FACULTY OF ARTS AND SCIENCE

University of Toronto

FINAL EXAMINATIONS, DECEMBER 2001

MAT 327H1F - Introduction to Topology

Duration - 3 hours Instructor: Prof. R. McCann

No aids allowed. Page 1 of 1

Questions are weighted as indicated. Total marks for this paper: 225.

- 1. (40 marks) Prove or give counterexamples to the following TRUE or FALSE statements:
- a) Homotopy defines an equivalence relation among continuous maps $f: X \longrightarrow Y$.
- b) Let (X,d) and (Y,ρ) be metric spaces. If X is compact, then any continuous map $f:X\longrightarrow Y$ is uniformly continuous.
- c) Let $p: E \longrightarrow B$ be a covering map with $p(e_0) = b_0$. If E path connected, then the lifting correspondence $\phi: \pi_1(B, b_0) \longrightarrow p^{-1}(b_0)$ is one-to-one.
- d) Let $f: X \longrightarrow Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.
- 2. (60 marks) Identify the fundamental group of each of the following topological spaces and give an outline of how you would prove it.
- a) the circle S^1 ; b) the 3-sphere S^3
- c) the twice punctured sphere $\mathbf{S}^2 \setminus \{n, s\}$, with $s \neq n \in \mathbf{S}^2$; d) the 3-torus $\mathbf{T}^3 = \mathbf{R}^3/\mathbf{Z}^3$;
- e) the boundary $\partial\Omega$ of a bounded convex domain $\Omega\subset\mathbf{R}^3$; f) projective space P^3 . BONUS (5-10 marks): the figure eight space.
- 3. (25 marks) Let $\{S_{\beta}\}_{{\beta}\in B}$ and $\{T_{\beta}\}_{{\beta}\in B}$ be two families of topologies on X.
- a) Show that $\cap_{\beta \in B} T_{\beta}$ is a topology on X.
- b) Show there is a coarsest topology containing $\cup_{\beta \in B} S_{\beta}$ by using part a).
- 4. (25 marks) Let (X,d) be a compact metric space. Show that if $F: X \longrightarrow X$ is a shrinking map, meaning d(F(x), F(y)) < d(x,y) for every $x \neq y \in X$, then F must have a fixed point. Show, moreover, that the fixed point of F is unique.
- 5. (a + b = 25 marks) a) What condition on a topological space X guarantees that the fundamental group $\pi_1(X, x_0)$ is independent of base point $x_0 \in X$? Prove it.
- b) Let $p: E \longrightarrow B$ be a covering map, with E path connected. Show that if B is simply connected, then p must be a homeomorphism.
- 6. (25 marks) A Platonic solid is a polyhedron in which each face has the same number a of edges, and each vertex is attached to the same number b of edges.
- a) Prove there are no more than five Platonic solids.
- b) Find and prove a formula relating the Euler characteristic of a connected sum A#B to the Euler characteristics of two surfaces A and B.
- 7. (a + b = 25 marks) a) State the Classification Theorem for Compact Surfaces.
- b) Where does a connected sum of a Klein bottle and a torus fit into this list? Prove it.