
1 Introduction

General relativity predicts, among other things, that waves in the metric of spacetime form

a valid solution to the equations governing gravitation. Since this prediction was made,

much effort has been put into various attempts to detect this gravitational radiation, or

gravitational waves. There are two main reasons one might wish to detect gravitational ra-

diation. Firstly, attempts to detect gravitational waves serve as a test of general relativity.

Gravitational waves are a somewhat surprising prediction of relativity which is distinctly

non-Newtonian (or post-Newtonian, as the literature would have it.) If gravitational waves

are detected, their existence would provide a partial confirmation of the theory. Alterna-

tively, if gravitational waves were not detected in systems where they are expected, this

result would suggest that the theory is incomplete or wrong. Secondly, if gravitational

radiation could be reliably detected, then it would provide a new method with which to

observe the universe. Astronomers speculate that the study of gravitational radiation from

such objects as supernovae and quasars would give a much better understanding of those

systems. There is also the possibility that gravitational radiation will allow us to discover

and study completely new phenomena.

In this report, I will focus primarily on the successful detection of gravitational radiation

in the PSR1913+16 binary pulsar system discovered by Hulse and Taylor in 1974, and show

that this result confirmed the predictions of general relativity for a binary system. Section

2 provides a brief review of gravitational waves; section 3 discusses the expected effects and

sources of gravitational radiation, and reviews some techniques currently being employed

to attempt the direct detection of gravitational radiation. Finally, section 4 discusses the

indirect detection of gravitational radiation in the binary pulsar system.

2 Background

The material in this section is derived largely from Schutz [5], but also from Wald [11].

Einstein’s equation states that the gravitational tensor Gab = Rab − 1
2
Rgab is governed by

Gab = 8πTab (1)

where Tab is the stress energy tensor. In the case where gravity is comparably weak,

spacetime is nearly flat, so we can choose coordinates in which the metric gab is close to
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the metric ηab of flat spacetime. Therefore we have

gab = ηab + hab (2)

where hab is a very small correction to the flat spacetime metric. A change of coordinates

xa → xa + ξa(xb) (3)

leaves these equations unchanged, and can be expressed equivalently as a change to hab:

hab → hab − ξa,b − ξb,a (4)

This gauge transformation can be used to simplify Einstein’s equation by choosing ξ such

that

h
µν

,ν = 0 (5)

where h
αβ

= hαβ − 1
2
ηαβh, and h is the trace h = hα

α = ηαβhβα of hab. In this gauge,

Gab = −1
2
4hµν

to first order, where 4 is the D’Alembertian operator, defined by

4f = (− ∂2

∂t2
+∇2)f = ηµνf,mn (6)

The D’Alembertian operator is also sometimes represented by a square, but I can’t figure

out how to make a square in LaTeX, so here we are. Returning to the topic at hand,

Einstein’s equation then gives

4hµν
= −16πT µν (7)

This is just an inhomogeneous three dimensional wave equation in each component of h
µν

.

In a vacuum, T µν = 0, so we expect solutions of the form

h
αβ

= Aαβeikµxµ

(8)

These oscillations in the metric are called gravitational waves. Rewriting equation (7)

using equation (6), and plugging in equation (8), we can obtain the condition that kν be

a null vector. Furthermore, equation (5) can be used to give the condition Aαβkβ = 0, so

the amplitudes Aαβ must be orthogonal to the direction of travel k. Additionally, further

gauge transformations of the form (4), with (− ∂2

∂t2
+ ∇2)ξα = 0, can be used to impose

conditions

Aα
α = 0 and AαβU

β = 0 (9)
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for some fixed four-velocity U . Choosing U to be the time basis vector, and letting the

direction of wave travel be in the z-direction, we can express A in matrix form. Then only

Ayx = Axy, and Axx = Ayy are nonzero. This last set of gauge transformations, together

with the previous gauges, is called a transverse traceless set of gauge conditions, and the

radiation gauges are usually denoted hTT
αβ . However, for the rest of this report, I will be

using the transverse traceless gauge unless otherwise indicated, so I will simply use hαβ to

denote the transverse traceless gauge.

3 Effects and Sources

Gravitational waves are clearly a phenomenon not predicted by the Newtonian theory of

gravity, but it remains to check precisely what effect a gravitational wave might have on

the motion of massive particles. To do this, consider two free particles separated by a

vector ξ, orthogonal to the direction of wave travel. Then ξ obeys the geodesic deviation

equation
d2

dτ 2
ξa = Rα

µνβU
µU νξβ (10)

where U is the four-velocity of the two particles [5]. To first order, we have U ≈ (1, 0, 0, 0),

so the above equation simplifies to

∂2

∂t2
ξa = Rα

00βξ
β (11)

Plugging equation (2) into the expression for the Riemann curvature tensor gives the

following expression for Rαβµν

Rαβµν =
1

2
(hαν,βµ + hβµ,αν − hαµ,βν − hβν,αµ) (12)

In the transverse traceless gauge, we can then calculate the relevant components of the

Riemann tensor to be

Rα
00β =

1

2

∂2hαβ

∂t2
(13)

so
∂2

∂t2
ξa =

1

2

∂2hαβ

∂t2
ξβ (14)

Choosing coordinates such that ξ is in the x direction, and approximating ξα by (0, ε, 0, 0)

gives
∂2

∂t2
ξx =

1

2
ε
∂2hxx

∂t2
(15)

3



and
∂2

∂t2
ξy =

1

2
ε
∂2hxy

∂t2
(16)

where the wave travels in the z direction [5].

Since hαβ oscillate with time, we should expect the particles to behave as if experiencing

a small periodic force. The amplitude of this force depends on the degree of separation

ε, but also more importantly on the radiation gauge components hαβ. The expected size

of hαβ depend in turn on the source of the waves. In general, nearby astronomical events

are expected to generate gravitational waves far too small to be detected using current

technology. Given two identical masses of massm, at an initial distance L0 apart, oscillating

with an amplitude A and frequency ω, a calculation of Schutz shows that the expected

value of hxx is given by

hxx =
−2mω2

r
(L0A cos(ω(r − t)) + 2A2cos(2ω(r − t))) (17)

where r is the distance of the observer from the centre of this apparatus [5]. However, the

above equation can be used to get some good order of magnitude estimates for gravitational

wave effects from various sources. Schutz uses the values m = 103kg = 7 × 10−24m,

L0 = 1m, A = 10−4m, and ω = 104s−1 = 3 × 10−4m to produce the result that hxx has

oscillations of amplitude a ' 10−34

r
[5]. The energy carried by this wave, in Joules, is given

by U = 1
2
c2ω2a2 where a is the amplitude of oscillations in hxx [3]. Thus for the wave

with amplitude 10−34

r
, and frequency ω = 104s−1 we get energy on the order of 10−44J ,

which are far too small to be detected. Generally speaking, then, events on or around the

Earth do not produce detectable gravitational radiation. Scaling up the masses, distances,

and speeds to astronomical scales, involves increasing the magnitudes of m, L0, and A,

but also decreasing ω and increasing r, so a system of orbiting stars, approximated by a

set of sun-like masses on springs, might have effects on the order of 10−38J which are still

miniscule. Of course, a system of orbiting stars (or whatever) looks very little like a set of

masses on springs, and so this calculation is obviously flawed, but it gives an idea of the

weakness of gravitational wave effects as expected on Earth.

More serious calculations of the gravitational radiation expected to arrive at Earth from

various astronomical phenomena are generally based on estimates about poorly understood

astrophysical processes, and thus are also flawed, though perhaps not as badly as the one

above. This is generally readily admitted by those who make such attempts; Thorne [9]

points out that prior to X-ray astronomy by instruments outside the atmosphere, estimates
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of X-ray radiation in space proved to be very inaccurate. Nevertheless, it is generally

expected that gravitational radiation in the neighbourhood of Earth will not have effects on

an order of greater than 10−16 on hαβ, and thus will be very difficult to detect [9]. Examples

of events violent enough to create gravitational radiation that might be detectable here are

black hole and neutron star births in the Milky Way (effects on the order of 10−19 − 10−17

at Earth), supermassive black hole collisions (10−19 − 10−16), globular cluster black hole

collisions (10−21 − 10−19), and neutron star corequakes (10−24 − 10−20) [9].

Various methods based on laser interferometry have been used to attempt to detect

gravitational radiation directly, but the scales involved are so miniscule as to push the limits

of current technology. At the levels of precision needed, the detectors are also far more

likely to pick up various kinds of noise, including seismic and thermal noise. Thermal noise

can be reduced by supercooling; seismic noise is more problematic [2], [11]. Spaceborne

detectors overcome this problem, but fall victim to new sources of noise, including solar

radiation pressure [2]. One method employed in an attempt to increase the detectability

of such small oscillations is to set up something like the mass-spring the system described

above, but place the masses initially at rest, and look for vibrations due to incoming

gravitational waves [5], [11]. If the frequency of the incoming gravitational waves is near

the resonant frequency of the system, oscillations can be amplified to create detectable

events. However, there are several practical problems with this approach. Firstly, we

need to estimate the frequency of incoming gravitational waves, which is again based on

poorly understood astrophysical processes [9]. Secondly, noise of the right frequency is also

amplified, again causing problems. A third method of gravitational wave detection involves

Doppler tracking of spacecraft. Here again, however, various sources of noise reduce the

effectiveness of gravitational wave detection [2].

Legions of experiments of this type have failed to conclusively detect gravitational waves

in the vicinity of this planet. However, gravitational waves have been detected indirectly

by a completely different kind of investigation altogether.

4 Binary Pulsars

Pulsars are spinning neutron stars, first discovered in the 1960’s, which emit pulses of ra-

diation at nearly constant intervals. In the mid 1970’s, Russell Hulse and Joseph Taylor

began a systematic survey of the sky from the Arecibo Observatory in Puerto Rico, looking

for new pulsars. In 1974, they discovered ”‘an unusual pulsar”’, designated PSR1913+16,

5



which had a very short pulsation period (averaging 59 milliseconds between pulses) and

experienced periodic variations of up to 80 microseconds per day in the pulsation rate,

which is roughly 3000 times greater than any variation in a previously observed pulsar.

Further study of the pulsar indicated that the periodic changes in the pulsation rate could

be accounted for as the Doppler shifts expected if the pulsar were in orbit around a com-

panion star [1]. From observations of these Doppler shifts over a number of years, Hulse

and Taylor could calculate the orbital elements of the pulsar, including the orbital period

Pb, rate of change of orbital period Ṗb, sine of inclination angle sin i, and eccentricity e.

Hulse and Taylor immediately recognized the potential of the PSR1913+16 system as a

test case for general relativity – it consists of ”an accurate clock in a high speed, eccentric

orbit in a strong gravitational field” [1].

In particular, the system of orbiting stars was expected to give off gravitational radi-

ation, causing it to lose energy. This in turn would cause the stars to fall closer together

and speed up, resulting in a smaller orbital period. The predictions of how much energy

would be lost in a system of orbiting point masses had already been calculated by Peters

and Mathews a decade earlier [3], [4].

Returning to the Einstein equation Gαβ = −16πT µν , we can take gab = ηab + hab,

with the gauge conditions on hab specified earlier, and write out the Einstein equation in

unlinearized form as

4hαβ = −16πSαβ (18)

Here

Sαβ = Tαβ +
∞∑

k=2

X
(k)
αβ (19)

where X
(k)
αβ are the sum of kth degree terms in hαβ. By the gauge conditions, we have hαβ,α

vanishing, so Sαβ,α = 0. This means that we can use the divergence equation to obtain

conservation laws for components of Sαβ [4]. In particular, integrating over some domain

containing the system of interest, d
dt

∫
S00dV =

∫
S0idSi. The integral on the left is the

total energy of the system, so we have

dE

dt
=

∫
S0idSi (20)

Taking a large sphere completely enclosing the system, we can approximate T0i = 0, since

these terms should be negligible far from the masses. Therefore the only contributions to
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S0i come from X
(k)
0i . Now the exact solution to equation (18) is

hαβ = −4
∫ [

Sαβ(r′, t)

|r − r′|

]
t−|r−r′|

dV ′ (21)

so we expect hαβ to be proportional to 1
r

for large r [4]. Therefore we can discard all X
(k)
0i

except when k = 2 to obtain
dE

dt
=

∫
X

(2)
0i dSi (22)

∫
X

(2)
0i can actually be written out explicitly in an incredibly ugly expression involving lots

of terms [4]. However, this can be simplified considerably by recalling that the system

under investigation is a periodic one. Assuming that the loss of energy is small, we can

consider the average energy loss over one complete period of motion, and assume that the

change in parameters of the system is negligible over that period [4]. Then any terms in

X
(2)
0i which are pure time derivatives can be discounted as negligible, and we obtain the

expression ∫ dE

dt
dt =

1

32π

∫ ∫ ∑
α,β

hαβ,0hαβ,idSidt (23)

Converting the right side back into a volume integral, via the divergence theorem, yields∫ dE

dt
dt =

1

32π

∫ ∫ ∑
α,β

hαβ,0hαβ,iidV dt (24)

Note that

hαβ,ii = 4hαβ = −16πSαβ (25)

so ∫ dE

dt
dt = −1

2

∫ ∫ ∑
α,β

hαβ,0SαβdV dt (26)

Assuming the velocities are small compared to the speed of light, we can express this in

terms of the mass tensor

Qij =
∑
a

maxi
ax

i
a (27)

where ma are the masses in the system, with positions xa [4]. We do this by taking equation

(21) and expanding it in a Taylor series about the present time t, neglecting higher order

terms. Then using the identity
∫
SijdV = 1

2

d2Qij

dt2
gives us

∫ dE

dt
dt = −1

5

∫ [
d3Qij

dt3
d3Qij

dt3
− d3Qij

dt3
d3Qjj

dt3

]
dt (28)

7



The above approach is the one given in Peters [4]. This expression can also be derived

using multipole expansion [3]. To calculate Qij for the binary system involves choosing

coordinates for the two stars. Taking the centre of mass to be the origin, we can take

coordinates (d1 cosψ, d1 sinψ) and (−d2 cosψ,−d2 sinψ) for massesm1 andm2 respectively.

(Recall that all motion in a 2-body gravitational system takes place on a plane.) Then the

di are related by d = di(m1+m2)
mi

, and

Qxx = µd2 cos2 ψ (29)

Qyy = µd2 sin2 ψ (30)

Qxy = Qxy = µd2 cosψ sinψ (31)

where µ is the reduced mass m1m2

m1+m2
. Assuming Newtonian motion, we have

d =
a(1− e2)

1 + e cosψ
(32)

and

ψ =
1

d2

√
(a(m1 +m2)(1− e2)) (33)

Here e is the eccentricity of the orbit, and a is the length of the semimajor axis of the

orbital ellipse. These equations allow us to calculate the appropriate time derivatives of

Qij [3]:
d3Qxx

dt3
= β(1 + e cosψ)2(2 sin 2ψ + 3e sinψ cos2 ψ) (34)

d3Qxx

dt3
= −β(1 + e cosψ)2(2 sin 2ψ + e sinψ(1 + 3 cos2 ψ)) (35)

and
d3Qxx

dt3
= −β(1 + e cosψ)2(2 cos 2ψ − e sinψ(1− 3 cos2 ψ)) (36)

where

β2 =
4m2

1m
2
2(m1 +m2)

a5(1− e2)5
(37)

Plugging these into equation (28) and integrating, we get the rather improbable expression

for time-averaged energy output over one period:

dE

dt
= −32

5

m2
1m

2
2(m1 +m2)

a5(1− e2)
7
2

(
1 +

73

24
e2 +

37

96
e4

)
(38)

If units are to be used where G and c are not 1, an extra factor of G4

c5
is needed in this

expression [3].
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How does this show up in the orbital motion of the stars? Wagoner used Peters’

equations to derive the formula for rate of change of the period from Kepler’s law P =

2πa
3
2 (G(m1 + m2))

−1
2 . Here P is the period. Then the prediction of general relativity is

given by the following expression [10].

1

P

dP

dt
= −96

5

G3m1m2(m1 +m2)

a4(1− e2)
7
2

(
1 +

73

24
e2 +

37

96
e4

)
(39)

At the time Wagoner was writing, the only orbital parameter in this equation which had

been reliably measured was the eccentricity e. In particular, the masses of the two stars

were undetermined [6]. However, by careful observations over several years, Taylor and his

colleagues managed to deduce the value of a, and place constraints on the values of m1

and m2 sufficient to calculate the expected value of dP
dt

as (−2.404 ± 0.003) × 10−12 [7].

The predictions fit the observed data dP
dt

= (−2.30± 0.22)× 10−12 well within the margin

of error [8]. For their discovery and subsequent verification of general relativity, Hulse and

Taylor were awarded the Nobel Prize in physics in 1993.
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