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Abstract

Penrose presented back in 1973 an argument that any part of the spacetime which contains black holes  
with event horizons of area A has total mass √A/16π.  For the time symmetric case this becomes a  
problem in Riemannian geometry, and the inequality introduced by Penrose is called the Riemannian 
Penrose inequality.  Outlines of two different proofs are introduced here, as well as background no-
tions.



1. Background on Event horizons and Apparent horizons

The general definition of black holes is the region of spacetime from which no information carrying 
signal can escape [1]. If one defines the causal past J-(Q) of a set Q as the set of points that for each 
point there is a future directed causal curve connecting it with one of the points of Q, then the set of 
points visible to a distant observer coincides with J-(J+) (J+ is the past null cone)[1].  The boundary of 
this set denoted by H+, is called the event horizon. If a space contains no event horizon, then all the 
events happening in the space can be observed after some time. If an event horizon appears in a space, 
it means that a black hole has been born and that the only possible way to find out about the events 
inside the black hole is to cross the horizon and fall into the black hole. According to the Penrose 
theorem, the event horizons are formed by null geodesics (generators) that have no end point in the 
future. By following these generators in the future one can see that they never leave the horizon and that 
they do not intersect each other. When we follow the generators in the past, we are faced with two 
possibilities: either the generator entered the horizon in a point of intersection with another generator 
(the caustics - point 2 in the figure below) or it always lied in the horizon. The caustics 1 corresponds to 
the point where the horizon appears.

     Fig 1: The Penrose theorem

The difficulty in dealing with event horizons is that they cannot be located. If a spacecraft were to go 
near a black hole, the way it would find the horizon is by finding the point(s) where the space ship 
could still go back and not be pulled toward the black hole. If we consider a surface in spacetime which 
emits a shell of light, and the surface area of the shell is decreasing everywhere on the surface, then we 
call this a trapped surface. The outermost trapped surface is called an apparent horizon.
It is known that apparent horizons, which are easy to locate since they are local, are indicative of black 
holes. The black hole’s event horizon does not coincide with the apparent horizon in general. The event 
horizon  is  global,  hence  to  know  of  its  existence  or  its  exact  location,  a  full  knowledge  of  the 
spacetime’s causal structure is required. Therefore, for various applications, apparent horizons are more 
immediately accessible and practical [2].

2. Mass and Penrose Inequality

In an asymptotically flat spacetime with mass and energy so dense that they collapse under their 
own gravitation, the formation of a marginally trapped surface H occurs, followed by the formation of a 



trapped surface.  The appearance of  a  singularity in  this  region of  the spacetime is  granted by the 
singularity theorem. This singularity and the surface H will then be enclosed by an event horizon whose 
existence  is  ensured  provided  the  hypothesis  of  the  Cosmic  Censorship.  As a  test  of  this  Cosmic 
censorship hypothesis,  Penrose [3]  used the inequality presented below. Though he did not  give a 
mathematical prove for it he noted that if a counterexample that violates this inequality could be found, 
then one could indicate the failure of the Cosmic Censorship and the existence of a naked singularity (a 
singularity that is visible). The inequality that we are referring to is:

AH ≤ 16 π M2

i.e. the total mass of a spacetime containing black holes and event horizons of total area A, cannot 
exceed √A/16 π. In simple terms this means that the area of a black hole is limited by its total mass (for 
example, for about 100 grams, the area of the respective black hole would be of the order of 10-51 cm2).
The proof of the Riemannian Penrose inequality was first presented in 1997 [4] for one black hole and 
later [5] for any number of black holes. These proofs rely on a set of common definitions and theorems 
that we present below.

2.1 Preliminary definitions
Let  (M3,  g)  be  a  Riemannian  3-manifold  embedded  in  a  3+1  Lorentz  spacetime.  Only 

asymptotically flat at infinity M3 manifolds are considered. This is equivalent to saying that for some 
compact  set  K, M3\K is  diffeomorphic to  R3\B1(0);  the metric  g is  asymptotically approaching the 
standard flat metric δij on R3 at infinity. Multiple asymptotically flat ends are also allowed, provided 
that each connected component of M3\K must be as described above.  Examples of an asymptotically 
flat manifold is (R3; δij) itself. Other good examples are the conformal metrics (R3; u(x)4δij), where u(x) 
approaches a constant sufficiently rapidly at infinity. The limit below ensures M3 is asymptotically flat

where Sσ is the coordinate sphere of radius σ, υ is the unit normal to Sσ, and dμ is the area element of Sσ 

in the coordinate chart. The quantity m is called the total mass (or ADM mass) of (M3; g).
Schoen and Yau [6] have shown that given any ε > 0, it is always possible to perturb an asymptotically 
flat manifold to become harmonically flat at infinity such that the total mass changes less than ε and the 
metric changes less than ε pointwise, all while maintaining nonnegative scalar curvature. So it is possi-
ble to use harmonically flat manifolds, instead of asymptotically flat if it facilitates calculations. 
A flow of 2-surfaces in (M3; g), in which the surfaces flow in the outward normal direction at a rate 
equal to the inverse of their mean curvatures at each point, was defined and used by Lang and Wald [7]. 
The Hawking mass [8] of a surface (which is supposed to estimate the total amount of energy inside the 
surface) was proved to be nondecreasing under this “inverse mean curvature flow”

 (where |Σ| is the area of Σ, and H is the mean curvature of  Σ in (M3, g). 
The geometry used to prove the inequality is intuitively easy to catch. We define a minimal surface on 
the manifold to be a surface which is a critical point of the area function with respect to any smooth 



variation of the surface. Minimal surfaces have zero mean curvature.  The boundary of the union of the 
open regions bounded by all of the minimal surfaces is indeed a minimal surface itself. Σ0 is the outer-
most of such surfaces [9]. 

Fig 2: A sketch of a horizon 

Since we consider (M3, g) as the slice t=0, then it has been shown that apparent horizons that intersect 
with M3 are the connected components of the outermost minimal surface Σ0. 
We now present a formal statement for the Penrose inequality:
Theorem:  The  Riemann  Penrose  Inequality.  Let  (M3,  g)  be  a  complete,  smooth  3-manifold  with 
nonnegative scalar curvature, harmonically flat at infinity, with total mass m, and with an outermost 
minimal surface Σ0 of area A0. Then 

and equality holds iff (M3, g) is isometric to the Schwazschild metric outside the respective outermost 
minimal surfaces.
A special case of this is known as the Riemannian Penrose inequality. This involves a Riemannian, 
asymptotically  Euclidean  3-manifold  with  non-negative  Ricci  scalar,  with  an  outermost  minimal 
surface Σ, which substitutes the apparent horizon. Below we present two different approaches to prove 
the Riemannian Penrose inequality. For this, another theorem comes handy:
Theorem.  The positive mass theorem [6]. Let (M3; g) be any asymptotically at, complete Riemannian 
manifold with nonnegative scalar curvature. Then the total mass m ≥0, with equality if and only if 
(M3; g) is isometric to (R3; δ).

2.2  Outline of the proof  of the Riemannian Penrose inequality
(a)   If Σ(t) is the surface resulting from inverse mean curvature flow for t beginning with Σ0 and 

Σ'(t) the outermost minimal area enclosure, we would typically have Σ(t) = Σ'(t). If this is not the case, 
then we replace Σ(t) by Σ'(t) and continue following by inverse mean curvature flow. In this manner the 
mean curvature of Σ'(t) is nonnegative since otherwise it would be enclosed by a surface of less area.
The Hawking mass for Σ0 becomes:

mH = √| Σ 0|/16 π

since Σ0 has zero mean curvature. The Hawking mass is still monotone since ∫ Σ '(t)H2 ≤ ∫ Σ(t)H2 and 
| Σ '(t)| = | Σ(t)|. The latter is because first, since Σ' is an outermost minimal area we have | Σ '(t)|≤ | Σ(t)| 
and we cannot have strict inequality because that implies that Σ(t) would have jumped outside Σ'(t) at 



some point in time.  Define Σ(t) to be a scalar function u(x) in (M3, g) such that u(x) = 0 on  Σ0 and

where the left-hand side of this equation is the mean curvature of the level sets of u(x) and the right 
hand side is the reciprocal of the flow rate. To prove the existence of solutions for the above equation 
Huisken and Ilmanen used the elliptic equation 

which yields a weak solution to the first equation when ε tends to zero. These solutions have often flat 
regions where u(x) is a constant. The level sets Σ(t) and u(x) are discontinuous in time and thus we 
obtain  the jumping of Σ(t) as noted before. Since the Hawking mass is monotone, with the use of the 
inverse mean curvature flow method we can prove the Riemann Penrose inequality as well  as  the 
positive mass theorem.

(b) In a different context, Bray [5, 10] proved the inequality for several black holes. In order to 
do this he first defined a continuous, one parameter family of metrics (M3, gt), 0 ≤ t <∞, such that it 
converges to a three dimensional Schwarzschild metric, where gt have nonnegative scalar curvature and 

A’(t) = 0
m’(t) ≤ 0 for all t ≥ 0.

A(t) is the area of the horizon Σ(t) of the metric (M3, gt), m(t) the total mass of (M3, gt), and Σ0 is the 
outermost minimal surface of (M3, g0), with area A0. Then, since we chose gt in such manner that it 
converges to a Schwarzschild, for which we obtain equality for the Riemannian Penrose inequality, we 
get

m(0) ≥ m(∞) = √A(∞)/16π = √A(0)/16π

In this way we proved the Riemannian Penrose inequality for the original metric (M3, g0).  The way 
Bray found such  a  family of  metrics  gt to  satisfy the above conditions,  is  by introducing another 
superharmonic function v(x). First he (i) let  gt = ut(x)4g0, then (ii) defined Σ(t) to be the outermost 
minimal  area enclosure of Σ0 in (M3,  gt),  where Σ0 is the outer minimizing horizon in the original 
metric. Then (iii) vt(x) is defined as 

and vt(x) ≡ 0 inside Σ(t). Then (iv) ut(x) is defined as:

Bray tied this representation of ut(x) to the goal we are trying to reach, by use of three theorems [10,11]. 



Theorem 1: The relations (i), (ii), (iii) and (iv) define a first order ordinary differential equation in t for 
ut(x) having a solution which is Lipschitz in the t variable, class C1 in the x variable everywhere, and 
smooth in the x variable outside Σ(t). Furthermore, Σ(t) is a smooth, strictly outer minimizing horizon 
in (M3, gt) for all t ≥ 0, and Σ(t2) encloses but does not touch Σ(t1) for all t2 > t1≥0.
It turns out that the rate of change in gt is in fact dependent only on gt itself and Σ(t). 

Theorem 2. The function A(t) is constant in t, and m(t) is nondecreasing in t, for all t ≥ 0.
In order to prove that m’(t) ≤ 0, note first that since the rate of change of g t does not depend on t, 
proving m’(t) ≤ 0 is equivalent to proving m’(0) ≤ 0.
If we consider  (R3; u(x)4δij ), with u(x) > 0 that has asymptotics at infinity, we can expand u(x) like
u(x) = a + b/|x| + O(1/|x|2) ;  with the derivatives of the O(1/|x|2) term being O(1/|x|3), then the total mass 
of (M3;g) is m = 2ab [12].
Here expand v0(x): v0(x) = -1 + c/|x| + O(1/|x|2) for some constant c. Given that the total mass m(t) 
depends on the rate at which the metric becomes flat, we get m’(0) = 2(c-m(0)), i.e. we have to show c 
≤ m(0). 
By removing the region of M3 inside Σ(0) and by reflecting the remainder of (M3, g0) through Σ(0), one 
can obtain a manifold whose mass depends on c in the expansion of v. The resulting manifold will now 
have two resulting flat ends, since (M3, g0) has one flat end not included inside Σ(0). Similarly, by 
defining v0(x) to be the harmonic function which goes to -1 at infinity in the original end and 1 in the 
reflected end, we have v0(x) defined on the whole new manifold and zero on Σ(0). After compactifying 
one end of the new manifold, applying the Riemannian positive mass theorem on the new Riemannian 
manifold (M3, (v0(x)+1)4g0) and some calculations we get  m(0) = -4(c-m(0)) which must be positive by 
the Riemannian positive mass theorem. Thus m’(0) =2(c-m(0)) = -½ m(0) ≤ 0 (obviously this is merely 
the general idea, the details would be overwhelming for the scope of this paper. Refer to the appendix 
for a graphical presentation).
To clarify the assumptions for the area given in the theorem note that since vt(x) is zero on Σ(t), then to 
first order the metric is not changing on Σ(t).   Also, the area of Σ(t) does not change as it  moves 
outward, since Σ(t) is a critical point. From this follows that A0(t) = 0.
This is presented graphically in the figure below. As t increases, Σ(t) moves outwards. The fact that the 
area A(t) remains constant with time, geometrically means that below Σ(t) all horizons have the same 
area. This means that the manifold (M3, g0) has a “cylinder-like neck” [10].

Fig 3. Illustration of constant A(t)

Theorem 3.  For  sufficiently large t,  there exist  a  diffeomorphism Φt  between (M3,  g0)  outside  the 
horizon Σ(t) and a fixed Schwarzschild manifold (R3\{0}, s) outside its horizon. Furthermore, for all 



ε>0, there exists a T such that for all t >T, the metrics gt and Φ*t(s) (when determinig the lengths of 
unit vectors of (M3, gt)) are within ε of each other and the total masses of the two manifold are within ε 
of each other. Hence,

Since  Σ(t) by definition encloses any compact set in a finite amount of time, the manifold has zero 
scalar curvature outside a compact set, u(x) is harmonic outside  Σ(t), then one can derive that the scalar 
curvature of (M3, gt) becomes identically zero outside the horizon  Σ(t) if (M3, gt) is harmonically flat.
The Riemannian Penrose inequality is proved from the three theorems above [11], remembering that 
asymptotically flat manifolds can be approximated by harmonically flat manifolds. Once the inequality 
is proved for the latter, it follows for the asymptotically flat case.

3. Conclusion
 The Riemannian-Penrose inequality has been proved also for asymptotically hyperbolic metrics 
[13]. We encounter these metrics when dealing with a negative cosmological constant or when consid-
ering hyperboloidal hypersuperfaces in spacetime which are asymptotically flat in isotropic directions.

So far a rigorous proof of the Penrose inequality has been achieved only in two cases: in spheri-
cal symmetry and in the time-symmetric case. We already familiarized above with the outlines of the 
proofs presented by Huisken and Ilmanen [4] for connected Σ and by Bray [10,11], with a totally differ-
ent method, for arbitrary Σ. 

The proof of the inequality in higher dimensions is still an open question. 
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APPENDIX

Graphical presentation of the proof that m’(t) ≤ 0 from theorem 2.


