8 Connectedness
Definition 8.1 .
1. Subsets A, B of X are separated iland only if AN B = AN E = @.

2. A space X is connecled if and only if X is nol the union of fwo non-
empty separated sets. The notation X = A|Bmeans X = AUB and
A and B are separated sets.

Theorem 8.1 The following are equivalent.

1. X is connected;

=

there is no continuous function f: X = & such that f(X) = {0,1};

-

- X is not the union of two non-empty, disjoint open sets:

i

- X is not the union of two non-empty, disjoint ¢losed sets.
Theorem 8.2 The space ! is conneeted.

Theorem 8.3 Let A, B be separated subsels of » space X, If 7 is a con-
nected subiset of 4 (4 B,then C'c A, or C ¢ B.

Theorem 8.4 Lat C be a connected subset of X. If [} is & subset of X =0
that © C D C T, then I s connected,

Exarnple 8,1 . Let

" 1
X={Ew e |v=0,ye -1} Jf(ey) e 2 s e (0.1], g =sin~}.
This example is the closure of Lthe sin1/2 curve,
Theorem 8.5 The closure of the sin 1/ curve is connested.

Theorem 8.6 Let {Ca}aea be a collection of connected subsets of X and &
be another conneeted oy bset of X so that for sach o inA ENC, #0. Then
EUlUpes Ca) is comnected.

Theorem 8.7 Let 7. x o2y 1, 4 continuous function, If X ig connected,
then V is connected.



Theorem 8.8 For spaces X and ¥V, X %Y is connected if and only if each
of X and ¥ is connected.

Theorem 8.9 For spaces {Xa}oea, [Tacy X is connected il and only if for
each o in A, X, is connected.

Theorem 8.10 Let A be a countable subset of B* (n > 2). Then B* — A4 is
conneeted,

Theorem 8.11 Let X he a countable, regular, T} space. Then X is not
connected.

Theorem B.12 Let X be a connected space, C' a connected subsel of X,
and X —=C=A4|B. Then AUC and BLUC are each connected.

Definition 8.2 Let X bea space and p € X. The component of pin X is
the union of all connected subsets of X which contain p,

Theorem 8.13 Each component of X is connected and closed.

Theorem 8.14 Let 4 and B be closed subsets of & compact, Hausdor(t
space X such that no component interseets hoth A and B. Then X = JT | K
where AC I and B« K

Example 8.2 . This example will demonstrate the necessity of the “com-
pactness” hypothesis of Theorem®$# Lot A be the subset of g2 equal to
([0,1] x Upe {1/2)) U{(0.0),(1,0)}. Show that the conelusion to Theorem Be=§, 14/
fails when A = {(0,0)} and B = {(1,0)}.

Definition 8.3 A contingum is 4 connecled, compact, Hausdorf space.

Theorem B.15 Let IV be a proper, open subset of a continuum X. Then
each component of I cantains a point of Bd {7 (Note: BAU =T — [/ )

Theorem 8.16 (“Tu the Loundary™ thearem.) Tet IV be a pIoper, open
subset of a continuum Then each component of {7 has a limit point on
B4 T,

Theorem 8.17 No continuum X is the union of a countable number (>1)
of disjoint closed subsers.
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Example 8.3 This example shows the necessit ¥y of the compactiness hypath-

nsis on X "
cemge. B

i
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The example X pictured alove is a subset of tle plane which is the uniony of
a countable nnmber of ares 3¢ shown. Show that X is contecter,

Theorem 8.18 [ {C }iew be a collection of continua such that for each i
Ciiy €' C;. Then MNiew C; is a continun,,

Theorem 8.19 Leg {Cs)ocs be a collection of continua indexed by a well-
ordered set A such that il e < /3, then Ca € C,. Then Meea Co is a contin-
unm.

Definition 8.4 Tat X be a connected ser. A pointpin X isa non-sepurating
point if and only if X — {7} is connected. Otherwise pis a fepurating point,.

Theorem 8.20 Lo x be & continuum, p he apointof X, and X - {p}=H | K.
Then HU{p} is a cont inuumand if g # pisa non-separating point of H i {o}.
then g is a non-separating point of X

Thearerm B.21 Lel X be 4 metric continuum. Then X has al lcast twn
Non-separating points.

Theorem 8.22 Let X he a continuum. They X hias at [east two non-
SCparating points,

Theorem 528 Lot ¥ haa Inetric conlinunm with exactly tuwgp non-separating
points. Then X s homeomarphic 1y o, 11
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Definition 8.5 A space X is lacally connected at the point pof X if and
only if for each open set 7 containing p, there is a connected apen set ¥ such
that p € V © /. A space X is locally connected if and only if il is locally
connected at each point.

Theorem 8.24 The [ollowing are equivalent:
A 15 locally connected,
X has a basis of connected open sets.

For each pin X and open set U containing p, the component of p in 7 is
open.

For each p in X and open set U/ containing p, there is a connected set € so
that p€ Int C C C c [J,

For each pin X and open set 1/ containing p, Lhere is an open set V contain iy,
pand V' C (the component of p in L,

Thearem 8.25 Let X bea locally conneeted space and S X =V be an
onto, closed or open map. Then ¥ e lucally connected.

Definition 8.6 A Peano Continwum is a lncally connected metric contin-
uuImn.

Theorem 8.26 A HausdarfT space X is a Peano Continnum if and only if
X is the image of [0, 1] under 2 continuous [unction.

Definition 8.7 1. A space X is arc-unse connected if and omnly if for each
pair of points p, g © X there is an embedding & : [0,1] — X such that
h{0) = p and h(l) = gq.

2. A space X is locelly gre-wise connected at pif and only if for each open
set U containing p there is an open set 7 containing p such that for
each pair of points = ¥ € V, there is an arc in [/ which contains z and
y. (Note: “an are” means the homeomarphic image of |0, 1])

3. A space is locally arc-unse connected If and only if is locally arc-wise
connected ar each point.

Theorem 8.27 An are-wise connected space is conneeted.
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‘Theorem 8.28 A lucal) ¥ arc-wise counected space is lorally connected.

Theorem 8.99 A Peano Continuum is dre-wise conuecterd and locally are-
wise connected.

Theorem 8.30 Ap UPEN, connected subset of a Peanc Continuumn is arc.
Wise connectod.
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