Assignment 1

Let Ω be a bounded open set of \mathbb{R}^d . Suppose that for all $t \in [0, T]$, $\mathbf{X} : x \mapsto \mathbf{X}(t, x)$ is a smooth C^{∞} mapping from $\Omega \subset \mathbb{R}^d$ to \mathbb{R}^d . For all $\varphi \in C_c^{\infty}(\mathbb{R}^d)$ we define

$$<\rho(t), \varphi> = \int_{\Omega} \varphi(\mathbf{X}(t,x)) \ dx.$$

1- Show that for all $t \in [0,T]$, ρ is a distribution over \mathbb{R}^d (i.e. $\rho \in \mathcal{D}'(\mathbb{R}^d)$), and show that

$$|<\rho(t), \varphi>| \le |\Omega| \sup_{x \in \mathbb{R}^d} |\varphi(x)|.$$

2- Assuming that for all $t \in [0,T]$, **X** is a diffeomorphism from Ω to Ω' with Ω' also a bounded open set of \mathbb{R}^d , show that one can write

$$\forall \varphi \in C_c^{\infty}(\Omega'), < \rho, \varphi > = \int_{\Omega'} \bar{\rho}(y)\varphi(y) \ dy$$

for some function $\bar{\rho}: \Omega' \mapsto \mathbb{R}$, and express $\bar{\rho}$ in terms of **X** and its derivatives.

We define $\partial_t \rho$ by

$$\forall \varphi \in C_c^{\infty}(\mathbb{R}^d), < \partial_t \rho(t), \varphi > = \int_{\Omega} \nabla \varphi(\mathbf{X}(t,x)) \cdot \partial_t \mathbf{X}(t,x) \ dx.$$

- 3- Show that $\langle \partial_t \rho, \varphi \rangle = \frac{d}{dt} \langle \rho, \varphi \rangle$.
- 4- Show that $\partial_t \rho \in \mathcal{D}'(\mathbb{R}^d)$ and that

$$|<\partial_t \rho(t), \varphi>| \le |\Omega| \sup_{y \in \mathbb{R}^d} |\nabla \varphi(y)| \sup_{x \in \Omega} |\partial_t \mathbf{X}(t, x)|.$$

- 5- Assume again that for all $t \in [0, T]$, **X** is a diffeomorphism from Ω to Ω' with Ω' also a bounded open set of \mathbb{R}^d .
 - a) Show that one can write

$$\partial_t \mathbf{X}(t,x) = \mathbf{v}(t,\mathbf{X}(t,x))$$

for some velocity field $\mathbf{v}(t): \Omega' \mapsto \mathbb{R}^d$.

b) Show that for all $\varphi \in C_c^{\infty}(]0, T[\times \mathbb{R}^d)$, we have

$$\int_{[0,T]\times\mathbb{R}^d} \partial_t \varphi(t,x) \bar{\rho}(t,x) + \nabla_x \varphi(t,x) \cdot v(t,x) \bar{\rho}(t,x) dx = 0$$

with $\bar{\rho}$ as in question 2 (Do not use the explicit expression of $\bar{\rho}$ in terms of **X**!!).

7- For all $t \in [0, T]$, define J(t) by

$$\forall \phi \in \left(C_c^{\infty}(\mathbb{R}^d)\right)^d, <\phi, J(t)> = \int_{\Omega} \phi(\mathbf{X}(t,x)) \cdot \partial_t \mathbf{X}(t,x).$$

Show that $J \in \left(\mathcal{D}'(\mathbb{R}^d)\right)^d$ and that

$$|<\phi, J>| \le |\Omega| \sup_{x \in \Omega} |\partial_t \mathbf{X}(t, x)| |<\rho(t), |\phi|>|.$$

8- Show that for all $\varphi \in C_c^{\infty}(]0, T[\times \mathbb{R}^d)$, we have

$$\int_{[0,T]} \langle \partial_t \varphi(t), \rho(t) \rangle + \langle \nabla \varphi(t), J(t) \rangle dt = 0.$$

9- Let $\rho \in C^1(\mathbb{R}^+ \times \mathbb{R}^d)$, $\rho \geq 0$. Assume that there exists C, C' > 0 such that for all $t \in \mathbb{R}^+$, $\int_{\mathbb{R}^d} \rho(t,x) \ dx \leq C$ and that for all (t,x), $\rho(t,x) \leq C'$. Show that, for all $f \in C^1(\mathbb{R})$ with f(0) = 0, there exists C'' such that

$$\int_{\mathbb{R}^d} f(\rho(t, x)) \ dx \le C'.$$

Let $\mathbf{v} \in (C^1(\mathbb{R}^+ \times \mathbb{R}^d))^d$, $\mathbf{v} = (v_1, \dots, v_d)$. Suppose that

$$\sum_{i=1}^{d} \frac{\partial v_i}{\partial x_i} \equiv 0$$

(this is also denoted by $\nabla \cdot \mathbf{v} \equiv 0$). Suppose that ρ, \mathbf{v} satisfies the equation

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$$

(where $\nabla \cdot (\rho \mathbf{v}) = \sum_{i=1}^{d} \frac{\partial (\rho v_i)}{\partial x_i}$). Show that for all f as above we have

$$\frac{d}{dt} \int f(\rho(t,x)) \ dx \equiv 0.$$