2 General Topology

Definition 2.1 1. Suppose X is a set. Then T is a topology for X if and only if T is a collection of subsets of X such that

- (a) $\emptyset \in \mathcal{T}$,
- (b) $X \in \mathcal{T}$,
- (c) if $A \in \mathcal{T}$ and $B \in \mathcal{T}$, then $A \cap B \in \mathcal{T}$,
- (d) if $\{A_{\alpha}\}_{{\alpha}\in\lambda}$ is any collection of sets each of which is in \mathcal{T} , then $\bigcup_{{\alpha}\in\lambda}A_{\alpha}\in\mathcal{T}$.
- A topological space is an ordered pair (X, T) where X is a set and T is a topology for X.
- If (X, T) is a topological space, then U is an open set in (X, T) if and only if U ∈ T.

Several examples of topological spaces are listed below.

Example 2.1 For a set X, let 2^X be the set of all subsets of X. Then 2^X is called the discrete topology on X. The space $(X, 2^X)$ is called a discrete topological space.

Example 2.2 For a set X, $\{\emptyset, X\}$ is called the *indiscrete topology* for X. So $(X, \{\emptyset, X\})$ is an indiscrete topological space.

Example 2.3 For any set X, the finite complement topology for X is described as follows: a subset U of X is open if and only if $U = \emptyset$ or X - U is finite.

Example 2.4 Let \mathbb{R}^n be the set of all n-tuples of real numbers. We will define the distance d(x,y) between points $x=(x_1,x_2,\ldots,x_n)$ and $y=(y_1,y_2,\ldots,y_n)$ by the equation

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$
.

A topology T for \mathbb{R}^n is defined as follows: a subset U of \mathbb{R}^n belongs to T if and only if for each point p of U there is a positive number ε so that $\{x\mid d(p,x)<\varepsilon\}$ is a subset of U. This topology T is called the usual topology for \mathbb{R}^n .

Theorem 2.1 Let $\{U_i\}_{i=1}^n$ be a finite collection of open sets in a topological space (X, \mathcal{T}) . Then $\bigcap_{i=1}^n U_i$ is open.

Give an example to show that an infinite intersection of open sets need not be open.

Definition 2.2 . Let (X, \mathcal{T}) be a topological space, A be a subset of X, and p be a point in X. Then:

- p is a limit point of A if and only if for each open set U containing p,
 (U {p}) ∩ A ≠ Ø. Notice that p may or may not belong to A.
- If p ∈ A but p is not a limit point of A, then p is an isolated point of
 A.
- The closurc of A (denoted A or Cl(A)) is A together with all limit points of A.
- The set A is closed iff A contains all its limit points, i.e., A = A.

Theorem 2.2 Suppose $p \notin A$ in a topological space (X, \mathcal{T}) . Then p is not a limit point of A if and only if there exists an open set U with $p \in U$ and $U \cap A = \emptyset$.

Theorem 2.3 For any topological space (X,T) and subset A of X, \overline{A} is closed.

Theorem 2.4 Let X be a topological space. Then a subset A of X is closed if and only if X - A is open.

Theorem 2.5 Let X be a topological space. Let U be open and A be closed subsets of X. Then U-A is open.

Theorem 2.6 The union of finitely many closed sets in a topological space is closed.

Give an example to show that a union of infinitely many closed sets may not be closed.

Theorem 2.7 Let $\{A_{\alpha}\}_{{\alpha}\in\lambda}$ be a collection of closed subsets of a topological space X. Then $\bigcap_{{\alpha}\in\lambda}A_{\alpha}$ is closed.

Theorem 2.8 Suppose A is a subset of X, a topological space. Then \overline{A} equals the intersection of all closed sets containing A.

Theorem 2.9 Let A, B be subsets of a topological space X. Then

- 1. if $A \subset B$, then $\overline{A} \subset \overline{B}$; and
- 2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Definition 2.3 Let \mathcal{T} be a topology on a set X and let \mathcal{B} be a subset of \mathcal{T} . Then \mathcal{B} is a basis for the topology \mathcal{T} if and only if every element of \mathcal{T} is the union of elements in \mathcal{B} .

Theorem 2.10 Let (X, T) be a topological space and \mathcal{B} be a collection of subsets of X. Then \mathcal{B} is a basis for \mathcal{T} if and only if $\mathcal{B} \subset \mathcal{T}$, $\phi \in \mathcal{B}$, and for each set U in \mathcal{T} and point p in U there is a set V in \mathcal{B} such that $p \in V \subset U$.

Theorem 2.11 Let $\mathcal{B}_1 = \{(a,b) \subset \mathbb{R}^1 \mid a \text{ and } b \text{ are rational numbers}\}$. Then \mathcal{B}_1 is a basis for the usual topology on \mathbb{R}^1 . Let $\mathcal{B}_2 = \{(a,b) \cup (c,d) \subset \mathbb{R}^1 \mid a,b,c \text{ and } d \text{ are irrational numbers}\}$. Then \mathcal{B}_2 is also a basis for the usual topology on \mathbb{R}^1 .

Suppose you are given a set X and a collection \mathcal{B} of subsets of X. Under what circumstances is \mathcal{B} a basis for a topology on X? This question is answered in the following theorem.

Theorem 2.12 Suppose X is a set and B is a collection of subsets of X. Then B is a basis for a topology for X if and only if the following conditions hold.

- 1. $\emptyset \in \mathcal{B}$
- 2. for each point p in X there is a set U in B with $p \in U$, and
- 3. if U and V are sets in $\mathcal B$ and p is a point in $U\cap V$, there is a set W in $\mathcal B$ so that $p\in W\subset (U\cap V)$.

Theorem 12 allows one to describe topological spaces by first specifying a set X and then a collection $\mathcal B$ of subsets of X which satisfy the conditions of Theorem 12. The topology $\mathcal T$ whose basis is $\mathcal B$ is thereby described.

Example 2.5 \mathbb{R}^1 (bad). The points of \mathbb{R}^1 (bad) are the reals. A basis for the topology of \mathbb{R}^1 (bad) consists of all sets of the form $[a,b) = \{x \in \mathbb{R}^1 \mid a \leq x < b\}$.

Show that every open set in the usual topology on \mathbb{R}^1 is open in \mathbb{R}^1 (bad).

Definition 2.4 Suppose X is a set. A function d from $X \times X$ into \mathbb{R}^1_+ , the non-negative reals, is a *metric* for X if and only if the following conditions are satisfied.

- 1. d(x, y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x), and
- 3. $d(x, z) \le d(x, y) + d(y, z)$.

If d is a metric for X, then d(x,y) is called the distance from x to y. Suppose X is a set, d is a metric for $X, p \in X$, and $\varepsilon \in \mathbb{R}^1_+$. Then the open ε ball about p is defined by $B_{\varepsilon}(p) = \{x \in X \mid d(x,p) < \varepsilon\}$. The d-metric topology for X is the topology whose basis is all the $B_{\varepsilon}(p)$'s.

Theorem 2.13 Let d be a metric on a space X. Then the collection of all open ε balls is a basis.

Now suppose that (X, \mathcal{T}) is a topological space. Then (X, \mathcal{T}) is a metric space (or metrizable) iff there is a metric d on X for which \mathcal{T} is the d-metric topology. If X is a metric space, then the statement that d is a metric for X means that the d-metric topology is the topology for X.

Notice that different metrics may generate the same topology. As an exercise find several metrics for \mathbb{R}^n .

Theorem 2.14 Let X be a metric space and let a > 0. Then $\mathcal{B} = \{B_{\varepsilon}(p) \mid p \in X, \varepsilon < a\}$ is a basis for the d-metric topology on X.

Theorem 2.15 If X is a metric space with topology \mathcal{T} , then there is a metric d for X that generates \mathcal{T} such that for each $x,y\in X,\,d(x,y)<1$.

Example 2.6 Let X be a set totally ordered by <. Let $\mathcal B$ be the collection of all subsets of X of one of the following three forms: $\{x \in X \mid x < a \text{ for some } a \in X\}$, $\{x \in X \mid a < x \text{ for some } a \in X\}$, or $\{x \in X \mid a < x < b \text{ for some } a, b \in X\}$. Then $\mathcal B$ is a basis for a topology $\mathcal T$ on X. The topology $\mathcal T$ is called the order topology for X.

Example 2.7 The usual topology \mathbb{R}^1 is the order topology given by the usual order.

Example 2.8 For each ordinal α , the predecessors of α with the order topology form a space called α .

Definition 2.5 Let (X, \mathcal{T}) be a topological space and let S be a collection of subsets of X. Then S is a *sub-basis* of \mathcal{T} if and only if the collection \mathcal{B} of all finite intersections of sets in S is a basis for \mathcal{T} .

Theorem 2.16 A basis for a topology is also a subbasis.

Theorem 2.17 Let (X, \mathcal{T}) be a topological space and let \mathcal{S} be a collection of subsets of X. Then \mathcal{S} is a sub-basis for \mathcal{T} if and only if each element of \mathcal{S} is in \mathcal{T} , there is a finite collection $\{V_i\}_{i=1}^n$ of elements of \mathcal{S} such that $\bigcap_{i=1}^n V_i = \emptyset$, and for each set U in \mathcal{T} and point p in U there is a finite collection $\{V_i\}_{i=1}^n$ of elements of \mathcal{S} such that

$$p \in \bigcap_{i=1}^{n} V_i$$
 and $\bigcap_{i=1}^{n} V_i \subset U$.

Theorem 2.18 Let S be the collection of all subsets of \mathbb{R}^1 of one of the following two forms: $\{x \mid x < a \text{ for some } a \in \mathbb{R}^1\}$ and $\{x \mid a < x \text{ for some } a \in \mathbb{R}^1\}$. Then S is a sub-basis for \mathbb{R}^1 with the usual topology.

We seek to answer the question of when a given collection S of subsets of a set X is a sub-basis for a topology on X.

Theorem 2.19 Let S be a collection of subsets of a set X. Then S is a sub-basis for a topology on X if and only if every point of X is in some element of S and there are sets $\{U_i\}_{i=1}^n$ in S so that

$$\bigcap_{i=1}^{n} U_i = \emptyset.$$

Theorem 19 can be used to describe topologies by presenting a sub-basis for them.

Example 2.9 Let 2^X be the set of all functions from the set X into the two point set $\{0,1\}$. Let S be the collection of all subsets of 2^X of the form $U(x,\varepsilon)=\{f\in 2^X\mid f(x)=\varepsilon\}$ where $\varepsilon=0$ or 1. Let T be the topology on 2^X with sub-basis S. (This topology is really the product topology, but we will not give a general definition of product topology until later.)

Question 2.1 Under what conditions are two basic open sets in Example 9 disjoint?

Theorem 2.20 Suppose (X, \mathcal{T}) is a topological space, $Y \subset X$, and $\mathcal{T}_Y = \{U \mid \text{for some } V \text{ in } \mathcal{T}, U = V \cap Y\}$. Then \mathcal{T}_Y is a topology for Y.

Theorem 20 allows us to define a topology on a subset Y of X when (X, T) is a topological space. The topology T_Y of Y of Theorem 20 is called the relative topology or subspace topology. The topological space (Y, S) is a subspace of (X, T) if and only if Y is a subset of X and S is the relative topology on Y.

Theorem 2.21 If X is a metric space and $Y \subset X$, then Y is a metric space.