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An Application of General Relativity: The Global Positioning System (GPS) 
Cole Lepine 992413116 

 

The Global Positioning System (GPS) is a wide-spread device that has made the 

world a much smaller place; people use it everyday to find where they are on the Earth. 

Interestingly, the GPS is only possible due our understanding of general relativity. It is 

based upon the idea that if a person simultaneously receives information from four 

independent locations in space-time via light, then they can solve a system of linear 

equations to find out what time it is (for them) and where they are (using the fact that the 

speed of light is the same for all observers); in symbols: 

                            (1) 

Relativity enters because we are dealing with objects moving at great speed in different 

places within a gravitational potential. The system must account for these relativistic 

effects: a mistake of 100 nanoseconds (10
-7

s) in the timing measurement results in an 

error of (299792458m/s)(10
-7

s) ≈ 30m in the position measurement. But before diving 

into the nuts and bolts of the system, a quick glance at how it is set-up is needed to truly 

be able to model the situation. 

The GPS system was developed by the United States Department of Defence, and 

was in complete operation by 1994. The system consists of twenty-four high-orbit 

satellites carrying highly-accurate atomic clocks that circle the Earth twice every day and 

the control stations around the world that monitor them. The control stations keep the 

satellite’s clocks synchronized and correct any deviations to a satellite’s orbit that may 

occur due to unforeseen circumstances. The orbits are configured so that at least four 

satellites are see-able from any place on the Earth. Each satellite emits a radio signal from 

space that contains information about what time the satellite has, where it is located in a 
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reference frame called WGS-84 (or the Earth-Centered, Earth-Fixed reference frame; 

more details on that to follow), and any important updates that the control stations want 

to communicate to the GPS receivers. Receivers have an almanac of where each satellite 

should be at any given time so they can use the information from one satellite to locate 

other satellites. Another important assumption built into the system is that the Earth is 

spherical and that the orbits travel along circles (the orbits are mostly circular, but the 

effects of other massive bodies in the solar system do cause eccentricities: to the accuracy 

that we are concerned with, ignoring these effects is fine [1]). This is the basic framework 

that the system works in. The real meat of the problem is setting up the coordinates to be 

able to solve (1). 

The WGS-84 frame is a reference frame where the origin is placed at the centre of 

the earth, the z-axis is aligned to coincide with the axis of rotation about the earth, and 

the other two axes are perpendicular to it and rotate with the Earth’s spin. This frame is 

not equivalent to an inertial frame since it is rotating, and thus (1) does not strictly hold in 

it. This problem is circumvented by using another frame to work with equation (1); we 

can use coordinate transforms to go between the two frames. The working frame is called 

the Earth-centered Inertial frame (ECI). Here, the origin is again placed at the centre of 

the Earth, and the z-axis again coincides with the rotation axis of the Earth, but the x and 

y axes are fixed and do not rotate with the Earth. The WGS-84 frame is the frame in 

which we measure the end position. 

Relativity enters the scene because the clocks do not all count the same proper 

time. These proper times must be corrected using general relativity in order to not get 
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errors that could seriously damage the accuracy of the system. The metric that the makers 

of GPS use is the Schwarzschild metric: 

 

 

where this metric is in ECI coordinates, J is the Earth’s angular momentum, and V is the 

Newtonian gravitational potential of the Earth given by solving Poisson’s equation for the 

mass distribution of the Earth: 

 

 

(P2 is the Legendre polynomial of second degree, J2 is the quadrupole moment of the 

Earth). This metric is appropriate for the situation because the impact of the other 

massive bodies in our solar system cause errors of an order less than 10
-15

s ([1]) in the 

time measurement. Similarly, we only need concern ourselves with up to the quadrupole 

moment of the Earth since the rest of the expansion is smaller by at least a negligible 

factor of 1000 ([2]), (and in fact we will be able to neglect that term later on). Since the 

coordinates used by the satellites and receivers are in the WGS-84 frame, we need to 

transform this metric: 

 

where ωE is the Earth’s angular velocity. After the transform, we get: 
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This can be made slightly simpler because the last term is very small compared to the rest 

of the metric ([2]), so we can safely ignore it. Also computations of the terms of the time-

time component of the metric (using values at the equator for estimation): 

2V/c
2
 = -1.39x10

-9
 

-RE
2
ωE

2
sin

2
θ’/c

2
 = -2.40x10

-12
 

4GJωEsin
2
 θ’/REc

4
 = 2.6x10

-21
 

which means we can safely ignore the last term in the component and define an effective 

potential: 

φeff = V - ωE
2
r
’2

sin2θ’/2 

making the time-time component of the metric simpler to express. We need to change the 

time coordinate once more, since right now the time coordinate records what clocks 

placed infinitely far away from the equator would have. The reference clock standard that 

the GPS uses is the UTC (USNO): Universal Coordinate Time out of the U.S. Naval 

Observatory. We can transform to this time scale by using the transform: 

t’’ = t’(1-6.9693x10
-10

)= t’(1+ξ/c
2
) 

where the constant term ξ is the Terrestrial Time scale as defined by the International 

Astronomical Union ([1]). Wrapping this all together we find that the metric in the ECI 

frame is (a term has been dropped from the time-time component since we can neglect 

things of order 1/c
4
 due to their smallness): 

 

 

Since the Earth’s gravitational field is weak enough, we can approximate the term in 

radial-radial component by its Taylor expansion: 
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Proper time is related to the line element by ds
2
 = -c

2
dτ

2
. Thus we can write the 

relationship between the proper time and the coordinate time as: 

 

 

The third term is just the magnitude of the 3-velocity squared, so we get the relation: 

 

 

where the integrals are taken along the path of the object.  Now we can solve for the 

amount of coordinate time that passes during an interval of a clock’s proper time, and use 

the binomial theorem to simplify:  

  (2) 

 

This is justifiable because the second and third term inside the square root are much 

smaller than 1. 

We now have all we need to make a consistent system of time coordinates to use 

the GPS. Once we solve (2) and use it to correct the proper time of clocks on the 

satellites, the signal that a GPS satellite transmits to a receiver on Earth will be a time 

coordinate consistent with the time coordinates of the UTC (USNO) and thus can be used 

with equations (1) to find the user’s position on the Earth. One last approximation is used 

in the GPS: since in the V term the quadrupole moment has a (RE/rS)^2 term, with  

rS = 26562000m and RE = 6378137m [2], we can neglect the quadrupole moment. Thus 

the integral we get has no terms that depend on varying parameters: 
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The constants that we need to integrate this expression are given by [2]: 

ξ/c
2
 = -6.9693x10

-10
 

v
2
/2c

2
 = 8.30314x10

-11 

GME/rSc
2
 = 1.6697x10-10 

where the speed of the satellite is given by the angular velocity multiplied by the radial 

distance (each satellite orbits the Earth twice in a day). Thus, in a given day, the satellite 

must correct its clock by: 

 

where we see that if relativistic effects were not accounted for the system would be 

inaccurate by about 3 metres and growing each day (since the clock would be 

consistently slower). 

The makers of GPS have used a lot of approximations in their derivation of the 

time shift due to speed and gravitational effects. Although they are all justified to the 

accuracy desired by common users, a better system would not use as many 

approximations and get even better results. The GPS system for the common user is at 

best accurate to about a radius of 3 meters ([4]), with results for the military being more 

accurate due to using more and more terms in the multipole expansion of the Earth’s 

gravitational potential. 


