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1 Introduction

In this papet, we follow the apptoach of [Pen and Mao(2006]] to demonstrate the presence of
totational effect in multiple-plane lenses.

Gravitational lensing is a direct consequence of the theoty of general relativity. In cosmology,
it serves as a patticularly clean tool for probing the spacetime strocture in our universe. In gravita-
tional lens syst=ms, light tays ares lens=d ot defl=ct=d by the intervening matt=t betwesn the soorce
and the observer, much like the deflaction dus to 2 fumiliar optical l=ns. Howsver, the gangs fres-
dom of the spacetime description makes the interpretation of derived gravitational lensing results
a little tricky. Hence, we shall procesd with cantion, and concern outselves only with effects that
are observable in a physical svstem.

Whil= the magnification and imags distortion of an sxtantsd light source are well-acceptad
gravitational lensing effects, the image wotation is claimed to be a gange artifact and nnobssrvable
by [Schneideri19971]. In his papet, Schneider claimed that any muoltiple-plane l=ns system can
be teduced to an squivalent single-plane gravitational l=ns with a symmetric amplification matrix,
thus wielding no observable totation. However, [Pen and Maol 2006)] has recently shown that an
image totation is observable in a lensing svstem with one strong l=ns and one weak lens. The
tecent result has attracted some interest within the cosmology community both becanse of its fun-
damental existence and its cosmological implications. In this wotk, we will follow the approach
of [Fen and Maoi2006]] to study the rotation in gravitational lenses.

In section 2, we detive the basic equations used in corrent gravitational lensing research, as well
as introduce some general propetties of a lensing svstem. [n section 3, we specialize in a svstem
with two lens planes, one weak and one strong in order to demonstrate the presence of image
totation by examining the composed amplification matrix. Such rotational =ff=ct is physical, and
can be obssrved using a lensing syst=m with a sufficient number of constraints com parsd to the
degrees of freedom. The mathematical formuolation of the measorement for a lensing svstem with

a 3-component source and quadruple images is given in section 4.



2 Gravitational lensing

Lnthis section, we introdnce some basic concepts and vocabuolary nsed in thetheory of gravitational
lensing. We shall introdoce the de=flaction angle and us= it to define the l=nsing potential. We
then discuss the lens squation and the amplification mattix, which is the most im pottant tool in
the detivation of the rotation angle in section 3. We introdoce the comeergence and the shear of a
gravitational l=ns for some fixed observar and soutce positions, as well as mention some obssrvable

effects of gmvitational lensing. The basic theoty covers the single-plane lens scenario.

2.1 Deflection of light by a point mass

Wi first consider the deflaction of a light tay by asingle point mass M, which is static and sphet-
ically symmetric. The Schwarzschild mettic propetly describes the gravitational fi=ld cutside of
the Schwarzschild radivs at rs = EGMJ-"r::.

In the Schwarzschild geometry, assuming thata light ray propagates well ootside of the hot zon,
that is £ % rg (Assumption 0), General Relativity predicts a deflection of the light tay by the angle
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as shown in [Wald(1984)]. Here, £ is the impact parameter, which is the shortest distance between
the gravitating mass and the photon trajectory.

2.2 Deflection of light by a distribution of mass

Assuming that the lensing svstem is in the weak fi=ld limit (Assumption 1), we can linearize the
ficld squations of General Relativity. Hence, the deflection angle dus to a collection of point
masses is simply the vectorial sum of the deflections due to the individual point masses.

As in the analysis of an optical l=ns, we often compare a lens=d light ray to an und=flected
one, that is one which propagates in vacuum. We follow the same logic in oot analvsis of gravita-
tional lenses, and perturb the undeflect=d light tay, that is onz which propagates ina flat spacetime,
assuming that the deflection angle is small {Assumption 2). Ln this work, we adopt the Botn ap-
proximation (by assumption 2) which allows us toapproximate the light ray in the neighbouthood
of the deflecting mass by a straight line. We now write the spatial trajectory of an incoming photon
as (£ (), Ea(A),r3(A)) in the orthogonal coordinate system such that it propagates along 3. Here,
#.is an affine patameter. In this parameterization, we obtain under the Born approximation that the
projected position (ontoa plane perpendicular to the incoming light 1'.1_".'|.E.: = (E1(A), Ex (L)), is con-
stant along the photon trajectory. The impact vector of the light ray with trajectory AA) = [E, ral A0



dus to 2 mass =leme=nt am at F"I:E.",r"31 is E.— E." independent of r"3. The total deflection angle, as
given by [Bartelmann and Schneider(20017], is
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Hete, weassumed that the angularsize of the image is verv small (Assomption 3, and it is typical lv
very small with valoes of order 1 arcsec =2 2.9 » 579 for clustet lensing) so that the coordinate ry
tor incoming light ravs from different patts of the image is roughly aligned. This superposition of
deflection angles is valid for a mass distribotion with a finite thickness as long as the deviation of
the actual light path from a straight line within the mass distribution is small compared to the scale
on which the mass distribution changss significantly (Born approximation tevisited). In detiving
Equation 3, we alzo nsed the assum ption that the anguolar size of the soontce is small so that we can

perform planar integration after projecting the mass distri bation along the radial coordinate.

2.3 Lens equation, deflection potential

Here, we introdoce the lens equation which relates the true position of the sonrce to its observed
position on the skv. We deal with a geometrically-thin matter distribution at a time [ Assom ption
41. In this case, the distance to the lens is well-defined. We also assume that the sonrce is small in
the angular size and the thickness (Assumption 5). Then, as depicted in Figure 1, we can define the
sounrce and lens planes as planes perpendicular toa straight line from the observer to the lens, which
we call the optical axis, containing the source and the lens respectivel v. Becanse the deflection
angle is typically small (Approximation 2), the optical axis roughly align with the coordinate ry
inttoduced previously. Where 7 represents the two-dimensional position of the sonrce on the

source plane, we see from Figore 1 that
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Lking the angular coordi nates E =7,/D; and 8= E-,"'Du-'- while defining the rescaled deflection
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Figore 1: Diagram verbatim from [Bartelmann and Schneideri2001)]. Sketch of a tvpical gravita-
tional lens svstem with an extended source and a single-plans lens

angle (B} = (Dys/Ds)0(DgB), we obtain the rednced form of Equation
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As shown in [Schneidet =t al (1992 5chneider, Ehlets, and Faloo], if the sutfacs density I.IZE! is
greatet than the critical surface mass density
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at any point of the lens plane, then Eqoation & has muoltiple solutions for some soontce position E
therefore producing multi ple images for a soorce at E‘ A lens system whers multiple images of the



same sontce are observed is called a strong lens system ; otherwise, the lens is weal,

D=fining the dimensionless surface mass density
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the scaled deflection angle, as givenin [Bart=lmann and Schneidet(2001]], can be sxpressed as
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and Y satisfizs the Poisson squation "-:"l.p'li§1 = EH.‘I:§1

2.4 Amplification Matrix

The important tool for cur analysis, the amplifcation matrix, is defined as the Jacobian matrix of
soutoe cootdinates with mspect to the image coordinates
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Hete, we have introduced the com plex or spin-2 shear y =4 + 72 = |1l 2

3 Rotation in gravitational lenses

In this section, we consider lensing with muoltiple planes with one and only one of which being
a strong lens. The requirement of the present analvsis that only one lensing plans can be strong
is not moch of 2 constmint in cosmological scenario since the the probability for the alignment
of two strong lenses along a line of sight is very small. Since the amplification matrix of two
weak lenses simply superpose, we can reduce any system witha multiple planes of weak lenses at
different distances to the observer to one with a single weak lensing plane at some new distance.
This effective weak lensing plane can in principle lie in front of, on the same plane as or behind
the strong lens. However, a weak lens plane coinciding with the stiong lens can be absorbed into

the strong lens, and contributes no rotation. Hence, we only need to consider the other two cases.
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Figure 2: The lensing geometry of a two-plans lens. L) is a strong lens, and Ly weak. 1) and £
are the source and image positions respectively. x is the angularsize of the imags. The deflection
angles, @) and G, themselves ate notobservable; however, their variations over an extended image

can be detected with the amplification metric.

Only the detrivation of the overall amplification matrix for the case with the strong l=ns in front of
the weak lens is shown hete. The calculation for the othet case is neatly identical and self-svident.

The 2-plane lens shown in Figure 2 consists of a strong lens Ly in the foregroond and a weak
l=ns Ly in the background betwesn the observer © and the source plane 5. We denote the anguolar
diameter distance fiom the observer to the fitst lens by Dy, that from the fitst lens to the s=cond
l=ns by iy, that from the second lens tothe source by Do, and so on. The convergence and shear
for the strong lens are dencted by K and y; whereas, those for the weak lens are denoted by K and
Y. The deflection angles at the first and second planes ars dencted by él and a: respective.

Since the system contains a strong lens, it produces muoltiple images of the source. We assume
that different images pass throngh different paits of the strong lens with different amplification
matrices, as well as different parts of the weak lens with different valoes of the comvegence and
the sheat. For sach image, we nesd to calculate the amplification matrix in a neighbourhood of
the image at sach of the lens planes. The amplification matrix is r=lated to the second detivative
of the potential or the values of the convergence and the shear. Our firtst task is to define a lensing
potential and to obtain an expression for the convergence and for the shear.

Since a gmvitational lensing potential defined on the lens plane is genetally assumed to have

continuous second detivatives (Assomption 22, we can carty out Tavlotr expansion around any
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W may assume that the source is sufficizntly small that the highet order tetims are not important.
On the other hand, the constant tetin and the fitst ordet t=rins with constant cosfiici=nts do not
contribute to the amplification matrix as the entries ate the second derivatives of the potential.
Thete, we adopt the quadratic potential

W= aB] +250,8: 4+ 83 (13]

as in [Pen and Maol2006)] whete @, b and ¢ are constants. Such potential is the most genetal form
that l=ads to constancy of K and .

From Equation 11, we see that
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Hence, for a genetal homogeneous, isottopic lens with potential given by Equation 13, the comet-

gence and the shear are given by
K=a+c, ) =a—c, and o =2k (15]

In the remainder of the section, we shall detive the rotational effect of an image in the lensing
geometry depicted in 2. This is acheived by fitst writing down the lens aquation and then calculat-
ing the amplification matrix for the two-plans syst=m in t=rms of the amplification matrices for the
individunal l=ns planes.

Since the deflection angles are very small (ro 107 *tad), we expand to first order in the deflection
angles, as described in section 2 and [Schneider et al (1992 5chneider, Ehlets, and Faloo], to get
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whet= 1), E-:l and E.:: ates the position vectors in the source plans, the first and the s=cond lens
planes respectively. Following [Schneider =t al.{1992)Schn=idet, Ehlers, and Falea], by defining



two tescaled deflection angles
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whete f1z = DiDg/ (D205 ).
For the two-plans l=nsing system, the combinsd amplification matrix can be read off from
Equation 20
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Her=, I is the identity matrix, and
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whete J; is the amplification of the i plane in the absence of the other lens plane, so are the
convergences and the shears. We see from Equoation 21 that all terms are symmetric emcept for
UL since the product of two svmmetric matrices mav not be symmetric if they do not share the
same set of zigen vectors. This asymmetry in the amplification 4 is responsible for the image
rotation as we will s=e later inthis section.

L=t us fitst compote the product tetim

u;_ul=( (K + 1K)+t (K7 (k=) | ( 0 Te-vn |
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Hete, the approwimation comes from assoming that the weak lens strength is much weaket than that
of the strong lens (assumption |. We drop the first o=t tetms in k' and ¥ which contribute to the
magnification and distortion of the image sincs zeroth order terms ares present in the amplification
mattix and dominate the magnification and distortion sffects. However, we kesp the first ordet
terms which contribute to the rotational effect, i=. the antisyvmmetric components, as this is not
present in the zeroth order

Applving the same approximation scheme on Equation 21, the term Uz becomes onimpottant
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where the antisymmetric component is expressed as @ = Ppa(7) 72 — ¥a71). We then recast the
am plification matrix given by Equation 24ina mot= enlight=ning form by factoting it as 2 product

of a put= tescaling (symmetric) and a purs rotation 4 = AL R(§) whers
Rd)= m?kb Elmb\. i25)
—singd cosd /
The rotation angle ¢ is calculated in [Pen and Maoi2006]] to be given by
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The rotation of a single image is not observable as the properties of the distant source is genet-
ally not known and that the absoluts otisntation of the soutes is not well-definad dos to the gangs
freedom in Genetal Relativity, In the next section, we procesd to describe how the presence of
image rotation can be detected in a physical gravitational lens system by measuring the relative

totation.

4 Measurement of rotation

The simplest lensing svstem where the effect of rotation can be measored is one where a 3-
com ponent sontce is lensed by a strong lens in combination with one or mote weak lenses in
the foregronnd or background to form 4 images, that is, 4 copies of the 3 source com ponents. Let
us dencte the positions of the 3 source components on the source plane by P = (P! B, F* and
F? tespectively, and that of the 4 images by A, B, C and D). Withonot loss of generality, w.: let P sit
at the otigin. Furthermore, for image A, we define the apparent positions of P! and P relative to
that of P* as A' and A®. Then we have

Pl=g4! (27)

and
PP=a.4° (28]

whete 44 is the amplification matrix for the image 4. Similar pais of squations can be obtained
for the other 3 images B, C and D invelving the relative image positions of the first and second



com ponsnts to the thidd componsnt, as well as the corresponding amplification matrixz. Recall
that the multiple-plane lens is assumed to be homogensons over the size of the source. Hence, K
and 7 are constant around the patches on the lens planes where the light forming an image with 3
com ponsnts passes through, and the 3 components shars the same amplification matrix. Writing

the twocolomn vectors P and P~ asa 2 » 2 matrix

Pl P2 \

Rl P

(29
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and combining the image position vectors in a similar manner, we obtain a set of homogeneons

linear equations

AP = 0 (30
AgF - P 0 (31)
AC_P 0 (32)
ApD—-F = 0. (33)

Hezre, A, B, T and D) ars d=tetimined by obsetvations wheteas 34, J5, A-, 3p and Farsto be solved
for. Since the amplification matrices ar symmetric, they sach have 3 independent com ponsnts. We
can also fix F_T: = 1 becanse of a length scale degeneracy of the system and since we are interested
in the angular measore of image rotation. Therefore, we have an over-determined system of 16
equations and 15 unknowns, which wouold enable us to detect a linear combination of the rotation
angles for the various images, hence demonstrating the existence of image rotations If the rotational
effect is indeed present as predicted by the theotry presented here and in [Pen and Mao(2006]], we
can distingnish a multiple-plane lens svstem from a single-plane one. Such distinction is of great

intersst to the cosmology community.

5 Conclusion

Ln summary, we followed the detivation in [Pen and Maol 2006]] to detive the image rotation angle
of a multiple-plane lens system. The rotation of 2 single image is not obssrvable as the properties of
the distant souwce is generally not known and that the absolute otientation of the source is not well-
defined due tothe gange freedom in General Relativity. Howevet, in contrary to the claim made in
[Schneidet(1997]], in a lensing system with multiple images and enough constraints compared to
the degress of freedom , onecan measure a linear combi nation of the rotation angles for the different

images, hence confirming the existence of image rotation. The existence of image rotation wounld

10



provide a mean to distingoish mouolti ple-plane lensing from single-plane lensing.
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