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1 Introduction

In this paper the initial-value formulation of general relativity is reviewed.
In section (2) domains of dependence, Cauchy surfaces, and globally hyper-
bolic spacetimes are defined. These constructions are then used in section
(3) to describe the initial-value problem for (quasi-)linear diagonal second-
order hyperbolic systems. In section (4) the 3+1 ADM decomposition of a
globally hyperbolic spacetime is presented. The initial-value problem for the
gravitational field is then formulated in section (5).

2 The Causal Structure of Lorentz Manifolds

Let (M, g) be a Lorentz manifold. At every point p ∈ M , the light cone of
p has two connected components. A continuous choice of picking out one of
these components to be the future, is called a time-orientation for M . If
M admits a time-orientation, it is said to be time-orientable.

Examples of non-time-orientable manifolds can be constructed, in a man-
ner similar to that of the Möbius band. They are pathological, and we shall
not be concerned with them. From now on, we assume that M is time-
orientable, and that a time-orientation has been specified.

Given a timelike curve γ in M , its tangent will necessarily be always in
one of the two connected components of the light-cone. If it is in the future,
then γ is said to be future-directed.

Let γ be a future-directed timelike curve in M . A point p ∈ M is called
a future endpoint of γ, if for every neighbourhood V of p, there exists
t0, such that γ(t) ∈ V whenever t ≥ t0. If γ has no future endpoint, it is
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called future-inextendible. Past-directed timelike curves, past endpoints,
and past-inextendibility, are defined analogously.

Intuitively, a future-inextendible curve is one that ’goes on forever’ into
the future. Note that if M has a ’hole’, then it is possible to construct a
future-inextendible curve, which ’gets arbitrarily close to the hole’ as the
proper time runs to infinity.

A subset S ⊂ M is said to be achronal if no two of its points can be
joined by a timelike curve. For an achronal S ⊂ M , the future domain of
dependence of S, denoted by D+(S), is defined to be the set of all points
p ∈ M , with the property that every past-directed inextendible timelike curve
starting at p intersects S. The past domain of dependence of S, denoted
by D−(S), is defined analogously, and the total domain of dependence
of S is defined to be D(S) = D+(S) ∪D−(S).

If S ⊂ M is achronal and D(S) = M , then S is said to be a Cauchy
surface for M . It can be shown that a Cauchy surface is necessarily an
embedded 3-dimensional submanifold.

If M admits a Cauchy surface, it is said to be globally hyperbolic.
It can be shown that if M is globally hyperbolic, then it can be foliated
by a one-parameter family of Cauchy surfaces Σ(τ), and its topology is the
product Σ × R. Intuitively, the parameter τ can be thought of as a global
time coordinate, and the Cauchy surfaces Σ(τ) can be thought of as ’all of
space at fixed time’.

3 The Initial-Value Problem for Matter Fields

We begin with a review of the initial-value problem for a scalar field φ in
special relativity, whose dynamics is governed by the Klein-Gordon equation,
(∂2 −m2)φ = 0. In globally inertial coordinates (t, x, y, z), this reads

∂2φ

∂t2
=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
−m2

)
φ . (1)

If the values of φ and ∂tφ are specified on a surface of constant t, then (1)
can be solved to uniquely obtain φ in all of space-time.

We now describe the generalization of this problem to a globally hyper-
bolic spacetime M in general relativity. Let Σ be a Cauchy surface for M ,
with normal vector field nµ. Suppose that values of φ and n(φ) are specified
on Σ. Then (∇2 −m2)φ = 0 can be solved to uniquely obtain φ in all of M .
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This result can be generalized to a finite collection of scalar fields φi, whose
dynamics is described by a linear diagonal second-order hyperbolic system

∇2φi + Aij(φj) + Bijφj + Ci = 0 , (2)

where Aij are vector fields and Bij, Ci are scalar fields.
It is possible to generalize even further to a class of systems known as

quasi-linear, where the metric gµν is allowed to depend on the unknown
fields, and non-linear terms in φi,∇φi are allowed:

gµν(φj,∇φj)∇µ∇νφi = Fi(φj,∇φj) . (3)

However, only local existence and uniqueness results can be obtained, for
initial conditions sufficiently close to a zeroth order solution φ

(0)
j .

4 The ADM 3+1 Decomposition

Suppose that M is a spacetime and Σ ⊂ M is a 3-dimensional spacelike sub-
manifold with normal field nµ. Consider a congruence of timelike geodesics
orthogonal to Σ, with tangent field T µ. The extrinsic curvature of Σ is
defined by Kµν = ∇µTν . It can be shown that Kµν is symmetric. Let hµν be
the restriction of gµν to Σ. Then hµν is a 3-dimensional Riemannian metric,
and

gµν = −nµnν + hµν . (4)

A tensor field T on M can be projected down to a tensor field π(T ) on
Σ by

π(T )µ1···µk
ν1···νl

= hµ1
ρ1
· · ·hµk

ρk
· h σ1

ν1
· · ·h σl

νl
· T ρ1···ρk

σ1···σl
. (5)

The metric hµν induces a derivative operator ∇̃ and Riemann curvature
tensor R̃ σ

µνρ on Σ. These are related to the respective quantities on M by

∇̃λT
µ1···µk

ν1···νl
= π(∇λT

µ1···µk
ν1···νl

) , (6)

R̃ σ
µνρ = π(R σ

µνρ )− 2K[µ|ρ|K
σ

ν] , (7)

Now consider a globally hyperbolic spacetime M foliated by Cauchy sur-
faces Σ(τ). Applying the above construction to these surfaces we obtain
tensor fields Kµν(τ) and hµν(τ). It can be shown that

Kµν =
1

2
Lnhµν , (8)
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where nµ(τ) is now a normal field to Σ(τ) defined on all of M . Thus Kµν can
be interpreted as the time-derivative of hµν , so we described the 4-dimensional
Lorentz metric as a 3-dimensional Riemannian metric that ’evolves in time’.

The dynamics of hµν , Kµν is described by Einstein’s equation Gµν = 0,
where for simplicity we consider vacuum space-times (i.e. Tµν = 0.) Writing
this out in coordinates yields

gαβ(∂α∂βgµν +∂µ∂νgαβ−2∂β∂(νgµ)α+gµνg
ρσ(∂β∂ρgσα−∂α∂βgρσ)) = Fµν , (9)

where Fµν is a (non-linear) function of the metric and its first derivatives.
The components of (9) along nµ contain no second time derivatives, and

are thus constraints. They can be written in the form

KµνK
µν − (Kµ

µ)2 = R̃ , (10)

∇̃νK
ν

µ − ∇̃µK
ν

ν = 0 . (11)

In order to eliminate redundant degrees of freedom, we carry out a gauge
transformation to harmonic coordinates in which ∇2xµ = 0. Equation (9)
then becomes

gαβ∂α∂βgµν = F̂µν , (12)

where F̂µν is again a function (different from Fµν) of the metric and its first
derivatives. Equation (12) has the form of a quasi-linear diagonal second-
order hyperbolic system.

5 The Initial-Value Problem for the Gravita-

tional Field

The initial-value problem for the gravitational field is formulated as follows:
Let (Σ, h) be a 3-dimensional orientable Riemannian manifold, and let Kµν

be a symmetric tensor field on Σ. Suppose that the constraint equations (10)
and (11) are satisfied.

In order to solve the quasi-linear system (12), we need a zeroth-order
solution as a starting point. We take this to be flat Minkowski space, denoted
by (R4, g(0)). Σ can be embedded into R4, such that the restriction of g

(0)
µν to

Σ is the usual Euclidean 3-dimensional metric. Let nµ be a normal field to
Σ. Initial data (gµν , n(gµν)) for equation (12) is constructed on Σ as follows:
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1. The components of gµν along Σ coincide with hµν .

2. The components of n(gµν) along Σ are chosen such that the extrinsic
curvature of Σ coincides with Kµν .

3. The components of n(gµν) along n are chosen such that the harmonic
gauge condition ∇2xµ = 0 is satisfied.

We may assume that this initial data is sufficiently close to the unper-
turbed metric, such that (12) has a unique solution in some neighbourhood
of Σ:

For every p ∈ Σ, this can be achieved in a neighbourhood V of p by
means of a re-scaling transformation. A solution is then obtained in V .
Paracompactness of Σ is used to put these solutions together, to obtain a
solution in a neighbourhood of Σ.

Using the Bianchi identity, it can be verified that the solution satisfies
both the harmonic gauge condition, and the constraint equations (10)-(11).

In summary, we have obtained a neighbourhood V of Σ, and a solution
gµν of (12) defined in V , such that (V, g) is a globally hyperbolic spacetime,
Σ can be embedded into V as a Cauchy surface, the restriction of gµν to Σ
coincides with hµν , and the extrinsic curvature of Σ coincides with Kµν .

Finally, a Zorn’s lemma argument shows that there exists a solution as
described in the previous paragraph, which is moreover maximal, in the sense
that any other solution can be isometrically embedded into it.
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