Products

Let $\{X_{\alpha}\}_{{\alpha}\in\lambda}$ be a collection of spaces. The product $\prod_{{\alpha}\in\lambda}X_{\alpha}$, or Cartesian product, is a generalization of the familiar n-tuples. Define $\prod_{\alpha \in \lambda} X_{\alpha}$ to be $\{f: \lambda \to \bigcup_{\alpha \in \lambda} X_{\alpha} \mid f(\alpha) \in X_{\alpha}\}$. So a point in $\prod_{\alpha \in \lambda} X_{\alpha}$ can be thought of as a function from the indexing set into $\bigcup_{\alpha \in \lambda} X_{\alpha}$. If $f \in \prod_{\alpha \in \lambda} X_{\alpha}$, $f(\alpha)$ is the α^{th} coordinate of f. We could write f as $\{f_{\alpha}\}_{\alpha \in \lambda}$ where $f(\alpha) = f_{\alpha}$.

For each β in λ , define the projection function $\pi_{\beta}: \prod_{\alpha \in \lambda} X_{\alpha} \to X_{\beta}$ by $\pi_{\beta}(f) = f(\beta)$. A subbasis for the product topology on $\prod_{\alpha \in \lambda} X_{\alpha}$ is the collection of all sets of the form $\pi_{\beta}^{-1}(U_{\beta})$ where U_{β} is open in X_{β} . Why is it

appropriate to refer to this topology as the finite gate topology?

Theorem 7.1 The space 2^X described before is really the product $\prod_{x \in X} \{0, 1\}_x$.

Theorem 7.2 The function $\pi_{\beta}: \prod_{\alpha \in \lambda} X_{\alpha} \to X_{\beta}$ is a continuous, open, onto

Theorem 7.3 The function $\pi_{\beta}: \prod_{\alpha \in \lambda} X_{\alpha} \to X_{\beta}$ need not be closed.

Theorem 7.4 A function $g: Y \to \prod_{\alpha \in \lambda} X_{\alpha}$ is continuous if and only if $\pi_{\beta} \circ g$ is continuous for each β in λ .

Theorem 7.5 Let $\{X_i\}_{i\in\omega}$ be a countable collection of metric spaces. Then $\prod_{i \in \omega} X_i$ is a metric space.

Theorem 7.6 The space \mathbb{R}^n is homeomorphic to $\prod_{i=1}^n \mathbb{R}^1_i$ where $\mathbb{R}^1_i = \mathbb{R}^1$.

Theorem 7.7 \mathbb{R}^1 (bad) is normal, but \mathbb{R}^1 (bad) $\times \mathbb{R}^1$ (bad) is not normal.

Theorem 7.8 Let $\{X_{\beta}\}_{\beta\in\mu}$ be a collection of Hausdorff (resp. regular) spaces. Then $\prod_{\beta \in \mu} X_{\beta}$ is Hausdorff (resp. regular).

Theorem 7.9 Let $\{X_{\beta}\}_{{\beta}\in\mu}$ be a collection of separable spaces where $|\mu| \leq$ 2^{ω_0} , then $\prod_{\beta \in \mu} X_{\beta}$ is separable.

Theorem 7.10 Let $\{X_{\beta}\}_{\beta\in\mu}$ be a collection of separable spaces. $\prod_{\beta \in \mu} X_{\beta}$ has the Souslin property.

Theorem 7.11 (The Tychonoff Theorem) Let $\{X_{\beta}\}_{\beta\in\mu}$ be a collection of compact spaces. Then $\prod_{\beta \in \mu} X_{\beta}$ is compact.

Definition 7.1 A space X is completely regular if and only if for each point p and open set U with $p \in U$, there is a continuous function $f: X \to [0,1]$ such that f(p) = 0 and f(X - U) = 1.

Theorem 7.12 Let X be a completely regular, T_1 space. Then X can be embedded in a product of [0,1]'s.