Fundamental Group

Definition. Given topological spaces X, Y and $S \subset X$, then two continuous functions $f, g: X \to Y$ are homotopic relative to S iff there is a continuous function $H: X \times [0, 1] \to Y$ such that

$$H(x,1) = g(x)$$
 for every $x \in X$;

$$H(x,0) = f(x)$$
 for every $x \in X$; and

$$H(x,t)=f(x)=g(x)$$
 for every $x\in S$ and $t\in [0,1]$.

Theorem FG.1. Given topological spaces X, Y and $S \subset X$, show that being homotopic relative to S is an equivalence relation on the set of all continuous functions from X to Y.

Definition. A continuous function $\alpha:[0,1]\to X$ is a path. If $\alpha(0)=\alpha(1)=x_0$, then α is a loop (or closed path) based at x_0 .

Definition. Let α be a path, then α^{-1} is the path defined by $\alpha^{-1}(t) = \alpha(1-t)$. Two paths α, β are equivalent, denoted $\alpha \sim \beta$, iff α and β are homotopic relative to $\{0, 1\}$. Denote the equivalence class of paths equivalent to α by $[\alpha]$.

Definition. Let α, β be paths with $\alpha(1) = \beta(0)$. Then their product, denoted $\alpha \cdot \beta$, is the path defined by

$$\alpha \cdot \beta(t) = \left\{ \begin{array}{ll} \alpha(2t) & , & 0 \leq t \leq \frac{1}{2} \ ; \\ \beta(2t-1) & , & \frac{1}{2} < t \leq 1 \ . \end{array} \right.$$

Theorem FG.2. If $\alpha \sim \alpha'$, then $\beta \cdot \alpha \sim \beta \cdot \alpha'$. (Thus products of paths can be extended to products of equivalence relations.)

Theorem FG.3. Given α, β , and γ , then $(\alpha \cdot \beta) \cdot \gamma \sim \alpha \cdot (\beta \cdot \gamma)$ and $\alpha^{-1} \cdot \alpha \sim$ constant map.

Theorem FG.4. Let $x_0 \in X$, a topological space. Then the set of equivalence classes of loops based at x_0 with binary operation $[\alpha][\beta] = [\alpha \cdot \beta]$ is a group.

Definition. The above mentioned group is called the Fundamental Group of X based at x_0 and is denoted $\pi_1(X, x_0)$.

Theorem FG.5. Suppose X is a topological space and $p, q \in X$ lie in the same path component. Then $\pi_1(X, p)$ is isomorphic to $\pi_1(X, q)$.

Corollary FG.6. If X is path connected, then $\pi_1(X, p) \cong \pi_1(X, q)$ for any points $p, q \in X$.

Hence, for path connected spaces X, we sometimes just write $\pi_1(X)$ for the fundamental group.

Examples.

- 1. $\pi_1([0,1]) = 1$
- 2. $\pi_1(S^2) = 1$
- π₁(S¹) = Z
- π₁ (cone over Hawaiian earring) = 1.

Definition. Let $f: X \to Y$ be a continuous function. Then $f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$ defined by $f_*([\alpha]) = [f \circ \alpha]$ is called the induced homomorphism on fundamental groups. (Check that f_* is well-defined.)

Theorem FG.7. If $g: X \to Y$, $f: Y \to Z$ are continuous functions, then $(f \circ g)_* = f_* \circ g_*$.

Theorem FG.8. If $f,g:X\to Y$ are continuous functions and $f\sim g$, then $f_*=g_*$.

Definition. Let $A \subset X$. Then $r: X \to A$ is a strong deformation retract iff there is a homotopy $R: X \times [0,1] \to X$ such that R(x,0) = x and R(x,1) = r(x), for all $x \in X$; and R(a,t) = a for each $a \in A$ and $t \in [0,1]$.

Theorem FG.9. If $r: X \to A$ is a strong deformation retract and $a \in A$, then $\pi_1(X, a) \cong \pi_1(A, a)$.

Definitions.

- X is contractible iff the identity map of X is homotopic to a constant map.
- If X is path connected and π₁(X) = 1, then X is simply connected.

Theorem FG.10. A contractible space is simply connected.

Theorem FG.11. Let X, Y be path connected spaces. Then $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$.

Theorem FG.12. Let $X = U \cup V$ where U and V are open, path connected, and simply connected subsets of X and $U \cap V$ is path connected. Then X is simply connected.

Theorem FG.13. Let $X = U \cup V$, where U, V are open, path connected subsets of $X, U \cap V$ is path connected and simply connected, and $x \in U \cap V$. Then $\pi_1(X, x) \cong \pi_1(U, x) * \pi_1(V, x)$.

Theorem FG.14. π_1 (projective plane) $\cong \mathbb{Z}_2$.

Theorem FG.15. $\pi_1(\infty) \cong \mathbb{Z} * \mathbb{Z}$.

Example. Let X be two cones over the Hawaiian earring identified at a point as in the figure below. Show that $\pi(X) \not\cong 1$.

Theorem FG.16. (Van Kampen's Theorem). Let $X = U \cup V$, where U, V are open and path connected and $U \cap V$ is path connected and non-empty. Let $x \in U \cap V$. Then $\pi_1(X,x) \cong \frac{\pi_1(U,x) \cdot \pi_1(V,x)}{N}$ where N is the smallest normal subgroup containing $\{i_*(\alpha)j_*(\alpha^{-1})\}_{\alpha \in \pi_1(U \cap V,x)}$ and i,j are the inclusion maps of $U \cap V$ in U and V respectively.

Exercise. Compute π_1 (Klein Bottle).