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                        Partial Differential Equations:  Application in Spatial Economics 

 

ABSTRACT 

 Partial differential equations have many applications in physics, geometry, and 

economics, just to name a few.  An application in spatial economics is studied, focusing 

on the research of Martin Beckmann and Tőnu Puu.  The flows of commodities in the 

space economy and the relevance of the transportation cost are defined.  The problem of 

minimizing the transportation cost, known as the continuous transportation model and 

Beckmann’s flow model is presented.  The constraints of the problem are derived.  The 

solution is produced using Euler-Lagrange equations.  The application of the solution is 

examined and the usefulness of Beckmann’s equations is briefly discussed.  Economic 

and mathematical interpretations are used.    

 

 Spatial economics studies flows of commodities, people, money or information 

within a certain region.  The focus will be on two dimensional flows of commodities 

between regions.  The continuous analysis will be used as opposed to the discrete 

analysis since using spatial coordinates is more convenient.  Spatial coordinates are given 
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by x = (x, y).  Types of commodities, for example, include agricultural products, coal, 

wood, and so forth.  For a given location there is a supply and a demand for commodities.  

It is assumed that prices vary between locations and commodity shipments occur from 

low-price to high-price areas.  The equilibrium of spatial market within a closed region 

suffices to have a condition where aggregate supply equals aggregate demand.  A perfect 

competition efficient allocation of resources will be considered.   

 The excess demand is the demand minus the supply.  The excess demand density 

is a function of location and is denoted by q (x, y).  The movement of commodity 

proceeds from points of excess supply to points of excess demand.  The mathematical 

interpretation for an equilibrium condition of the spatial market is 

∫∫A q (x, y) dx dy = 0. 

It is interesting to note that net exports which is exports (X) minus imports (M) is equal 

to -∫∫A q (x, y) dx dy.   When transporting commodities between regions, a cost is required.  

Local transportation cost, k = k (x) = k (x, y), depends on location.  The minimum 

transportation cost, denoted as λ (x) from x0 to x where 

λ (x) = min x(s) ∫ k (x (s), y (s)) ds. 

The local flow of each commodity is represented as a vector as a function of location and 

is denoted by φ (x, y).  The local flow of a commodity has a direction that moves through 

trade and a volume which is the quantity of objects being shipped.  The commodity 

movement in interlocal trade is described by a continuous flow field.  The flow field 

vanishes when there is no trade.  Therefore, the supply equals the demand.  The flow 

vector of commodities φ is equal to φ1 (x, y), φ2 (x, y).  The volume of flow is equal to  

|φ| = √φ1
2 + φ2

2. 
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The direction of flow (the unit vector field) is 

φ/|φ| = (cos θ, sin θ). 

The relationship between the flow fields and excess supply (negative of excess demand) 

is  

-q (x, y) = div φ = ∂φ1 / ∂x + ∂φ2 / ∂y.   

This is known as the equilibrium of quantity or the interregional trade equilibrium.  When 

there is no flow across the boundary, or no exports/imports occurring, the flow vector 

outside and across the boundary is zero.  So 

φn = 0 in ∂A 

where n is the direction normal to the boundary, pointed outward; ∂A is the boundary of 

an area A.   

 The continuous transportation model can now be presented.  The problem is 

min φ ∫∫A k |φ| dx dy      

where the transportation cost is ∫∫A k |φ| dx dy, measured in money terms or commodity 

units.    This is subject to div φ + q = 0.  If on the boundary, only φn = 0 in ∂A is required.  

In order to solve this problem, Euler-Lagrange equations are needed.   

 Recall the derivation of Euler-Lagrange equations.  There are two independent 

variables x and y.  An optimizing function of these coordinates, u (x,y) is needed along 

with its partial derivatives.  The result is the minimization of I = ∫∫R F (x, y, u, p, q,) dx dy 

where p = ∂u/∂x and q = ∂u/∂y.  The boundary condition is u = u0 (x, y) on the curve C, 

where u0 is a given function.  Assume a test function, φ (x, y), is a solution to the 

minimization problem.  Then u (x, y) + ε · φ (x, y) must satisfy the boundary condition.  
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This requires that φ (x, y) = 0 on C.  Substitute u (x, y) + ε · φ (x, y) into I = ∫∫R F (x, y, u, 

p, q,) dx dy and differentiate with respect to ε, and set the derivative to 0.  So,  

dI/dε =  ∫∫R (φ Fu + φx Fp + φy Fq) dx dy = 0. 

Consider the divergence and use the divergence theorem to get  

div (φ Fp + φ Fq) = φ ∂/∂x Fp+φ ∂/∂y Fq + φx Fp + φy Fq. 

Next, apply Gauss’s Theorem to get ∫∫R div (φ Fp + φ Fq) dx dy = 0 since φ ≡ 0 on the 

boundary curve C.  So, ∫∫R (φx Fp + φy Fq) dx dy = - ∫∫R (φ ∂/∂x Fp + φ ∂/∂y Fq) dx dy is 

the result.  Lastly, substitute this into dI/dε = ∫∫R (φ Fu + φx Fp + φy Fq) dx dy = 0 to derive 

∫∫R (Fu - ∂/∂x Fp - ∂/∂y Fq) φ dx dy = 0.  Since φ is an arbitrary function, by the 

fundamental lemma of variational calculus,  

Fu - ∂/∂x Fp - ∂/∂y Fq = 0 

holds everywhere and this is known as the Euler-Lagrange equation.  In the two-

dimensional case, there are two test functions u (x,y) and v (x,y) with two boundary 

conditions u = u0 (x,y) and v = v0 (x,y) and the partial derivatives of v are r and s.  The 

result is two different Euler-Lagrange equations: 

Fu - ∂/∂x Fp - ∂/∂y Fq = 0 

and 

Fv - ∂/∂x Fr - ∂/∂y Fs = 0. 

 The transportation cost, ∫∫A k |φ| dx dy can now be minimized subject to the 

constraint, div φ + q = 0.  Formulate the Lagrangean:  k |φ| + λ (div φ + q).  Let the two 

functions be u = φ1 (x, y) and v = φ2 (x, y).  Notice that div φ = ux + vy.  The Lagrangean 

becomes 

k √(u2 + v2 ) + λ (p + s + z). 
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Now, apply the Euler-Lagrange equations derived above to get 

k u / √( u2 + v2 ) - ∂λ/∂x = 0 

and 

k v / √( u2 + v2 ) - ∂λ/∂y = 0. 

The partial derivatives of λ form the gradient of λ.  The two equations together, noting 

that u = φ1 and v = φ2 results in one single vector equation: 

k φ/|φ| = grad λ. 

This is known as the condition for optimal spatial pricing and transportation.  The price 

equilibrium in a spatially extended market is given by   

|grad λ| ≤ k  

 k φ/|φ| = grad λ wherever φ ≠ 0 

where λ is the price of the commodity.  This means the gain from trade cannot exceed the 

cost of transportation.  k φ/|φ| = grad λ says that the flow field direction is the same 

direction as the gradient of the price of the commodity traded.  Also, the price increases 

at the same rate as the cost of transportation.  So this means that commodities are shipped 

in the direction where the price indicates that the commodity is scarce.   

 The objective function of this problem is convex, the constraints are linear, there 

exists a feasible solution to ∫∫A q (x, y) dx dy = 0, and the minimand is bounded for the 

region A in two-space.  k φ/|φ| = grad λ with constraints div φ + q = 0 and φn = 0 in ∂A 

uniquely determines the directions of a flow field φ that is a  solution to the problem.  

This model of interregional trade was invented by Martin Beckmann in 1952.  It is known 

as Beckmann’s Flow Model.  He showed that k φ/|φ| = grad λ was the Euler-Lagrange 

equation that minimized ∫∫A k |φ| dx dy and was subject to div φ + q = 0.     
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 Beckmann’s equation, k φ/|φ| = grad λ, can be used to derive the flow direction 

field.  This is obtained by taking the squares of both sides of k φ/|φ| = grad λ.  Note that 

(φ/|φ|)2 ≡ 1.  The result is the partial differential equations from prices, 

λx
2 + λy

2 = k2  

or  

∂2λ / ∂x2 + ∂2λ / ∂y2 = k2. 

This equation is analogous to the Hamilton-Jacobi equation.  The flow lines can be 

derived by solving λx
2 + λy

2 = k2 and using the definition of the direction field, k φ/|φ| = 

grad λ.  Consider a parameterized trajectory (x(t), y(t)).  The partial differential equations 

can be transformed into ordinary differential equations, 

dx / dt = λx (x,y) 

and 

dy / dt = λy (x,y). 

 The equation, λx
2 + λy

2 = k2 can also be used to generalize the transportation 

model.  It is interpreted as the squared gradient of the price, λ, of a shipped commodity 

equaling the squared freight rate, k.  If the same transportation system is used for all 

commodities then the freight rates of each commodity will only differ by a constant 

factor from differences in weight and bulkiness, for example.  This slight change is 

denoted by k = κ h (x,y) for some constant κ.  The equation then becomes 

λx
2 + λy

2 = (κ h (x,y) )2. 

For each commodity i, this is (grad λi)2 = κi
2 h (x,y)2.  This equation is helpful in 

deducing the partial differential equation for a power of land rent obtainable from the ith 

activity.     
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 To summarize Beckmann’s equations: 

k φ/|φ| = grad λ 

minimizes 

∫∫A k |φ| dx dy      

subject to the constraint 

div φ + q (x, y) = 0. 

Beckmann’s flow model and the continuous transportation model are one of many 

models that involve the use of partial differential equations.  These models also reveal the 

importance of Euler-Lagrange equations which is a necessary result in deriving the 

solution to the problem of minimizing the transportation cost.   
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