y
(x,−y) = −∂H

∂y
(x, y) = f1(x, y) (2.2b)

Since the heteroclinic trajectory crosses the x-axis at some point, based on
the symmetry of f in (2.2a)− (2.2b), we must have an orbit as shown in Figure
5. Note that we are guaranteed to have a second heteroclinic saddle connection
between p1 and p2 on the other side of the y-axis by the symmetry of the
hamiltonian in (c).

Referring to this figure, parameterize the homoclinic orbit as q0(t − t0) so
that at time t = t0 the orbit crosses the x-axis at the point q0(0), shown in
Figure 5.

We now compute the wedge product that is in the melnikov integral.(
f1(x)
f2(x)

)
∧

(
g1(x, t)
g2(x, t)

)
= ε cos(kt)[f1(x, y)h2(x, y)− f2(x, y)h1(x, y)] (2.22)

Now based on the symmetry arguments above, it is clear that (2.22) has odd
symmetry about the x-axis. Then we have

f(q0(t))∧g(q0(t), t+t0) = ε cos(k(t+t0))[f1(q0(t))h2(q0(t))−f2(q0(t))h1(q0(t))] (2.23)

Where we can ignore the ε term in the melnikov integral since we are trying
to find it’s zeros. Now from (2.22) and the fact that we paramaterized q0(t) so
that q0(0) lies on the x axis, it is clear that (2.22) considered as a function of
q0(t)),

[f1(q0(t))h2(q0(t))− f2(q0(t))h1(q0(t))]

is an odd function of time. Now from (2.23), upon expanding the cosine sum,
one notes that the integral is broken up into two parts, and the part

cos(kt0)
∫ ∞

−∞
cos(kt)[f1(q0(t))h2(q0(t))− f2(q0(t))h1(q0(t))]dt

vanishes since it is an integral from −∞ to +∞ of an odd function. Hence
the part that remains is
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M(t0) = sin(kt0)
∫ ∞

−∞
sin(kt)[f1(q0(t))h2(q0(t))−f2(q0(t))h1(q0(t))]dt := sin(kt0)M(k) (2.24)

But (2.24) is just the sin fourier transform of an L1(R) function. This follows
since f(q0(t)), h(q0(t)) ∈ L2(R) and so f(q0(t))h(q0(t)) ∈ L1(R).

Hence based on the properties of the sin fourier transform of an L1(R) func-
tion [2, pp. 120-131] there exists an interval [k1, k2] where M(k) is nonzero.
For all k ∈ [k1, k2], M(t0) has simple zeros since sin(kt0) does. By symmetry,
the perturbed heteroclinic saddle connection on the other side of the y-axis also
has simple zeros and hence transversal intersections of the stable and unstable
manifolds. It follows from the Heteroclinic theorem given in [3], which is an ex-
tension of the Smale-Birkhoff theorem given in section 1 to heteroclinic saddle
connections to hyperbolic fixed points, that the system is chaotic. 2

2.3 Symmetry conditions in the case of polar coordinates
We note that the symmetry condition in Theorem 1 when expressed in polar

coordinates, (
ṙ

φ̇

)
=

(
f1(r, φ)
f2(r, φ)

)
the required symmetry condition is

f1(r, π − φ) = −f1(r, φ) (2.31)

f2(r, π − φ) = f2(r, φ) (2.32)

For Theorem 2, we need the above symmetry condition along with,

f1(r,−φ) = −f1(r, φ) (2.33)

f2(r,−φ) = f2(r, φ) (2.34)

2.4 Conclusion
Hence we have reduced the problem of determining that a periodically per-

turbed Hamiltonian system is chaotic to checking for symmetries in the Hamil-
tonian. Avoiding the need to evaluate the melnikov integral explicitly makes
checking for chaos much simpler in many instances. In section 4 we apply these
theorems to the Semi-Geostrophic equations, which are introduced in the fol-
lowing section.

3 Semi-Geostrophic equations

For an incompressible fluid belonging to some domain D ⊂ R3 that is uniform
along one of its axes, the Navier Stokes equations can be restricted to a domain
Y ⊂ R2. They become,
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(∂t + v · ∇)v + 2ΩJv = −1
ρ
∇P (3.1)

∇ · v = 0 (3.2)

v · n̂ = 0 (3.3)

Where n̂ is the normal to the boundary Y , and v is a function of space and
time, so v : Y × [0,∞) → R2. These equations are the 2D Incompressible Euler
Equations where

J :=
(

0 −1
1 0

)
These equations can be re-written in terms of a stream function since because

of the incompressibility condition, we can say

v(x, t) = J∇ψ(x, t) (3.4)

The euler equations become,

∇∂ψ
∂t

+ (D2ψ + I)J∇ψ − J∇P = 0 (3.5)

In large scale atmospheric flow, the acceleration terms in the Euler equations
can be neglected entirely which gives Q=P. The semi-geostrohpic approximation
to the euler equations involves approximating the small terms in (3.5) only by
Q v P so that we get

∇∂P
∂t

+ (D2P + I)J∇ψ − J∇P = 0 (3.6)

Now McCann and Oberman [4] considered the a fluid restricted to an ellip-
tical tank, so that the domain Y in the above euler equations is a fixed elliptical
boundary, but the evolution is considered under the SG approximation given
by (3.6). They came up with a set of exact solutions that model the evolution
of the ellipse in dual coordinates, a(t) and θ(t) which represent the aspect ratio
and inclination with respect to the coordinate axes of the dual ellipse, given
below:

da

dt
= −2λ sinh(φ)

z(a, θ;φ)
a sin(2θ) (3.7)

dθ

dt
= 1− λ

z(a, θ;φ)
(cosh(φ) +

a2 + 1
a2 − 1

sinh(φ) cos(2θ)) if a 6= 1 (3.8)

dθ

dt
=

1
2
(1− λ cosh(φ)

2 cosh(φ/2)
) if a = 1 (3.9)
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Figure 6: Phase diagram for (3.5) on axes (x, y) = (log(a) cos(θ), log(a) sin(θ)
with above values of λ and φ. The homoclinic orbit is shown in bold (taken
courtesy of [4])

z(a, θ;φ) =

√
2 + (a+

1
a
) cosh(φ) + (a− 1

a
) sinh(φ) cos(2θ) (3.10)

H(r, θ) = λ2s+ r − λ(2 + 2rs+ 2 cos(2θ)
√

(r2 − 1)(s2 − 1))1/2 (3.11)

Where λ is a parameter measuring the area of the elliptical tank and φ
represents the aspect ratio of the elliptical tank.

The semi-geostrophic approximation gives more accurate meterological pre-
dictions and is considered less turbulent than the 2D euler equations. It is
consequently not obvious that chaotic dynamics should be present in solutions
to these equations. In the following section we consider how a perturbation of
the area of the ellipse leads to chaotic dynamics, and we apply the theorems
developed in the previous section to do so.

4 Chaos in the Semi-Geostrophic equations

We now apply the results of section 2, to the solutions to the semi-geostrophic
equations (3.7)-(3.11) and determine that chaotic dynamics are present.

Proposition 1 The system (3.7)-(3.11) above is chaotic for (λ, φ) = (3, 0.2068522964).

Proof: The proof is broken down into four steps.
Step 1: Determine that the hamiltonian satisfies the symmetry constraints
given in Theorem 2

This is easy since,

H(r, π − θ) = λ2s+ r − λ(2 + 2rs+ 2 cos(2π − 2θ)
√

(r2 − 1)(s2 − 1))1/2

= λ2s+ r − λ(2 + 2rs+ 2 cos(2θ)
√

(r2 − 1)(s2 − 1))1/2

since cos(2π − 2θ) = cos(2θ) This symmetry is clear when one looks at Figure
6. Hence condition (c) of Theorem 2 is satisfied.
Step 2: Determine that a homoclinic point exists on the y-axis and that this
orbit intersects the y-axis at some other point.

That a unique hyperbolic fixed point exists on the positive half of the y-axis is
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Figure 7: Homoclinic orbit magnified from Figure 6, and a(∞), a(0) shown.
Plotted on axes (x, y) = (a cos(θ), a sin(θ))

shown in [4], (Theorem 1.4). As can be seen from Figure 6 (taken from [4]), for
these values of λ and φ, the hyperbolic fixed point possesses a homoclinic orbit
that crosses the y-axis at some other point, log(a(0)) > 0 (shown in Figure 6).
Hence condition (a) of Theorem 2 is satisfied

Step 3: Determine that da
dt (q0(t)) and dθ

dt (q0(t)) are sufficiently smooth and
integrable on R, ie. restricted to the homoclinic orbit, q0(t).

Let sinh(0.2068522964) = 1.2015 := β and cosh(0.2068522964) = 0.2083 := γ.
We show that da

dt ∈ L
2(R) when restricted to the homoclinic orbit. In Figure 7,

the points a(0) and a(∞) are shown. It is clear from Figure 6 that log(a(∞)) > 0
and log(a(0)) > 0, and hence a(∞) > 1 and a(0) > 1.∫ ∞

−∞
|da
dt

2

|da = 2
∫ a(∞)

a(0)

4λ2β2

z2
a2 sin(2θ)2da (4.1)

Where θ = θ(a) is an implicit function of a that parameterizes the homoclinic
orbit. Now

z ≥
√

2 + (a+
1
a
)γ − (a− 1

a
)β

⇒ 1
z2
≤ 1

2 + (a+ 1
a )γ − (a− 1

a )β
(4.2)

∫ a(∞)

a(0)

4λ2β2

z2
a2 sin(2θ)2da ≤

∫ a(∞)

a(0)

4λ2β2

2 + (a+ 1
a )γ − (a− 1

a )β
a2da

The only values of a where the last integrand is discontinuous occur for α ∈ C
(which can be seen by solving it numerically) and α = 0, which is not included
in our domain . Hence the last integral is the integral of a continuous function
on a compact domain, [a(0), a(∞)]. Consequently∫ a(∞)

a(0)

4λ2β2

2 + (a+ 1
a )γ − (a− 1

a )β
a2da <∞

Hence da
dt (q0(t)) ∈ L2(R).

Now we show the same thing for dθ
dt .∫ a(∞)

a(0)

|dθ
dt

2

|da =
∫ a∞

a(0)

(1− λ

z
(γ +

a2 + 1
a2 − 1

β cos(2θ)))2da
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From equation (4.2) and the fact that cos(2θ) ≥ −1,∫ a∞

a(0)

(1− λ

z
(γ +

a2 + 1
a2 − 1

β cos(2θ)))2da ≤
∫ a(∞)

a(0)

(1 +
1
z
(γ +

a2 + 1
a2 − 1

))2da

≤
∫ a(∞)

a(0)

(1 +
λ√

2 + (a+ 1
aγ + β(a− 1

a ))
(γ +

a2 + 1
a2 − 1

))2da

And since a = 0 is not on the homoclinic orbit and

2 + (a+
1
a
)(1.0215) + (0.2083)(a− 1

a
) = 0

has only complex solutions, the only possible singularity could exist at a = 1,
which is not included in the domain [a(0), a(∞)]. Hence, since the function is
being integrated over a compact domain, we have that∫ a(∞)

a(0)

(1 +
λ√

2 + (a+ 1
aγ + β(a− 1

a ))
(γ +

a2 + 1
a2 − 1

))2da <∞

It follows that dθ
dt (q0(t)) ∈ L

2(R).
That the functions da

dt and dθ
dt are C∞ is clear except at the point a = 1,

which is not included in homoclinic orbit. Since we only need local smoothness
from condition (b) in theorem 1, we can choose our bounded domain D to be
the homoclinic orbit itself. Hence the hamiltonian H is sufficiently smooth on a
bounded domain D containing the homoclinic orbit, and the vector field is L2

integrable over the homoclinic orbit. Hence we have shown that condition (b)
of Theorem 2 is satisfied.

Step 4: Note that H depends on the parameter λ which corresponds to the
area of the ellipse. Treating da

dt and dθ
dt as functions of λ, we consider perturbing

the area of the physical ellipse.

da

dt
(a, θ, λ+ ε) =

da

dt
(a, θ, λ) +

∂

∂λ
(
da

dt
(a, θ, λ))ε

dθ

dt
(a, θ, λ+ ε) =

dθ

dt
(a, θ, λ) +

∂

∂λ
(
dθ

dt
(a, θ, λ))ε

And from (3.1)− (3.3) we have that

∂

∂λ
(
da

dt
) = −2 sinh(φ)

z(a, θ;φ)
a sin(2θ)

and
∂

∂λ
(
dθ

dt
) = − 1

z(a, θ;φ)
(cosh(φ) +

a2 + 1
a2 − 1

sinh(φ) cos(2θ))
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Figure 8: Phase plot of (1) with above values of φ and λ. Heteroclinic orbit is
shown in bold. Plotted on axes (x, y) = (log(a) cos(θ), log(a) sin(θ))

Notice that both of these functions have the same symmetries as da
dt and

dθ
dt which can be seen by plugging in θ′ = π − θ and comparing to equations
(3.1)− (3.5). The smoothness and L2(R) are clear from the smoothness and L2

integrability of da
dt and dθ

dt . Hence they satisfy the requirements of F in Theorem
2.

Based on the above 4 conclusions combined with Theorem 2, the system (3.7)-
(3.11) is chaotic when (λ, φ) = (3, 0.2068522964). 2

Proposition 2 The system (3.7)-(3.11) above is chaotic for (λ, φ) = (3, 0.1368522964).

Proof:
The proof is broken down into four steps as in the homoclinic case.

Step 1: Determine that the hamiltonian satisfies the symmetry constraints
given in Theorem 3.

. The first symmetry was shown in Proposition 1, the second corresponds to
the symmetry in (2.33)-(2.34) and is satisfied since the Hamiltonian satisfies,

H(r,−θ) = λ2s+ r − λ(2 + 2rs+ 2 cos(−2θ)
√

(r2 − 1)(s2 − 1))1/2

= λ2s+ r − λ(2 + 2rs+ 2 cos(2θ)
√

(r2 − 1)(s2 − 1))1/2 = H(r, θ)

since cos(−2θ) = cos(2θ). This symmetry is clear when one looks at Figure 8.
Hence condition (c) of Theorem 3 is satisfied.
Step 2: Determine that there are two fixed point p1 and p2, that are located
on the y-axis and reflections of eachother across the x-axis, with a heteroclinic
saddle connection connecting them crossing the x-axis.

That two hyperbolic fixed points exist on the y-axis and are reflections of
eachother is shown in [4] (Theorem 1.4) and as can be seen in Figure 8. A
heteroclinic saddle connection connects the two points and crosses the x-axis.
Hence condition (a) of Theorem 3 is satisfied.
Step 3: Determine that da

dt and dθ
dt are sufficiently smooth and integrable on

q0(t), the heteroclinic saddle connection on the positive part of the x-axis.

We show that da
dt ∈ L

2(R) when restricted to the heteroclinic orbit. In figure
5, the points a(0) and a(∞) are shown as q0(0) and p1 respectively. From Figure
8 it is clear that log(a(∞)) > log(a(0)) > 0, and hence that a(∞) > a(0) > 1.

15



By the arguments of Step 3, in Proposition 1, since we have shown the
heteroclinic orbit in Figure 8 that is in bold contains no points of discontinuity,
we have that da

dt (q0(t)) and dθ
dt (q0(t)) are sufficiently smooth and integrable in

the sense of Theorem 3 (b).
Step 4: The perturbation proceeds exactly in the same way as in Step 4 of

Proposition 1, and the smoothness and integrability come consequently in the
same way.

Based on the above 4 conclusions combined with Theorem 3, the system (3.7)-
(3.11) is chaotic when (λ, φ) = (3, 0.2068522964). 2.
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