## 6 Continuity and homeomorphisms

Definition 6.1 Let X and Y be topological spaces. A function  $f: X \to Y$  is a continuous function if and only if for every open set U in Y,  $f^{-1}(U)$  is open in X.

Theorem 6.1 Let  $f: X \to Y$  be a function. Then the following are equivalent:

- f is continuous.
- for every closed set K in Y, f<sup>-1</sup>(K) is closed in X,
- if p is a limit point of A in X, then f(p) belongs to Cl(f(A)).

Theorem 6.2 Let X be a metric space and Y a topological space. Then a function  $f: X \to Y$  is continuous if and only if for each convergent sequence  $x_n \to x$ ,  $f(x_n)$  converges to f(x).

**Theorem 6.3** Let X be a compact space and let  $f: X \to Y$  be a continuous function that is onto. Then Y is compact.

Theorem 6.4 Let X be a separable space and let  $f: X \to Y$  be a continuous, onto map. Then Y is separable.

Theorem 6.5 Let A and B be disjoint closed sets in a normal space X. Then for each diadic rational r (that is, r can be written as a quotient of integers with denominator a power of 2) there exists an open set  $U_r$  such that  $A \subset U_0$ ,  $B \subset (X - U_1)$ , and for r < s,  $\operatorname{Cl}(U_r) \subset U_s$ .

Theorem 6.6 (Urysohn's Lemma) A space X is normal if and only if for each pair of disjoint closed sets A and B in X, there exists a continuous function  $f: X \to [0,1]$  such that  $A \subset f^{-1}(0)$  and  $B \subset f^{-1}(1)$ .

Theorem 6.7 Let X be a normal space, A be a closed subset of X, and  $f: A \to [0,1]$  be a continuous function. Then for any r in (0,1), there is an open set  $U_r$  in X such that  $f^{-1}([0,r)) = U_r \cap A$  and  $\overline{U}_r \cap A \subset f^{-1}([0,r])$ .

Theorem 6.8 (The Tietze Extension Theorem) A space X is normal if and only if every continuous function f from a closed set A in X into [0,1] can be extended to a continuous function  $F:X\to [0,1]$ . (F extends f means for each point x in A, F(x)=f(x).)

Theorem 6.9 (The Tietze Extension Theorem) A space X is normal if and only if every continuous function f from a closed set A in X into (0,1) can be extended to a continuous function  $F:X\to (0,1)$ . ( $\mathbb{R}^1$  could be substituted for (0,1) in this theorem.)

Theorem 6.10 If X and Y are metric spaces with metrics  $d_X$  and  $d_Y$  respectively, then a function  $f: X \to Y$  is continuous if and only if for each point x in X and  $\varepsilon > 0$ , there is a  $\delta > 0$  such that for each  $y \in X$  with  $d_X(x,y) < \delta$ , then  $d_Y(f(x),f(y)) < \varepsilon$ .

Definition 6.2 A function f from a metric space  $(X, d_X)$  to a metric space  $(Y, d_Y)$  is uniformly continuous if and only if for each  $\varepsilon > 0$  there is a  $\delta > 0$  such that for every  $x, y \in X$ , if  $d_X(x, y) < \delta$ , then  $d_Y(f(x), f(y)) < \varepsilon$ .

Give an example of a continuous function from  $\mathbb{R}^1$  to  $\mathbb{R}^1$  which is not uniformly continuous.

**Theorem 6.11** Let  $f: X \to Y$  be a continuous function from a compact metric space to a metric space Y. Then f is uniformly continuous for any choice of metrics for X and Y.

Definition 6.3 . A sequence  $\{a_i\}_{i\in\omega_0}$  in a metric space X is Cauchy if and only if for every  $\varepsilon>0$ , there exists an N such that for every i,j>N,  $d(a_i,a_j)<\varepsilon$ .

Let  $d_X$  be a metric for a topology on a metric space X.  $(X, d_X)$  is complete if and only if every Cauchy sequence converges.

Theorem 6.12 Let  $f_i:(X,d_X)\to (Y\text{ complete},d_Y)$   $(i\in\omega)$  be a sequence of continuous functions such that for each  $i\in\omega$ , and point x in X,  $d_Y(f_i(x),f_{i+1}(x))<1/2^i$ . Then  $\lim_{i\to\infty} f_i$  exists and is continuous.

Definition 6.4 A continuous function  $f: X \to Y$  is closed (resp. open) if and only if for every closed (resp. open) set A in X, f(A) is closed (resp. open) in Y.

Theorem 6.13 Let X be compact and Y Hausdorff. Then any continuous function  $f:X\to Y$  is closed.

Definition 6.5 A function  $f: X \to Y$  is a homeomorphism if and only if f is continuous, 1-1 and onto and  $f^{-1}: Y \to X$  is also continuous.

Theorem 6.14 For a continuous function  $f:X\to Y$ , the following are equivalent:

- a) f is a homeomorphism.
- b) f is 1-1, onto and closed.
- c) f is 1-1, onto and open.

Definition 6.6 Spaces X and Y are homeomorphic if and only if there is a homeomorphism  $f: X \to Y$ .

Theorem 6.15 For points a < b in  $\mathbb{R}^1$ , the interval (a, b) is homeomorphic to  $\mathbb{R}^1$ .

Theorem 6.16 Suppose  $f: X \to Y$  is a 1-1 and onto continuous function, X is compact and Y is Hausdorff. Then f is a homeomorphism.

Theorem 6.17 Let  $f: X \to Y$  be a function. Suppose  $X = A \cup B$  where A and B are closed subsets of X. If  $f \mid A$  is continuous and  $f \mid B$  is continuous, then f is continuous.