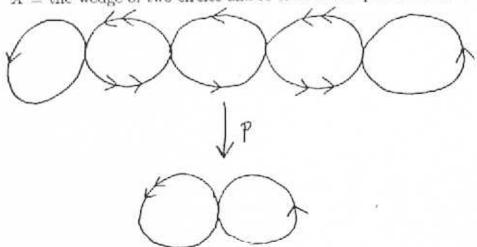
Covering Spaces

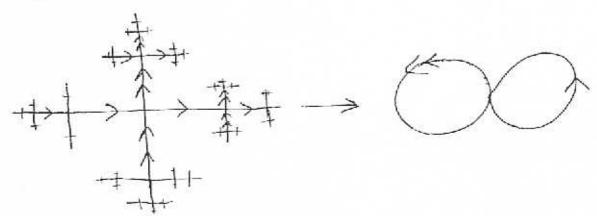
Definition. Let X, \widetilde{X} be connected, locally arc-wise connected spaces, and $p: \widetilde{X} \to X$ a continuous function. Then the pair (\widetilde{X}, p) is a covering space of X iff for all $x \in X$ there exists an open set U containing x such that p restricted to each component of $p^{-1}(U)$ is a homeomorphism onto U.

Example. Let $X = S^1$, $\tilde{X} = \mathbb{R}^1$, and $p : \mathbb{R}^1 \to S^1$ be defined by $p(t) = (\cos t, \sin t)$.

Example. $X \cong$ the wedge of two circles and \widetilde{X} is as in the picture below.

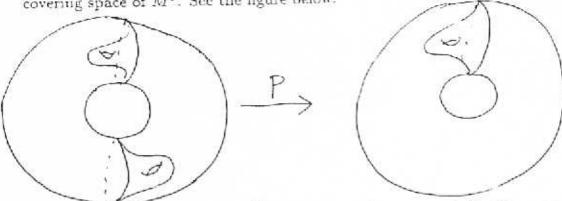


Example.



Example. Let Σ^2 be a PL non-separating, two-sided, properly embedded surface in a connected 3-manifold M^3 . Gluing two copies of $M^3 - N(\Sigma^2)$ together gives a

covering space of M3. See the figure below.



Theorem CS.1. Let (\tilde{X}, p) be a covering space of X. If $x, y \in X$, then $|p^{-1}(x)| = |p^{-1}(y)|$.

Definition. If (\widetilde{X}, p) is a covering space of a space X and $n = |p^{-1}(x)|$ for some $x \in X$, then (\widetilde{X}, p) is called an n-fold cover.

Exercise. Find two 2-fold covers of the Klein bottle.

Definition. Given a covering space (\tilde{X}, p) of X and a continuous function $f : Y \to X$, then a continuous function $\tilde{f} : Y \to \tilde{X}$ is called a lift of f if $p \circ \tilde{f} = f$.

Theorem CS.2. If (\widetilde{X}, p) is a cover of X, Y is connected, and $f, g : Y \to \widetilde{X}$ are continuous functions such that $p \circ f = p \circ g$, then $\{y \mid f(y) = g(y)\}$ is empty or all of Y.

Theorem CS.3. Let (\widetilde{X}, p) be a cover of X and let f be a path in X. Then for each $x_0 \in \widetilde{X}$ such that $p(x_0) = f(0)$, there exists a unique lift \widetilde{f} of f satisfying $\widetilde{f}(0) = x_0$.

Theorem CS.4. (Homotopy Lifting Lemma). Let (\widetilde{X}, p) be a cover of X and α, β two paths in X. If $\widetilde{\alpha}, \widetilde{\beta}$ are lifts of α, β satisfying $\widetilde{\alpha}(0) = \widetilde{\beta}(0)$, then $\widetilde{\alpha} \sim \widetilde{\beta}$ iff $\alpha \sim \beta$.

Theorem CS.5. Let (\widetilde{X}, p) be a cover of X, α a loop in X, and $\tilde{x}_0 \in \widetilde{X}$ such that $p(\bar{x}_0) = \alpha(0)$. Then α lifts to a loop based at \tilde{x}_0 iff $[\alpha] \in p_*(\pi_1(\widetilde{X}, \tilde{x}_0))$.

Exercise. $\pi_1(S^1) \cong \mathbb{Z}$.

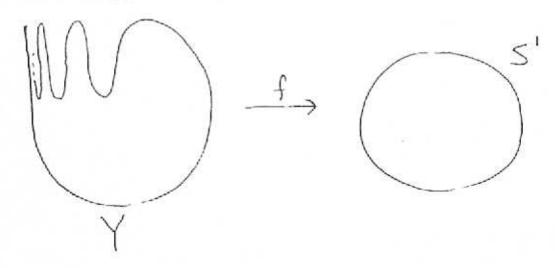
Theorem CS.6. If (\widetilde{X}, p) is a cover of X, then p, is a monomorphism (i.e., 1-1) from $\pi_1(\widetilde{X})$ into $\pi_1(X)$.

Theorem CS.7. Let (\widetilde{X}, p) be a cover of X, $x_0 \in X$, and \widetilde{X} be path connected. Fix $\tilde{x}_0 \in p^{-1}(x_0)$. Then a subgroup H of $\pi_1(X)$ is in $\{p_*(\pi_1(\widetilde{X}, \hat{x}))\}_{p(\tilde{x})=x_0}$ iff H is a conjugate of $p_*(\pi_1(\widetilde{X}, \hat{x}_0))$.

Theorem CS.8. Let (\widetilde{X}, p) be a cover of X and let \widetilde{X} be path connected. Choose $x \in X$, then $|p^{-1}(x)| = [\pi_1(x) : p_*(\pi_1(\widetilde{x}))].$

Example. Find a 3-fold cover (\widetilde{X}, p) of S^1 and describe $p_*(\pi_1(\widetilde{X}))$.

Exercise. Let $X = S^1$, $\widetilde{X} = \mathbb{R}$, (\widetilde{X}, p) be a covering space of X, and Y as in the figure. When does a map $f: Y \to X$ not have a lift?



Theorem CS.9. Let (\widetilde{X},p) be a covering space of X and $\widetilde{x}_0 \in \widetilde{X}$, $x_0 \in X$ with $p(\widetilde{x}_0) = x_0$. Also let $f: Y \to X$ be continuous where Y is connected and locally arc-wise connected and $y_0 \in Y$ such that $f(y_0) = x_0$. Then there is a lift $\widetilde{f}: Y \to \widetilde{X}$ such that $p \circ \widetilde{f} = f$ and $f(y_0) = \widetilde{x}_0$ iff $f_*(\pi_1(Y, y_0)) \subseteq p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$. Furthermore, \widetilde{f} is unique.

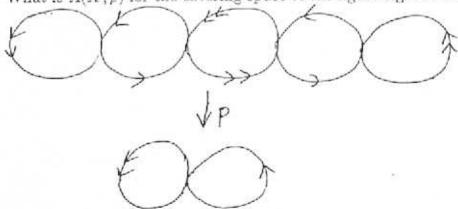
Definition. Let (\widetilde{X}_1, p_1) and (\widetilde{X}_2, p_2) be covering spaces of X. Then a map $f: \widetilde{X}_1 \to \widetilde{X}_2$ such that $p_2 \circ f = p_1$ is called a homomorphism. If there exists a

homomorphism $g: \tilde{X}_2 \to \tilde{X}_1$ such that f and g are inverses, then f is called an isomorphism.

Theorem CS.10. Let (\widetilde{X}_1, p_1) and (\widetilde{X}_2, p_2) be covering spaces of X. Let $\widetilde{x}_1 \in \widetilde{X}_1$ and $\widetilde{x}_2 \in X_2$ such that $p_1(x_1) = p_2(x_2)$. Then there is an isomorphism $f: \widetilde{X}_1 \to \widetilde{X}_2$ with $f(\widetilde{X}_1) = \widetilde{X}_2$ iff $p_*(\pi_1(\widetilde{X}_1, \widetilde{x}_1)) = p_*(\pi_1(\widetilde{X}_2, \widetilde{x}_2))$.

Definition. Let (\widetilde{X}, p) be a covering space. Then an isomorphism from \widetilde{X} to itself is called a covering transformation. The group of covering transformations is denoted $A(\widetilde{X}, p)$.

Exercise. What is $A(\tilde{X},p)$ for the covering space of the figure eight shown below.



Theorem CS.11. If (\widetilde{X}, p) is a covering space of X and $f \in A(\widetilde{X}, p)$, then $f = Id_{\widetilde{x}}$ iff f has a fixed point.

Definition. Let (\widetilde{X}, p) be a covering space of X. If $p_*(\pi_1(\widetilde{X})) \triangleleft \pi_1(X)$, then (\widetilde{X}, p) is a regular covering space.

Exercise. Find all regular 4-fold covering spaces of a figure eight.

Theorem CS.12. If (\widetilde{X}, p) is a regular cover of X and $x_1, x_2 \in \widetilde{X}$ such that $p(x_1) = p(x_2)$, then there exists a unique $h \in A(\widetilde{X}, p)$ such that $h(x_1) = x_2$.

Theorem CS.13. If (\widetilde{X}, p) is a regular covering space of x and f is a homomorphism from \widetilde{X} to \widetilde{X} , then $f \in A(\widetilde{X}, p)$.

Theorem CS.14. Let (\widetilde{X},p) be a regular covering space of X. Then $A(\widetilde{X},p)\cong \pi_1(x)/p_*(\pi_1(\widetilde{Y})).$

Definition. A space X is called semi-locally simply connected if every $x \in X$ is contained in an open set U such that every loop in U based at x is homotopically trivial in X.

Theorem CS.15. Let X be connected, locally arc-wise connected, and semi-locally simply connected. Then for every $G < \pi_1(X, x_0)$ there is a connected covering space (\widetilde{X}, p) of X and $\hat{x}_0 \in \widetilde{X}$ such that $p_*(\pi_1(\widetilde{X}, \hat{x}_0)) = G$. Furthermore, (\widetilde{X}, p) is unique up to isomorphism.

Definition. A connected, locally arc-wise connected cover is called universal if its fundamental group is trivial.

Theorem CS.16. Every connected, locally arc-wise connected, semi-locally simply connected space has a universal covering space.

Exercise. Find universal covers for the Klein bottle, torus, and projective plane. Then show explicitly that $A(\widetilde{X},p)\cong \pi_1(X)$.