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Introduction

In 1788 Joseph Louis Lagrange suggested an alternative formulation of clas-
sical mechanics, in which one considers the variation of an integral function
of the field variables of the system. The function, known as the Lagrangian,
is integrated over physical space in what is known as the action. Suitable
derivatives of the action are defined, and the field equations are satisfied when
the action is extremized. This has led to the unfortunate term ”least-action
principle,” which is a misnomer since the extremum need not correspond to
a local minimum.

In classical mechanics, there are myriad advantages to the Lagrangian
approach. One finds that extrema satisfy a general set of equations due
to Euler-Lagrange, and furthermore, these equations hold in any reference
frame.1 Since the formulation allows the choice of arbitrary generalized co-
ordinates, calculations may be simplified considerably. In particular, con-
straints on the system may be handled implicitly by the choice of coordi-
nates, so that one avoids finding expressions for, for example, normal and
tension forces.

In general relativity, motivation for the Lagrangian approach is more
subtle. The theory necessarily handles arbitrary reference frames, so no
advantages are to be gained there. However, there is an aesthetic appeal to
the Lagrangian formulation, for Einstein’s equation can be derived from a
very natural Lagrangian density. Still, perhaps the greatest motivation comes
from a desire to unify general relativity with quantum field theory. The latter
relies heavily on a path integral formulation of quantum mechanics due to
Feynman, in which probability amplitudes are given by integrating e

i
h̄

S over
all possible paths, where S is the action. The incidence of the Lagrangian
in both general relativity and quantum field theory thus provides a point of
contact for a potential reconciliation of the presently incompatible theories.

In this paper we present the Lagrangian formulation of general relativ-
ity and use the formulation to investigate possible extensions to Einstein’s
theory. For this, we review a seminal contribution by Barrow and Ottewill.
[1]

Lagrangian Formulation

Following Wald[5], we give the general formulation of a Lagrangian field the-
ory. Consider a tensor field Ψ defined on a compact manifold M , suppressing

1Recall that Newton’s laws only hold in inertial frames, and fictitious forces such as
the Coriolis and centrifugal forces need to be added when applicable.
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all indices on Ψ. Let Ψλ be a smooth one-parameter family of field configu-
rations on M , starting from Ψ0 and such that Ψλ|∂M = Ψ0 for all λ. Denote
dΨ/dλ|λ=0 by δΨ. Consider S[Ψ] =

∫
M L[Ψ] where L is a local function of Ψ

and finitely many of its derivatives. We wish to define a suitable derivative
for S. Suppose dS/dλ|λ=0 exists for all such families Ψλ starting from Ψ0,
and that there exists a smooth tensor field χ, dual to Ψ, such that

dS

dλ
=
∫

M
χδΨ (1)

where all indices in the integral are contracted. Then χ is called the
functional derivative of S at Ψ0, and written χ = δS

δΨ
|Ψ0 . Finally, suppose

the field configurations Ψ which extremize S,

δS

δΨ
|Ψ0 = 0 (2)

are precisely those which are the solution to the field equation for Ψ.
Then S is called the action and L the Lagrangian density, and together they
constitute the Lagrangian formulation of the field theory.

As an example, consider

LEM = −1/4FabF
ab = −∂[aAb]∂

[aAb] (3)

where F is the Maxwell tensor from electromagnetism, and A is the vector
potential. It is easy to see that LEM is a Lagrangian density over the field
variable Ab for Maxwell’s equations in a subset of flat spacetime:

dSEM

dλ
|λ=0 = −

∫
M

(∂[aA0b]∂
[a(δA)b] + ∂[a(δA)b]∂

[aA
b]
0 )d4x (4)

= −
∫

M
2∂[aA0b]∂

[a(δA)b]d4x (5)

=
∫

∂M
2∂[aA0b](δA)[bna] +

∫
M

2∂[a∂[aA0b](δA)b]d4x (6)

=
∫

M
2∂a∂[aA0b](δA)bd4x (7)

so δS
δAb = 2∂a∂[aAb], where we’ve used the fact that δAb vanishes on the

boundary. This gives the field equation ∂a∂[aAb] = 0, which is Maxwell’s
equation in a vacuum.[5]

To produce Einstein’s equation in a vacuum, we consider the Lagrangian
density LG =

√
−gR where g is the determinant of the metric tensor gµν ,

and R is the Ricci curvature. We wish to integrate LG over our domain to
produce what is known as the Hilbert action. However, a complication arises
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from the fact that the natural volume element for integration depends on gµν ,
which will be our field variable.2 To overcome this, we fix a volume element
e, and perform integration with respect to e. Further progress will require
some results about integration on manifolds.

Recall that integration of a function on a manifold is defined via a volume
element, a continuous non-vanishing n-form.3 This is necessary so that the
integral is well-defined with respect to changes in coordinates. We restrict
attention to the case where n=4 and the metric has Lorentzian signature.
The vector space of 4-forms has dimension 4!

4!(4−0)!
= 1, so every volume

element is a scalar multiple of every other. As alluded to above, a natural
choice of volume element is provided by the metric. For a given metric, there
is a unique volume element εabcd (up to sign) specified by

εabcdε
abcd = −4! (8)

For the following, we write the volume element with suppressed indices.
Assume that e is obtained by the above formula from the unperturbed metric.
A calculation shows that if ε is the volume element obtained when the metric
is varied, then ε =

√
−ge.[5] In light of this relation, the appearance of

√
−g

in the Lagrangian density is not surprising.
As mentioned earlier, we consider gab as the field variable, and so define

δgab = dgab

dλ
|λ=0. For convenience we define δgab = dgab

dλ
|λ=0. gabg

bc = δc
a then

implies that δgab = −gacgbdδg
cd, so that the metric cannot be casually used

to raise and lower the metric variations.
To determine the variation of the Hilbert action we must calculate

dLg

dλ
|λ=0 =

√
−ggabδRab + Rδ(

√
−g) +

√
−gRabδg

ab (9)

Computation of δRab = dRab

dλ
|λ=0 requires knowledge of the behaviour of

Rab near λ = 0. It is helpful to write our perturbed metric4 as gab(λ) =
gab + γab, where it is understood here and in the following that gab written
without λ refers to the unperturbed metric. We may assume that γab =
dgab(λ)

dλ
|λ=0 = δgab, since we will only be interested in the derivative of Rab at

λ = 0. Let λ∇a denote the derivative operator associated with gab(λ), and
let ∇a denote the derivative operator associated with gab. Then there exists
a tensor field Cc

ab(λ) such that for any ωb,
λ∇aωb = ∇aωb − Cc

ab(λ)ωc and

2An alternative way of deriving Einstein’s equation is to vary the Palatini action,
which uses the same Lagrangian density but considered as a function of Rab and varied
with respect to gµν and ∇a. Wald sketches this derivation.

3That is, a totally antisymmetric (0,n) tensor
4i.e. when λ 6= 0
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Cc
ab(λ) =

1

2
gcd(λ) (∇agbd(λ) +∇bgad(λ)−∇dgab(λ)) (10)

Then for any ωc, we have

λ∇a
λ∇bωc = λ∇a

(
∇bωc − Cd

bcωd

)
(11)

= ∇a

(
∇bωc − Cd

bcωd

)
− Ce

ab

(
∇eωc − Cd

ecωd

)
−Ce

ac

(
∇bωe − Cd

beωd

)
(12)

so that

λRabc
dωd = 2λ∇[a

λ∇b]ωc (13)

= 2∇[a∇b]ωc − 2∇[a(C
d
b]cωd)− 2Ce

c[a∇b]ωe + 2Ce
c[aC

d
b]eωd (14)

=
(
Rabc

d − 2(∇[aC
d
b]c) + 2Ce

c[aC
d
b]e

)
ωd (15)

and we can drop ωd from both sides. The Ricci tensor is

λRab = Rab − 2(∇[aC
c
c]b) + 2Ce

b[aC
c
c]e (16)

and we can now find its variation. The term quadratic in Ce
ba will vanish,

because, by definition, Ce
ba|λ=0 = 0. Then

2δCc
cb = gcd (∇cδgbd +∇bδgcd −∇dδgbc) (17)

implies that

δgabRab = −2gab∇[aδC
c
c]b (18)

= −gabgcd
(
∇[a∇c]δgbd +∇[a∇|b|δgc]d −∇[a∇|d|δgc]b

)
(19)

= −1

2
gabgcd∇c∇dδgab −

1

2
gabgcd∇a∇bδgcd + gabgcd∇c∇(bδga)d(20)

= ∇a
(
∇b(δgab)− gcd∇a(δgcd)

)
(21)

≡ ∇ava (22)

where va has been defined as indicated. To compute δ(
√
−g) we appeal

to the non-singular matrix identity[5]

tr

[
dA

dλ
A−1

]
=

1

det A

d(det A)

dλ
(23)
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which, when applied to gab yields

dgab(λ)

dλ
gab(λ) =

1

g(λ)

dg(λ)

dλ
=

2√
−g(λ)

d
√
−g(λ)

dλ
(24)

so that

δ(
√
−g) =

1

2

√
−ggabδgab (25)

Finally, from (9) we obtain

dSG

dλ
=
∫

M
∇ava

√
−ge +

∫
M

(
Rab −

1

2
Rgab

)
δgab√−ge (26)

The first term is the integral of a divergence with respect to ε, the natural
volume element. We can apply Stokes’ theorem to convert this to an integral
over ∂M . This term is related to the extrinsic curvature of the boundary,
and in general does not vanish. However, a modification of LG can eliminate
the term, so in modern work it is customary to ignore it.[1, 2] It is usually
only present in textbook derivations.[5, 3]5 Thus, ignoring this contribution
we have

δSG

δgab
=
(
Rab −

1

2
Rgab

)√
−g (27)

which gives Einstein’s equation in a vacuum when extremized. This result
is easily generalized to the case where matter fields are present by the addition
of matter terms to the Lagrangian density:

L = LG + αMLM (28)

where αM is a normalization constant. For example, electromagnetic
fields can be incorporated with LM = −

√
−ggacgbd∇[aAb]∇[cAd], which we

note is a natural generalization of (3). A perfect fluid can be included with
the Lagrangian density LPF = 16π

√
−gP .[4]

It is interesting to note that 28 gives Einstein’s equation Gab = 8πTab

when we make the identification

Tab = −αM

8π

1√
−g

δSM

δgab
(29)

so that when LM is known (or postulated) this equation can be used as
the definition of the stress-energy tensor Tab.

5This may not be entirely true, but it appears that way from my limited research.
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A final note that we present without rigorous proof is that invariance
of SM under diffeomorphisms implies conservation of Tab. Consider a 1-
parameter family of diffeomorphisms, fλ : R → R. If the matter field is
specified by Ψ, then the equation dSM

dλ
= 0 leads to

0 =
∫

M

δSM

δgab
δgab +

∫
M

δSM

δΨ
δΨ (30)

Since Ψ satisfies the matter field equations, δSM

δΨ
|Ψ = 0. Wald shows that

Lie derivatives are related to variations in the sense that Lwgab = δgab when
wa generates fλ.[5] It is also shown that Lwgab = 2∇(awb), so that if wa is
smooth and compactly supported,

0 =
∫

M

√
−gTab∇(awb)e (31)

=
∫

M
Tab∇(awb)ε (32)

= −
∫

M
(∇aTab)w

bε (33)

and therefore ∇aTab = 0. The same argument when applied to SG will
show that, independent of Einstein’s equation, ∇aGab = 0. Thus the con-
tracted Bianchi identity arises from the invariance of the Hilbert action under
diffeomorphisms. These results further supports the idea of an action prin-
ciple as fundamental in theoretical physics.

Extensions to General Relativity

Because of the simple form of the Lagrangian density, the Lagrangian for-
mulation of general relativity provides a natural framework to consider ex-
tensions to general relativity. Since Hilbert’s original derivation of Einstein’s
equation by an action principle in 1915, numerous variations of the Hilbert
action have been proposed and investigated.[1] A primary motivation was the
undesirable singular behaviour that is allowed by Einstein’s equation at areas
of large curvature. With Lagrangian densities that include higher orders of
curvature, perhaps this would be avoided. Also, some quantum corrections
to general relativity are equivalent to adding higher order curvature terms.[1]
We consider a contribution by Barrow and Ottewill from 1983, in which mod-
ifications to the Lagrangian density of the form f(R) are considered, where
f is an arbitrary analytic function. This ignores higher order terms of forms
like RabcdR

abcd, RabR
ab, etc., but is otherwise quite general.

Consider the gravitational action
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SG = −1

2

∫
f(R)

√
−gd4x (34)

We consider a homogeneous and isotropic Friedman universe for which

ds2 = −dt2 + a2(t)

(
dr2

1− σr2
+ r2dθ2 + r2 sin2 θdφ2

)
(35)

The Friedman model has proven to provide an excellent fit to observable
astronomical and cosmological data.[1, 5] However, it predicts a spacetime
singularity in the finite past. For this reason, it is desirable to determine the
effect of possible corrections to general relativity on this prediction.

Barrow and Ottewill’s analysis shows that in general, there is a trade-off
between pathological behaviour in the past and in the future. Models that
avoid a big-bang singularity by having a non-zero minimum value of a blow
up in the future, with R →∞ as t →∞. This behaviour can be traced back
to the fact that the extremum of the action that yields the field equations is
not minimal. That is, δSG = 0 but δ2SG < 0. This suggests that a guiding
principle for non-pathological theories of gravity could be to seek a theory
such that δSG = 0, δ2SG > 0, and of course such that solutions are admitted
that match the observable universe.

In recent decades, hope for a unification of quantum mechanics with gen-
eral relativity has lain in string theory, which posits, among other things,
that the universe may be 10 or 26-dimensional, and that the building blocks
of reality are 1 dimensional strings of energy of the Planck length ( 10−35m).
Despite its power, many cosmological observations remain a mystery. Chief
among these is the elusive dark matter, which according to measurements of
the expansion of the universe, must account for over seventy percent of the
mass of the universe. A recent suggestion by Carroll et al. is that instead
of dark matter, the expansion of the universe may be attributed to a modi-
fication of general relativity in which a term of the form R−1 is added to the
Lagrangian.[2] Specifically, the modified Hilbert action is taken to be

SG = −1

2

√
−g

(
R− µ4

R

)
d4x (36)

where µ is a new constant with units of mass. Carroll et al. show that
inclusion of the new curvature term can indeed explain the present expansion
of the universe without introducing any pathological behaviour.

The Lagrangian formulation of general relativity has proven to be more
than an academic curiosity. The underlying structure of the action principle
and the simplicity of general relativity when cast in this form has made
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it a natural framework in which to extend Einstein’s theory. So long as
cosmological mysteries remain to be solved, Lagrange’s principle will continue
to be a useful tool.
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