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1 Introduction

In this paper the initial-value formulation of general relativity is reviewed.
In section (2) domains of dependence, Cauchy surfaces, and globally hyper-
bolic spacetimes are defined. These constructions are then used in section
(3) to describe the initial-value problem for (quasi-)linear diagonal second-
order hyperbolic systems. In section (4) the 3+1 ADM decomposition of a
globally hyperbolic spacetime is presented. The initial-value problem for the
gravitational field is then formulated in section (5).

2 The Causal Structure of Lorentz Manifolds

Let (M, g) be a Lorentz manifold. At every point p € M, the light cone of
p has two connected components. A continuous choice of picking out one of
these components to be the future, is called a time-orientation for M. If
M admits a time-orientation, it is said to be time-orientable.

Examples of non-time-orientable manifolds can be constructed, in a man-
ner similar to that of the Mobius band. They are pathological, and we shall
not be concerned with them. From now on, we assume that M is time-
orientable, and that a time-orientation has been specified.

Given a timelike curve v in M, its tangent will necessarily be always in
one of the two connected components of the light-cone. If it is in the future,
then ~ is said to be future-directed.

Let v be a future-directed timelike curve in M. A point p € M is called
a future endpoint of ~, if for every neighbourhood V of p, there exists
to, such that v(t) € V whenever ¢t > to. If v has no future endpoint, it is



called future-inextendible. Past-directed timelike curves, past endpoints,
and past-inextendibility, are defined analogously.

Intuitively, a future-inextendible curve is one that ’goes on forever’ into
the future. Note that if M has a ’hole’, then it is possible to construct a
future-inextendible curve, which ’gets arbitrarily close to the hole’ as the
proper time runs to infinity.

A subset S C M is said to be achronal if no two of its points can be
joined by a timelike curve. For an achronal S C M, the future domain of
dependence of S, denoted by DT (S), is defined to be the set of all points
p € M, with the property that every past-directed inextendible timelike curve
starting at p intersects S. The past domain of dependence of S, denoted
by D~(5), is defined analogously, and the total domain of dependence
of S is defined to be D(S) = D*(S)U D~ (S).

If S € M is achronal and D(S) = M, then S is said to be a Cauchy
surface for M. It can be shown that a Cauchy surface is necessarily an
embedded 3-dimensional submanifold.

If M admits a Cauchy surface, it is said to be globally hyperbolic.
It can be shown that if M is globally hyperbolic, then it can be foliated
by a one-parameter family of Cauchy surfaces ¥(7), and its topology is the
product ¥ x R. Intuitively, the parameter 7 can be thought of as a global
time coordinate, and the Cauchy surfaces ¥(7) can be thought of as ’all of
space at fixed time’.

3 The Initial-Value Problem for Matter Fields

We begin with a review of the initial-value problem for a scalar field ¢ in
special relativity, whose dynamics is governed by the Klein-Gordon equation,
(0? — m?)¢ = 0. In globally inertial coordinates (¢, ,v, z), this reads
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If the values of ¢ and 0,¢ are specified on a surface of constant ¢, then (1)
can be solved to uniquely obtain ¢ in all of space-time.

We now describe the generalization of this problem to a globally hyper-
bolic spacetime M in general relativity. Let > be a Cauchy surface for M,
with normal vector field n*. Suppose that values of ¢ and n(¢) are specified
on ¥. Then (V? —m?)¢ = 0 can be solved to uniquely obtain ¢ in all of M.
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This result can be generalized to a finite collection of scalar fields ¢;, whose
dynamics is described by a linear diagonal second-order hyperbolic system

V¢ + Aij(¢j) + Bijo; + C; =0, (2)

where A;; are vector fields and B;;, C; are scalar fields.

It is possible to generalize even further to a class of systems known as
quasi-linear, where the metric g,, is allowed to depend on the unknown
fields, and non-linear terms in ¢;, V¢, are allowed:

9" (65, V;)V, V0 = Fi(¢;, V) . (3)

However, only local existence and uniqueness results can be obtained, for
initial conditions sufficiently close to a zeroth order solution gzﬁg-o).

4 The ADM 3+1 Decomposition

Suppose that M is a spacetime and ¥ C M is a 3-dimensional spacelike sub-
manifold with normal field n*. Consider a congruence of timelike geodesics
orthogonal to ¥, with tangent field T#. The extrinsic curvature of ¥ is
defined by K, = V,T,. It can be shown that K, is symmetric. Let h,, be
the restriction of g,, to ¥. Then h,, is a 3-dimensional Riemannian metric,
and
v = =Ny + hyy. (4)
A tensor field T on M can be projected down to a tensor field 7(7") on
Y by
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The metric fy,, induces a derivative operator V and Riemann curvature
tensor 12,7 on Y. These are related to the respective quantities on M by

@)\Tﬂl.”#kljln'ljl = 7T-(VAQ-WJ.”luklll'“l/l) Y (6>
R, °=m(R,,,°)— 2K K, (7)
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Now consider a globally hyperbolic spacetime M foliated by Cauchy sur-
faces (7). Applying the above construction to these surfaces we obtain

tensor fields K, (7) and h,, (7). It can be shown that

1
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where n#(7) is now a normal field to 3(7) defined on all of M. Thus K, can
be interpreted as the time-derivative of h,,,, so we described the 4-dimensional
Lorentz metric as a 3-dimensional Riemannian metric that ’evolves in time’.

The dynamics of hy,, K,, is described by Einstein’s equation G, = 0,
where for simplicity we consider vacuum space-times (i.e. T),, = 0.) Writing
this out in coordinates yields

gaﬁ(aaaﬁg,uu+auaugaﬁ_2aﬁa(ugu)a+g;wgp0(aﬁapgaoc_8(18,89;)0)) = F;w 5 (9)

where F),, is a (non-linear) function of the metric and its first derivatives.
The components of (9) along n* contain no second time derivatives, and
are thus constraints. They can be written in the form

K, K" — (K“M)2

R, (10)
VK", =V,.K",=0.

(11)
In order to eliminate redundant degrees of freedom, we carry out a gauge

transformation to harmonic coordinates in which VZz, = 0. Equation (9)
then becomes

gaﬁaaaﬁg;w = A,uu ) (12)

where F),, is again a function (different from F),,) of the metric and its first
derivatives. Equation (12) has the form of a quasi-linear diagonal second-
order hyperbolic system.

5 The Initial-Value Problem for the Gravita-
tional Field

The initial-value problem for the gravitational field is formulated as follows:
Let (3, h) be a 3-dimensional orientable Riemannian manifold, and let K,
be a symmetric tensor field on 3. Suppose that the constraint equations (10)
and (11) are satisfied.

In order to solve the quasi-linear system (12), we need a zeroth-order
solution as a starting point. We take this to be flat Minkowski space, denoted
by (R*, ¢g(®). ¥ can be embedded into R*, such that the restriction of gg,),) to
Y} is the usual Euclidean 3-dimensional metric. Let n* be a normal field to
2. Initial data (g,.,n(g)) for equation (12) is constructed on ¥ as follows:



1. The components of g,, along ¥ coincide with h,,.

2. The components of n(g,,) along ¥ are chosen such that the extrinsic
curvature of ¥ coincides with K, .

3. The components of n(g,,) along n are chosen such that the harmonic
gauge condition VZz, = 0 is satisfied.

We may assume that this initial data is sufficiently close to the unper-
turbed metric, such that (12) has a unique solution in some neighbourhood
of X:

For every p € ¥, this can be achieved in a neighbourhood V' of p by
means of a re-scaling transformation. A solution is then obtained in V.
Paracompactness of ¥ is used to put these solutions together, to obtain a
solution in a neighbourhood of .

Using the Bianchi identity, it can be verified that the solution satisfies
both the harmonic gauge condition, and the constraint equations (10)-(11).

In summary, we have obtained a neighbourhood V' of >, and a solution
g of (12) defined in V', such that (V, g) is a globally hyperbolic spacetime,
¥ can be embedded into V' as a Cauchy surface, the restriction of g,, to X
coincides with h,,, and the extrinsic curvature of ¥ coincides with K, .

Finally, a Zorn’s lemma argument shows that there exists a solution as
described in the previous paragraph, which is moreover maximal, in the sense
that any other solution can be isometrically embedded into it.
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