EINSTEIN METRICS AND CONFORMAL INFINITY
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ABSTRACT. Conformal compactness and conformal infinity are defined and
discussed. Einstein metrics are defined. Some examples are presented. The
problem of uniqueness and existence for Einstein metrics with a given confor-
mal infinity is posed. Three recent results of Michael Anderson are stated.
This review is intended for an audience as knowledgable as the author was
when he started to read on the topic, with a few reminders of background
material thrown in where it does no harm to the flow.

1. INTRODUCTION

Recent trends in String Theory motivate the examination of certain kinds of
geometrical boundary value problems [7]. There are conjectured correspondences
between field theories on Anti-de Sitter spaces and conformal field theories on spaces
of one dimension lower — that is, on their boundaries. Whatever is meant by
this, it poses some problems to mathematicians. In particular, it asks what is the
relationship between Einstein metrics on a manifold and conformal structure at
infinity.

For a PDE governing a field on all of R, the imposition of a boundary condition
can be achieved by specifying asymptotic values of the field, say, with respect to
some homotopy A : S™ ! X [0,00) — R™. Questions about the existence and
uniqueness of solutions can then be addressed.

However, where the metric structure itself is at issue, this is not a useful ap-
proach. It is preferable to more concretely describe the infinity on which the
boundary condition sits.

2. CONFORMAL INFINITY

For an oriented manifold with boundary M, its interior M, and a metric g on M
only, we say that M is conformally compact if there exists a smooth, non-negative
function p : M — R, with dp # 0 on &M and p~1(0) = M, such that p?g
extends continuously to a metric ¥ on M. Call the metric g = p*g +y on M the
compactification of g. p is called the defining function for the compactification. [6]

This description includes manifolds where the boundary is taken to be at infinity.
For example, take M to be the open unit ball centred at 0 in R3. Then OM is
the unit sphere. If M is parameterized in R® by radial coordinate r and angular
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This (M, g) is isometric to R® with the Euclidean metric, under the map (r, Q) —
(% log (;j;) Q) If p =1 — 72, then

2 1 22y 2 (14T 2 _
pg—dr+4(1 r%)?log (1_T)dﬂ =g,
which extends smoothly to M and induces the trivial metric ¥ = 0 on M. We
conclude that Euclidean R? is conformally compact, and it clearly follows for higher
dimensional Euclidean space.

This property of conformal compactness determines, among other things, that
the manifold does not twist or skew to a pathological degree as one traces outward
toward infinity — that, in some sense, it merely “gets larger.” Most importantly, it
gives an induced metric v on M. However, v is by no means unique. In general,
many defining functions will compactify (M,g). For example, if p is one such
function, and T is any smooth, nonzero function on M, then 7p is also a defining
function for g, and will give rise to a different ~.

If v and 4’ are two such induced metrics on M, then they are in the same
conformal class. That is, there is a diffeomorphism ¢ : 0M — OM and a function
o : OM — R such that ¢(y) = 07’ (where « is pushed forward as a tensor field).
This is the same as saying that, for any two tangent vectors v and w to a point
z € OM, their cosine w.r.t. 7 is unchanged under the map c w.r.t. 7'

v cfo)c(w)
V] |w] V] [w]

In fact, v and 4’ will satisfy this relationship for the identity map, since at any
point they differ only by a scalar multiple.

We denote by [v] the conformal equivalence class of metrics on OM to which v
belongs. In the example, [y] = 0, the trivial class. As we have established, there is a
unique [v] for each conformally compact metric g on M; however, there is certainly
not a unique g for each [v]. In fact, an arbitrary deformation of g on a compact set
can be made, without affecting the conformal structure at infinity.

We can go further, denoting by [g] the equivalence class of metrics g on M
related to g by orientation-preserving diffeomorphisms (which push forward ¢’ to
g) - all such ¢’ describe the same geometry as g. In fact, all such g’ have the same
conformal infinity as g.

In both cases, the space of equivalence classes can be imbued with a quotient
topology (i.e. v — v = [v] — [v]) with respect to whatever topology on the
function spaces is most useful, typically that which arises from a Holder or Sobolev
norm. However, [7] still does not have a unique [g], no matter by how much we
restrict the class of metrics function-analytically.

3. EINSTEIN METRICS

If we restrict the class of metrics g on M to those satisfying a partial differential
equation, then there is hope that uniqueness can be attained. Recall Einstein’s field
equation with a cosmological constant:

1
Ricg — 359 + Ag = 8nGT

Here, Ric, is the Ricci curvature tensor associated with the metric g (in Einstein
notation under a coordinate chart, it is denoted R,, and equal to the contraction



R?,,, of the Riemann curvature tensor), s is the scalar curvature (also denoted
R = g"YR,,,, where g*” is the inverse of the metric tensor), A is the cosmological
constant, G is the gravitational constant and T is the stress-energy tensor. [5]

We say a metric g is an Finstein metric if it is (nontrivially) proportional to
the Ricci curvature everywhere, that is, it is a vacuum solution of the Einstein
equation with nonzero cosmological constant. In particular, the theory treats the
case normalized such that if dim M = n + 1 then

Ricy = —ng.

Einstein metrics are critical points of the Einstein-Hilbert action

S= /M(s —2A)dV,

with the caveat that for a nonzero cosmological constant, this integral is typically
infinite.

Disregarding the particulars of the conformal infinity, for a compact manifold
with boundary, and a metric specified on the boundary, this is already an under-
determined problem in PDEs — while both g and Ricy have the same number of
degrees of freedom at any one point, ten in 4-D for example, and we therefore might
hope to have, up to the usual function-analytic difficulties, a well-posed problem,
the Bianchi differential identity on Ricy reduces the effective degrees of freedom of
Ricgy. We expect an underdetermination, however, since, as in the infinite case, a
diffeomorphism — that is, an isometry — on the interior will describe the same
geometry. Diffeomorphism invariance, suitably interpreted, is one of the symmetries
of Einstein’s equation.

For any C? conformally compact Einstein metric g with defining function p,
|Ky+1| = O(p?), where K, is the sectional curvature (the product of curvatures in
principal directions); that is, Ky — —1 near infinity. (See [2].) We call such metrics
asymptotically hyperbolic (AH), indicating that their local geometry approaches
that of hyperbolic space near infinity. However, their global structure may be quite
varied.

4. GEODESIC COMPACTIFICATION

An advantage of the non-uniqueness of the defining function is that one may be
chosen to match particular challenges. Often the most natural one is defined in the
following way: if a function ¢ satisfies

t(z) = distg(z,0M)

then the compactification g = ¢2g and the defining function ¢ are said to be geodesic.
2

The cut locus of a closed set S in a manifold M is the closure of the set of
points in M which have at least two shortest paths to S. The existence of a
geodesic compactification of M requires a weakening of our definitions; ¢ will not
be differentiable on the cut locus of 9M. However, ¢ will be continuous on the cut
locus and smooth elsewhere, and the cut locus is bounded away from 0 M, therefore
the non-differentiability of ¢ is restricted away from the region of interest.
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We construct an example on the unit ball in R3. As before, it is parameterized
by radial coordinate r and angular coordinate €. Let

_ A 0g2(1 = r)a?
g= a=r2 +1log"(1—7)
which, of course, is merely continuous at » = 0. Then the ball is isometric to
Euclidean space under the map (7, Q) — (—log(1—r), ). If t = 1—7 is the defining
function, then clearly ¢ is the distance from the boundary w.r.t the compactification
g=1t’g=dr’ + (1 —r)%log*(1 — r)dQ?

Both examples so far are flat, therefore neither is an Einstein metric in our sense.

We note that for a geodesic defining function ¢, the integral curves of V¢, where
V indicates gradient w.r.t. g, are geodesics (with respect to both g and g, it turns
out). This is, of course, the motivation for applying the term geodesic in this case.

If g is a geodesic compactification, and ¢ its defining function, then, away from
the cut locus of OM,

g= dt? + gt

where, for each t, g; is a metric, of dimension that of M, which is transverse to
dt?. Since g; is a function from R into the space of metrics on M, it has a series
expansion in t. If g € C™ is asymptotically hyperbolic on a 4-manifold M, for
m > 3, then, as a function on the image of 9M under the geodesic flow,

9t = g0y 2902 +t°9(3) + - + 1™ g(m) + O(t™T)

where 1
9G) = ﬁ(ﬁ(ézg) ot
the j*" Lie derivative of g, w.r.t. V¢, evaluated on M.

For n-manifolds generally a similar expansion will exist, but high-order terms
(relative to n) may not be powers of ¢, and their coefficients may not depend just
on g near OM. Therefore, such expansions will generally be taken to finite order
with a controlled difference term, as is shown in the 4-dimensional case. Details are
in [1].

Correspondingly, if 7 = —logt then the integral curves of V7 are geodesics,
and the metric g has the form g = dr? + g,. It is possible, through the function
T, to define renormalized quantities of volume, Einstein-Hilbert action and other
integrated curvatures. This addresses, among other things, the difficulty mentioned
in the section Finstein Metrics.

5. AN EXAMPLE

Both examples given so far have had the same geometry — that of flat Euclidean
3-space. The flat geometry corresponds to the solution of the Einstein equation in
a vacuum, without a cosmological constant, therefore it is not an Einstein metric in
the sense we are using the term. It would be worthwhile to construct a more realistic
example. In fact, the example we construct will be relevant to the statement of one
of the theorems in the section Ezistence and Uniqueness.

As before, we start with the unit ball. This construction works in any number of
dimensions, but for concreteness we will use exactly three. Again, we parameterize
by r and 2. Whereas previously, if the metric was of the form

F2(r)dr? + h3(r)dQ?
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then we required that g = [, so that the angular coordinate scaled with the metric
radius, this relation is not satisfied for
_ dr? 4+ r2dQ?
9= (1—r2)2
This indicates curvature. One can check that, in fact, Ricg oc —g.
The metric can be expressed in Cartesian coordinates as well:
_da? + dy? + d7?
(1=1(=z,y,2)%)
This is known as the Poincaré metric. (Sometimes the term Poincaré metric is used
more generally.) It is the prototypical Einstein metric on the ball. The Poincaré
metric is not merely asymptotically hyperbolic; it is hyperbolic everywhere.
A straightforward compactification suggests itself. Let p = 1 — r2. Then the
compactification is

p2g = dr? + r2dQ0?
— the Euclidean metric on the ball. The conformal structure at infinity is
[ = [aQ?].
The construction the geodesic compactification of g has difficulties, but we pro-

ceed heedlessly: we note the spherical symmetry of g and conclude that shortest
paths to infinity under the compactification will surely be radial. If

g=7 (r)dr? + ﬁz(r)dﬂ2
then the defining function satisfies

b= / Fla)da.

But, by definition, f = t—5, so we have

12>
a ot
R g
We conclude that Ly
t =

V1—1r2

_ (1 —r)%(dr® +r2dQ?)
9= (1—r2)3
The difficulties become clear: dt and g are apparently undefined near M. We
would be unjustified if we were to say infinite, since the tangent spaces at the
singularity, on which they would act, are similarly unclear. Moreover, the line
integral from a point to the boundary under g is finite, and corresponds to t.
Then g definitely describes a compact manifold. The problem is that the geodesic
compactification does not respect the manifold structure of M under our chart. An
alternative chart, with its correspondingly different representation of g, will give
the same defining function, but will have a metric smooth on M.
However, it is not worth our while to pass into a more difficult chart for this
sake, since we already have the geodesic defining function ¢. We notice that
1—7)2

2 ( 2
dt“ = 7(1 — T2)2dr

and
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and therefore g splits as expected. In fact, it is possible to take Lie derivatives of
g in the limit approaching O0M,
1 G)=
F([’%Zg) |T—>1a
which will be finite, and will give the series expansion of g; in ¢.

6. EXISTENCE AND UNIQUENESS

Let E’'; be the space of AH Einstein metrics on M for which there exists a
compactification g in C™*. Let £} be the space of equivalence classes in E'\'}; by
orientation-preserving diffeomorphisms which extend to the identity on M under
a compactification. E7 and £7%% can be given the C™* topology if o/ < . The
restriction of the equivalence relation on E’{'}; to only those diffeomorphisms that
fix OM is made so that the following simplification can be made to the boundary
data: let C"™“ be the space of C™ pointwise conformal classes on M, by which
we mean simply that v ~ ' if ¥ = ¢y’ for some real-valued function c¢. C™% derives
a topology similarly.

Finally, let II"™* : £} — C™® be the natural map from classes of metrics
on M to their conformal infinities. It is now sensible to ask questions about the
surjectivity and injectivity of II"%, corresponding to the existence and uniqueness
respectively of a [g] for each [v].

It happens that the case of dimension four is easiest treat, or at least it has
been treated most extensively so far. Fortunately, this is the case most applicable
to classical general relativistic physics, and it serves as a first step in extending
the results eventually to higher dimensions. One supposes that if existence and
uniqueness hold in four dimensions, then they will also hold in higher dimensions,
up to some topological issues.

Unfortunately, uniqueness does not hold generally. A partial uniqueness result,
due to Michael Anderson [And2], relates a finite number of the coefficients in the
Taylor expansion of the geodesic compactification to the metric on the interior [3]:

Theorem 6.1. If M is 4 dimensional then the data (v,g(3)) on OM wuniquely
determines g € EaH up to local isometry.

g(3) is the third-order coefficient in the series expansion of g, but is here taken
to be data. The qualification “local” is in fact a strength of the theorem. It
encompasses the possibility that two different manifolds M! and M? have the
same boundary, and same boundary data, in which case it asserts that they have
a diffeomorphic universal cover, and that locally there are always isometries taking
g! to g2. In the case that their fundamental groups are equal, it reduces to the
statement that they are isomorphic.

This theorem does not directly speak to the main uniqueness problem. The data
(v, g(3)) is different and apparently stronger than a mere conformal class. There
are examples known of conformal classes for which the interior metric is not unique
up to isometry [3]. It is being studied how common these are. It is known that in
any compact region of £ there will only be finitely many compatible classes for a
particular conformal infinity.

Let C"* be the space of non-negative conformal classes in C"™“. By this is meant
that [y] € C}""® has a representative which is not flat and which has non-negative

scalar curvature. Let £ = II7*(C}"*). Anderson [2] has the following result:



Theorem 6.2. If M is a 4-manifold for which the inclusion ¢ : OM — M induces
a surjection

H2(8M, R) — HZ(M, R) —0
then for any m > 4, a, the boundary map 11 : EFy" — C" is proper with respect
to the C™* topology.

(Under a proper map, the inverse images of compact sets are compact.) Ha(-,R)
is the real second homology. The homological hypothesis on M is a technical
requirement that avoids certain known pathological cases. The properness of the
map, combined with computations of its degree in particular cases, can establish
its surjectivity. Anderson carries this through in the nest theorem [2].

Theorem 6.3. Let M be unit 4-ball; then OM = S°. If C° is the connected
component of the non-negative C™< (m > 2) conformal classes containing [dQ2] on
S3, then any [y] € C° is the conformal infinity of an AH Einstein in 43 metric
on M.

This theorem fixes the topology to that of the 4-ball, which is a significant
weakness. The theorem is somewhat stronger than is stated, but in its generality
involves other mathematics not described here. In fact, for such a metric g, [g] will
be in the connected component of II~1(C°) which contains the Poincaré metric on
the 4-ball. The argument for this theorem relies on the previous theorem.

For a suitably restricted class of conformal classes, then, the existence of a com-
patible Einstein metric is established, at least for the trivial topology in dimension
four. There is currently work being done to refine the existence results, and to
study further the degree of uniqueness.
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