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1 Cardinalit,}; and the Axiom of Choice

Definition 1.1 T'wo sets, A and &, have the same cardinglity if and only if
there exists a 1-1. onto functivn f: 4 + B, The cardinality of a set A is
denoted |A|. Let N be the set of positive inlegers, Z the set of all integors,
@ the set of rational numbers, &' the sct of real numbers. We will accept as
a fact that every non-empty set in N has a least element. A set X is finite
il and only if there is a 1-1, onto function f . X — {1,2,..., n} where n is
an element of &

Theorem 1.1 The even positive mitegers have the same cardinality as the
natural numbers

Theorem 1.2 |N| = 7|

Theorem 1.3 Every subset of MV s either finite or has the same cardinality
as V.

Definition 1.2 A set which is finite or has the same cardinality as NV is
rountable or has countable cardinality.

Theorem 1.4 @ is countahle.

Theorem 1.5 The union of twa tountable sets is couniable.

Theorem 1.6 The union of countably many countable sets is countable.
Theorem 1.7 The set of 21l finice subsets of 2 countable set is countable,

Definition 1.3 For any set 4. 27 denates the sot of all subsets of A. (The
empty set, denoted 0, is a subset of any set.] 24 is called the power et ol A,

Theorem 1.8 For anv set 4. there js a L-1 Tunction [ from A into 24



Theorem 1.9 For a set A4, let P be the sef of all functions from A to the |
two point set {0, 1}. Then [P| = [24].

Theorem 1.10 There is 2 1 1 correspondence betwean 2¥ and infinite so-
quences of 0's and 1's.

Theorem 1.11 (Cantor). There is no function from a set 4 onto 24,

Note that Theorem 11 implies that 2¥ is uncountable and that there are
infinitely many dillerent infinite cardinal numbers.

Theorem 1.12 A set is infinite if and only if there is a ane-to-one Funetion |
from the set inta a proper subset of itsell

Theorem 1.13 There is a 1-1, onto function f : [0,1] — [0,1).

Lheorem 1.14 (Schroeder-Rerustein). If A and B are sets such that there
CXISL one-to-one lunctions f fram A into £ and g9 from B iato A, then |4| =

B, |

(Note: We need o produce a 1-1, anto function h: 4 — 8 When defin- |
ing A, for each point z & A, either A(x) = J{zx) or h(z) = p ‘{z). For same
points x in A, you could nar use p=' Star: thinking abeut those points in
beginuing to define .

Theorem 1.15 |&!| = |(n. D = |io, 1]
Theorem 1.16 There is a 1-1 function from BE — 2%

Theorem 1.17 |B| = |24 |

Below are listed Zorn's Lemma. the Axiom of Choice, and the Well- :
Ordering Principle. These Lhres starements ars equivalent and are used [reely
In mast standard mathematics. We will yse them [resly in this course.

Definition 1.4 1, & set X o partially ordered hy the relation < if and |

only il, for any elements #.y,-and 2 in X,

(2) ifz <y and ¥ < 2, then « < #; anil

(b) ifz < yand y <2, then = =y, ‘
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Let X be a set partially ordered by <. Then an clement m in X is
a mazimnal element if and only if for any 7 in A, m < z implies that

3. A set is totally ordered if and only if it is partially ordered and avery
two elements are comparable.

4. A set is well-ordered if and only if it is Lotally ordered and every non-
emply subset has a least element,

Notice that any subset of a well-ordered set i well-ardered by the same
orderingsrestricted to the subset,

Theorem 1.18 KR! with the usual ordering is torally ordered, but not well-
ordered. NV is well ordered

Example 1.1 For any set 4 (he set 94 1s partially ardered by set inclusion,
The set A4 is a maximal clement. and, in fact, the anly maximal element in
Lhis ordering.

Zorn’s Lemma. Let X bea partizlly ardersd set in which each Lotally
ordered subsel has an npper bound in 1 Then A" has a maximal element.

Axiom of Choice. 1.6t { Az fucs be acollection of non-empty sets. Then
there is a function f: 4 = Usca Ao such that for each a in A, fla) is an
element of 4,.

Well-ordering Principle, Every set vap he well-ordered. That is, every
set is in 1-1 correspondence with a woll-ordered set.

Ordinal numbers. The ardina| numbers with which we are most famil-
iarare 0,1, 2.3, ... We can define ordinals in a manner which allows us (o
produce an ordered set of ordinals which includes infinite ordinals. We start
with the empty set, #. This zat corresponds to 0. The next ardinal, corre-
sponding Lo 1, is the set conlaining the empty set, {8} The next ordinal,
corresponding to 2, is the set of its predecessors, namely {§, {@}}. The next
ordinal, corresponding Lo 3, is the sot of its predecessors, {0, {0}, {0,{0)1}.

Continuing in this fashion, we can define each subsequent ordinal as the
set of its predecessors. For example, the first infinite nrdinal, called wy, is the
set {0, {@}, (@, {0}}, {8, {6}.{0.10})), ...} The nex: ordinal is called wy+ 1,
then wy + 2, wy +3,..., then 2uyg, 2wy + Loang Lo ihouis B4 Lokwg 42, ..
ete. Note Lhat everv ordinal number has an immediate sueressor; however,



not every ordinal has an immediate predecessor. For example, wy has no
immediate predecessor. Note also that each ordinal is a set and, consequently,
has a cardinality. The ordinal wq is the frst infinite ordinal ane has the sarme
cardinality as N. wy + 1 also has countalile cardinality, as do many others.

The first uncountahle ordinal is called wy. Every ordinal preceding it is
countable. The cardinality of w; is less than or equal io the cardinality of
2. However, the Continuim Hypothesis helow can be neither proved nor
disproved — it is independent of the Axioms of Set Theory.

Continunm Hypothesis. The real numbers Lave the cardinality as w,.

Ordinal numbers are well-ordersd. becanse the intersection of any set of
ardinals is the smallest ardinal in Lhe set. 80 every non-empty subsel has a
smallest element,

Theorem 1.19 Let [er hieo, be a countable set of ordinal numbers wlhere
each @, < wy. Then there is an ordinal 4 such that o, < { tor each i and
< Wi,

Theorem 1.20 Let {t;},.., be an infinite set of ordinals. Then there is an

vrdinal @3 such that for every ~ < 7 Lhere exists an gy with v < o, < #,




