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Introduction

The Hamiltonian formulation is a very general idea that has been applied to
many different areas of physics. In this report, the Hamiltonian approach will
first briefly be discussed in the context of classical theory. The Hamiltonian
approach will then be applied to general relativity to obtain what is called
the ADM (Arnowitt-Deser-Misner) formulation of general relativity. Finally,
some applications of the ADM formulation, such as numerical relativity will
be discussed.

Hamiltonian Formulation of a Classical Theory

For classical systems, the standard Hamiltonian approach is as follows:

1. A Lagrangian density L is first determined by examining the system.
In many physical systems, this is just the kinetic energy minus the potential
energy of the system. The L is expressed in terms of generalized coordinates
qi and velocities q̇i.

2. Once L is determined, the canonical momenta can be defined by

pi =
∂L

∂q̇i

(1)

The resulting system of equations can usually be solved to obtain q̇i as func-
tions of pi.

3. The Hamiltonian density H is then defined by L as:

H =
∑

i

piq̇i −L (qi, q̇i) (2)

where q̇i are expressed as functions of pi. H is thus expressed in terms of
generalized coordinates qi and canonical momenta pi. The Hamiltonian den-
sity completely contains the dynamics of the system.

4. To extract the equations of motion, a pair of equations called Hamilton’s
equations are used. Hamilton’s equations are:

q̇i =
∂H

∂pi

ṗi = −∂H

∂qi

(3)
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Figure 1: ADM 3+1 foliation of spacetime [3]

For time-dependent Hamiltonians, we get an additional equation:

∂H

∂t
= −∂L

∂t
(4)

For systems where the Hamiltonian is independent of time, the Hamiltonian
is the total energy of the system.

Hamiltonian Formulation of General

Relativity

The formulation discussed here is called the ADM (Arnowitt-Deser-Misner)
formulation and was first proposed in 1962. In some literature it is also
referred to as the Cauchy or 3+1 formulation, the reasons which will soon
become obvious. It has found much success in the area of numerical relativity
and serves as a standard approach to solving problems there.

Foliation of Spacetime

Foliation of spacetime is the breaking of the spacetime manifold into a one-
parameter family of three dimensional spacelike hypersurfaces parameterized
by a time function t. (see figures 1 and 2) The hypersurfaces have timelike
normal vectors and spacelike tangent vectors. We can characterize this fo-
liated spacetime as follows: let na be a unit normal vector field to the hy-
persurface Σt and let ta be a vector field on the spacetime manifold. We
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Figure 2: ADM 3+1 foliation of spacetime, a different perspective [4]

then interpret ta as being the “flow of time” through spacetime and hab as
an induced spatial metric on every surface Σt. The spatial metric is related
to the spacetime metric by hab = gab + nanb.

It will turn out to be convenient to decompose ta into its normal and tan-
gential parts with respect to the surfaces Σt. We can do this if we let ta be
defined so that ta∇a = 1. We define a lapse function α and a shift vector β
as follows:

α = −gabt
anb (5)

βa = ha
bt

b (6)

The lapse function measures the rate of flow of proper time τ with respect
to coordinate time t as one moves normally to Σt along na. The shift vector
measures how much the local spatial coordinate system shifts tangential to
Σ1 when moving from Σ1 to Σ2 along na.

The lapse vector is αna, so we have

αna + βa = ta

na =
ta − βa

α
(7)

The lapse function and shift vector are not dynamical because they describe
how coordinates move in time from one hypersurface to the next. From the
definition of the spatial metric we can write gab (and thus gab) in terms of

3



three terms hab, α, and βa.

gab = hab − nanb = hab − α−2(ta − βa)(tb − βb) (8)

This shows that choosing hab, α, and βa as our field variables is equivalent to
using gab.

Causal Structure of Spacetime

In the ADM formulation, the spacelike hypersurfaces that result from folia-
tion are actually Cauchy surfaces. To define the Cauchy surface, we need to
first develop the following formal properties of the causal structure of space-
time.

A vector field in spacetime is causal if it is timelike or null. A curve is
causal if its tangent vector is everywhere causal. The chronological future
I+(p) of an event p on spacetime M is defined as the set of events that can
be reached by a future directed timelike curve from p. For a set of events, the
chronological future is defined as I+(S) = ∪

p∈S
I+(p). In other words, D(S) is

the set of all future events that can be reached from every event contained
in the set S). Analogous definitions exist for the chronological pasts I−(p)
and I−(S).

An achronal set S ⊂ M is defined as having the property that there does not
exist events p, q ∈ S such that q ∈ I+(p), i.e. I+(S) ∩ S = ∅. The domain
of dependence D(S) of S is defined as D(S) = D+(S) ∪ D−(S). That is,
the domain of dependence is the complete set of events whose information is
known because information is known of the S.

For a S that is closed and achronal, we can define the edge of S to be the
set of events p ∈ S such that every open neighborhood of p contains a point
q ∈ I+(p), a point r ∈ I−(p), and a timelike curve from r to q that does not
intersect S. Finally, a closed achronal set is known as a slice .

A Cauchy surface is thus defined as a closed achronal set Σ for which D(Σ) =
M . It follows that Cauchy surfaces are edgeless (edge(Σ)=∅) and are thus
slices. It is helpful to think of Σt as being the entire universe at an “instant in
time” t. Due to the achronal nature of Cauchy surfaces, it is possible for in-
extendible causal curves to intersect a given slice only once. By inextendible
we mean a curve that has no endpoints. It follows that closed timelike curves
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are impossible and so time travel is not possible in this formulation of space-
time. Finally, a spacetime that contains a Cauchy surface as a submanifold
is termed globally hyperbolic.

An Initial Value Formulation

An initial value formulation of general relativity theory is useful because the
behaviour of the universe for all time can be determined when given some
initial data about the system. This gives rise to a predictive (and retrod-
ictive) theory of general relativity. Having developed the tools to describe
the causal structure of spacetime, we now see the reason for using Cauchy
surfaces in our 3+1 foliation of spacetime. The use of a Cauchy surfaces as
our spatial slices gives rise to an initial value formulation of general relativity.

As we move from one hypersurface to the next along the time flow of ta,
the components of hab change on each successive hypersurface in accordance
with Einstein’s field equations. The initial data we need is analogous to the
initial data in classical mechanics of initial position and velocity. In our ADM
formulation, we require the spatial metric hab and its time derivative ḣab as
initial data.

The Lagrangian Density

In a way analogous to classical formulations, we obtain the Hamiltonian den-
sity H of our formulation from the Lagrangian density L . The Lagrangian
density for vacuum space is

L =
√
−gR (9)

where R is the scalar curvature. However, we require L in terms of variables
that describe our hypersurface Σt. To do this, we need to make use of four
facts:

Remark 1 We see that the Lagrangian, as it stands, depends on the de-
terminant g of the matrix gab. We would like to replace it with an expression
of terms that describe the hypersurface Σt. This can be done by using the
following relation: √

−g = α
√

h (10)
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Remark 2 From the definition of the Einstein tensor Gab, we have R as:

Gab = Rab −
1

2
Rgab

−Rgabn
anb = 2(Gabn

anb −Rabn
anb)

−Rnbn
b = 2(Gabn

anb −Rabn
anb)

R = 2(Gabn
anb −Rabn

anb) (11)

Remark 3 From the Gauss-Codacci equation, which relates the spatial cur-
vature (3)R to the spacetime curvature R, we have the following constraint
relationship:

Gabn
anb =

1

2

[
(3)R−KabK

ab + K2
]

(12)

where Kab is the extrinsic curvature of Σt and K it’s trace. We’ve introduced
Kab as an intermediate variable because L , as we will see, takes a simpler
form if expressed in terms of Kab. It represents ḣab in the Lagrangian density
because R depends on ḣab only through Kab.

Remark 4 From the definition of the Ricci tensor Rab, we have:

Rab = Racb
c

Rabn
anb = Racb

cnbna

= −(∇a∇c −∇c∇a)n
cna

= −na(∇a∇c −∇c∇a)n
c

= (∇an
a)(∇cn

c)−∇a(n
a∇cn

c)− (∇cn
a)(∇an

c) +∇c(n
a∇an

c)

= K2 −KacK
ac −∇a(n

a∇cn
c) +∇c(n

a∇an
c)

The last two terms of the last equation are divergences and can be neglected.
We therefore get the equation

Rabn
anb = K2 −KacK

ac (13)

Using equations (10) to (13), we can now express the Lagrangian density in
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terms of the variables of the hypersurface:

L =
√
−gR

= α
√

hR

= 2α
√

h(Gabn
anb −Rabn

ana)

= 2α
√

h(
1

2

[
(3)R−KabK

ab + K2
]
−K2 −KabK

ab)

L = α
√

h((3)R + KabK
ab −K2)

(14)

The Hamiltonian Density

Recall in classical theory we obtained the Hamiltonian density from the La-
grangian density by the Legendre transformation in equation (2):

H =
∑

i

piq̇i −L (qi, q̇i)

For general relativity, we choose the spatial metric hab to be our set of “gen-
eralized coordinate” qi. The canonical momenta pi is replaced with pab to
conform with our new notation. We therefore have

H = pabḣab −L (qi, q̇i) (15)

Our goal is to perform a variation of H with respect to α and βa. We will
therefore require H and hence pab and ḣab in terms of α, βa, and hab. By
definition of canonical momentum,

pab =
∂L

∂ḣab

=
√

hα

[
∂(3)R

∂ḣab

+
∂(KabK

ab)

∂ḣab

− ∂K2

∂ḣab

]
=
√

h(Kab − habK)

(16)

where we had

∂Kab

∂ḣab

=
1

2α

∂ (3)R

∂ḣab

= 0

∂K2

∂ḣab

=
habK

α
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We now need Kab in terms of α, βa, and hab. The extrinsic curvature of a
surface Σ is defined as

Kab = ∇anb (17)

where nb is a field orthogonal to Σ and tangent to timelike geodesics that
do not intersect. To relate Kab to the metric, we make use of the following
property of Lie derivatives:

Lngab = nc∇cgab + gcb∇av
c + gac∇bv

c

= ∇anb +∇bva

= 2∇anb

(18)

where the second line holds when ∇a is the natural derivative operator corre-
sponding to the metric gab and the third line holds because Kab is symmetric.
Substituting this into our definition of Kab,

Kab =
1

2
Lngab

=
1

2
Ln(hab − nanb)

=
1

2
Lnhab

=
1

2
[nc∇chab + hcb∇av

c + hac∇bv
c]

=
1

2α
[αnc∇chab + hcb∇aαvc + hac∇bαvc]

=
1

2α
ha

chb
d [Lthcd − Lβhcd]

=
1

2α
ha

chb
d
[
ḣab −Daβb −Dbβa

]

(19)

where we have used the appropriate versions of equation 18 when needed
and the fact that ḣab is simply the Lie derivative of hab with respect to t:
ḣab = Lth

ab
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We can now use (15) to write an expression for our surface Σt:

H = pabḣab −L (qi, q̇i)

= −
√

hα(3)R +
α√
h

[
pabpab −

1

2
p2

]
+ 2pabDaβb

=
√

h

[
α

[
−(3)R + h−1pabpab −

1

2
h−1p2

]
− 2βb

[
Da(h

−1/2pab)
]
+ 2Da(h

−1/2βbp
ab)

]
=
√

h

[
α

[
−(3)R + h−1pabpab −

1

2
h−1p2

]
− 2βb

[
Da(h

−1/2pab)
]]

(20)

where p is the trace of pab and we neglected the boundary term in the last line
because we assume a sufficiently large spatial surface so that the boundary
effects are negligible.

Constraint and Evolution Equations

To determine the Hamiltonian H, which we need in order get the constraint
and evolution equations, we integrate H over the hypersurface Σt using the
fixed spatial volume element (3)e. (Note: (3)e

√
h = ε where ε is the natural

volume element associated with the metric hab.)

H =

∫
Σ

H (3)e (21)

To obtain the constraint equations of the sytem, we perform a variation of
H with respect to α and β. From this we get the two constraint equations
(22, 23):

−(3)R +
pabpab

h
− p2

2h
= 0 (22)

This equation constrains the Hamiltonian. It forces the first term of the
Hamiltonian density (20) to vanish.

Da(
pab

√
h

) = 0 (23)

This equation constrains the momentum. pab cannot change with respect to
a. This constraint can be removed if one were to choose a superspace as the
configuration space.[6] With this configuration space, all possible momenta
already satisfy equation (23).
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The last step of the formulation is to obtain the evolution equations from
which all of spacetime can be determined when given any initial data. To do
this, we expand Hamilton’s equations in an analogous way to the classical
case:

Lth
ab = ḣab =

δH

δpab

=
2α√

h
(pab −

habp

2
) + Daβb + Dbβa

(24)

Ltp
ab = ṗab =− δH

δhab

=− α
√

h((3)Rab −
(3)Rhab

2
)

+
αhab

2
√

h
(pcdp

cd − p2

2
)

− 2α√
h

(pacpc
b − ppab

2
)

+
√

h(DaDbα− habDcDcα)

+
√

hDc(
βcpab

√
h

)− 2pc(aDcβ
b)

(25)

The two constraint equations (22, 23) and two evolution equations (24, 25)
together constitute a constrained Hamiltonian formulation of general rela-
tivity for vacuum space. Given initial conditions that satisfy the constraint
equations, the universe at any point in spacetime can, in principle, be deter-
mined by evolving the system using the evolution equations.

Applications

The ADM Hamiltonian formulation of general relativity was, for some time,
the most popular model used in the field of numerical relativity. The pro-
cedure for performing computational experiments using the ADM theory is
roughly as follows:

1. Make an assumption about the metric of the system.
2. Solve the constraint equations.
3. Specify the slicing conditions of spacetime. (eg values of α and K)
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Figure 3: Stability of ADM vs BSSN formulations in numerical applications
[5]

4. Evolve the variables in time using the evolution equations.
5. Extract the values of physical quantities at the end of the evolution.

Although the equations we have found are mathematically equivalent to the
vacuum Einstein’s equations, in practice they are not. For instance, in com-
puter simulations, the numerical stability of two formulations can be quite
different. For instance, the ADM approach, for a large number of scenarios,
is capable of a shorter lived evolution than another formulation called BSSN
(a conformal traceless formulation). [5] The two are compared in figure 3.

The ADM Hamiltonian model may no longer be the best one available, but
it continues to be relevant in modern research. For instance, one of the new
models in current use is actually a modified formulation of the ADM model.
This model, called the adjusted ADM model, is basically the ADM model ex-
cept it uses the extrinsic curvature Kab as a dynamical variable instead of ḣab.

The ADM Hamiltonian formulation has also been useful as an approach
to the canonical quantization of general relativity. Other Hamiltonian for-
mulations exist and continue to be studied and developed in an attempt to
reach a theory of quantum gravity. The ADM approach acted as one of many
springboards into this area of research and is still referred to in today’s lit-
erature on the subject. The ADM formulation has stayed relevant for a long
time since its creation in the 1960s. It is reasonable to expect that it will
continue to be useful in the foreseeable future.
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