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1. INTRODUCTION

In this paper we deal primarily with the following problem. Suppose

we have a large work force with individuals of varying skills. We would
like to partion this large work force into groups of two. We are given
that productivity of the pair is some function which depands on the
skill levels of the two individuals in such a way that it depands more
on skills of one than the other. This would mean that we would assign
a manager in each group and the efficiency of the group would depand
more on the skills of the manager. The problem is to partion the work
force in a way that maximizes the total efficiency of the work force, or
in other words to optimaly pair workers with managers.
It is the purpose of this paper to define rigorous formulation of the
aforementioned problem and of its solution and to show that there
exist only one such solution. We will also exibit some properties of the
solution and we will end our paper by discussion of possible directions
of further research into this problem.

2. RIGOROUS FORMULATION OF THE PROBLEM

We begin with a rigorous definition of the problem. Here and on, X

is a compact Hausdorff space.
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Definition 2.1 (Admissible pairing). Given a measure y € P(X) we
say that (p, 7, h) is an admissible pairing for p whenever p, 7 € P(X),
h : X — X is a borel map such that 7 = hyxp and p+ 7 = 2u. We
denote the set of all admissible pairings by §,,.

Definition 2.2 (Optimal pairing). We say that g € G, is an optimal
pairing for p whenever the following supremum is attained for g:

(2.1) sup { /X P(z, h(x)) dp (p.7,h) € 5.}

We will refer to value of the above supremum as optimal efficiency.
We are now in the position to state the main theorem of this paper

Theorem 2.3 (Existance and uniqueness of optimal pairing). Suppose

that P € C?*([0,1]%), % > 0 and P is strictly convezr in x. Further

suppose that p € P([0,1]) is a measure absolutely continuous w.r.t.
Lebegue measure on [0,1]. Then there exist unique (with h being unique

up to measure zero) optimal pairing for p.

3. FORMULATION OF THE RELAXED PROBLEM

Just as in the case of optimal transportation problem, we can formu-
late the weaker problem then the one above, and just as in the case of
optimal transportation, this weaker problem will provide us with the
answer to the stronger problem.

We begin by formulating the weak problem.

Definition 3.1 (Admissible competitor in the weak problem). Given a
probability measure p € P(X) we say that v € P(X?) is an admissible
competitor in the weak problem for y, whenever y[B x X|+v[X x B] =
2u[B] for all Borel sets B C X. We denote the set of all admissible
competitors in the weak problem for p by I',.

Definition 3.2 (Weak optimal pairing). We say that vy € I, is a weak
optimal pairing, whenever the following supremum is attained at 7

(3.1) Jo=suw{ [ Play)dries)|ver,)

We refer to the value of the above supremum as weak optimal efficiency.

Notice that v € P(X?) is a competitor in the weak problem for p if
and only if
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where C(X) is the space of all continuous functions on X.

For all u the set I, is obviously convex. It is also closed in the weak™
topology induced by C(X?). This is because when {v,} € P(X?)
converges weakly then 1 = [ ldy.(z,y) — [, dy and [, [¢(z) +
o(y)] dyn(z,y) = [ [6(x) + é(y)] dy(z,y), hence v € T',. Thus ', is
compact by Alaoglu, since it is also bounded (it contains only prob-
ability measures), and we conclude that there exist measure vy € I,
which is a weak optimal pairing.

4. DUAL PROBLEM

Since our problem is so closely related to Optimal Transportation it
is natural to suspect that there exist a problem dual to ours, just as in
the case of optimal transportation. And indeed it is the case that dual
problem exist and it provides us with a valuable tool to study unique-
ness and properties of the solution to the optimal pairing problem.

Let ® = {d) € C(X)|o(z)+ ¢(y) > P(x, y)} and consider infimum

(4.1) IH:inf{Q/ ¢du|¢e<1>}
X
We claim the following:

Theorem 4.1 (Existance of dual problem). Given I, and J, as above
we have I, = J,,.

The proof of this claim will be based on the following theorem:

Theorem 4.2 (Fenchel-Rockafellar duality). Let E be a normed vector
space, E* its topological dual space, and ©, = two convex functions on E
with values in RU{+oc}. Let ©*, E* be the Legendre-Fenchel transform
of ©, = respectively. Assume that there exist zy € E such that

O(z0) < 400, Z(20) < +00, and O is continuous at 2o

Then,

(4.2) 1%f[®+:]:?€%[—®(—z)—:(z)
the proof of which you can find in [2].
We now proceed with the proof of theorem 4.1 similarly to the proof

of duality in the case of optimal transportation as outlined in [2].
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Proof. Let E = C(X?) then E* = M(X?) where M(X?) is a space
of signed measures of bounded total variation, by Riez representation
theorem. We then let

_ 0 ifu(z,y) > P(z,y)
0:ueC(X?)— { +oc  otherwise

- . 2 [ o(x)dp ifu(z,y) = é(z) + ¢(y)
E:rueO0(X?) — { X +00 otherwise

Notice that = is well defined since if ¢(z)+d(y) = u(z,y) = ¥ (z)+¢(y)
then ¢(z) —v¥(z) = ¥(y) — ¢(y) = ¢, which implies that ¢(x) = c+1(x)
and ¢(x) = 1(z) — ¢, hence ¢ =0 and ¢ = ¢.

We also see that conditions of theorem 4.2 apply, we simply need to
take zy = const with large enough constant. Then proceeding similarly
to the proof of duality for optimal transportation in [2] we conclude
the proof of theorem 4.1. O

5. UNIQUENESS OF THE SOLUTIONS

In this section we discuss how dual problem leads us to the proof of
the uniqueness of solutions in the case X = [0,1]. From now on we
assume that X is an interval [0, 1] with the usual topology, and that

2 2 a%p

First of all notice that if vy € P(X?) is a weak optimal pairing, then

the following supremum is also attained for ~y:

sup { [ P(e,y) dy |y € P(X?),9B x X] = 3[B x X],
¥[X x B] = 7[X x B] VB Borel C X}

From the theory of optimal transportation [1] it is well known that for
measure p absolutely continuous w.r.t. Lebegue the above supremum
is attained uniquely and that there exist unique a.e. w.r.t. p (and thus
Lebegue as well) monotone function A which pushes forward p to T,
where p[B] := yo[B x X] and 7[B] := [X x B] for all Borel subsets of
X. In fact the support of 7y is equal to {(z, h(z)) € X?|almost allz €
supp(p)}. In particular we deduce that (p,7,h) € G, and that it is an
optimal pairing. Thus we infered the existance of optimal pairing.
Now we prove the following theorem

Theorem 5.1 (Existance of dual problem). The infimum I, is attained
whenever p is absolutely continuous w.r.t. to Lebegue.
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Proof. First notice that [ ¢(z) du = [, ¢(z)f(x) dz by Radon-Nikodym
theorem, where f € L', f > 0 since p is a probability measure and abso-
lutely continuous w.r.t. Lebegue. Also B(0, ||P||x) N ® is a nonempty
convex closed bounded subset of L. ([0,1]) and hence weak* closed
and hence compact by Alaoglu theorem. Therefore continuous lin-
ear functional T : ¢ € Ly, — [, ¢(z)f(x)dz attains its infimum on
B(0, || P|lcc) N ®. Lastly notice that infimum of T over @ is the same
as that over B(0, ||P||e) N ®, since we can cut off any function in ® to
make its norm equal to ||P||« and it will still be in . O

At this point we have the following result.

Theorem 5.2. Let vy € '), be a weak optimal pairing. Suppose that
o(z) € @ is a solution to the dual problem then ¢(z) + ¢(y) = P(z,y),

V(z,y) € supp(vo)-
Proof. Due to duality we have the following:

/XP(w,y) d70=/X?¢(w) du=/X¢(w) d’yo(x,y)+/X¢(y) dyo(z,y)
Therefore we must have

/X [6(z) + 6(y) — P, ) dyo = 0

Since ¢(z) + ¢(y) > P(x,y) we therefore have that ¢(z) + o(y) —
P(l’,y) =0 V(x,y) € supp(*yo) u

Now, we are in the position to prove theorem 2.3

Proof. Let ¢ be any solution of the dual problem and let H,, = {(x, y) €

X% ¢(z) + ¢(y) = P(z, y)} Notice that for any weak optimal pairing

v € T its support must be a monotone subset of H,. Now suppose
that h, C H, is a support of some weak pairing 7, then since P(z,y)—
é(x) < ¢(y),V(z,y) € X% and for (z9,10) € supp(yy) we must have
P(z0,90) — ¢(z0) = ¢(yo), therefore ¢(yo) = sup,ex[P(z,y0) — ()]
and similarly ¢(zo) = sup,cx[P(z0,%) — ¢(y)]. But this implies that
¢ is semi-concave and thus in fact is differentiable a.e.. And since
function f : (z,y) — P(z,y) — ¢(x) — ¢(y) obtains it maximum at

(x0,yo) we obtain % = g—’;(azo,yo) a.e. by differentiating f w.r.t. =.
However, because P(z,y) is strictly convex, %—I; is strictly increasing as a

function of z, hence we can solve for y, as a function of z( for almost all
xo. Therefore we conclude that if vy is any weak optimal pairing and

(p,7,h) € G, is a corresponding optimal pairing as described above,
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then A must be unique up to measure zero. But then it is easy to check
that p and 7 must be unique as well. O

6. CONCLUSION

In conclusion we would like to address several possible directions in
which further research could proceed. First of all, it would be interest-
ing to study the qualitative properties of solutions and how they relate
to the measure . Second, one could try proving the above results in
the case when X C R” and is not necessarily compact. One also could
attempt to generalize the above result by considering partitions into
groups of size other then 2, or maybe even into groups of variable size.
Finally, it would be interesting to see whether the above formalism can
be used to model other physical phenomina.
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