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GAS FLOW IN NANOSCALE DEVICES 

ABSTRACT:  
 The flow of gases in nanoscale devices is examined.  It is shown that conventional 
analysis methods, such as the Navier-Stokes equation, cannot be used at such small scales.  An 
equation that is valid for all scales of flow, the Boltzman equation, is derived from the Liouville 
equation.  Two mesoscopic solvent models, direct simulation Monte Carlo and stochastic 
rotational dynamics, as well as a higher order continuum equation, the Burnett equation are also 
introduced.  Applications of these equations are considered, and their results are compared to 
experimental data, and each other. 
 

SECTION 1: INTRODUCTION 

 Nanoscale fluidic devices are a burgeoning technology, with the potential for great 

scientific discovery as well as industrial applications.  While most of these devices are geared 

towards the transport of liquids, there are many applications for gas transporting devices, these 

applications include the design of heat sinks, catalyst particles and filters with monodisperse pore 

sizes.  

  

The theory that describes how these devices works is in its infancy.  However, the 

devices themselves have proliferated rapidly primarily due to the use of lithographic techniques 

used for patterning semiconductor chips for the electronics industry.  These techniques have been 

used to create nanoscopic channels in monocrystalline silicon [1] and glass [2].  However, these 

techniques produce channels that are either rectangular, trapezoidal or hexagonal in cross-section 

rather than circular [1,3,4,5]. This adds complexity to the analysis of flow but it is beyond the 

scope of this paper.  The size of these channels can vary in diameter from 100 µm to 0.1 nm. 

 

Typically, the Navier-Stokes (NS) equation is used to describe the behavior of fluids.  

However, this equation assumes that the density, the momentum and the temperature are smooth 

continuous functions.  Fluids are discrete in nature, and when the distance between particles is 
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significant relative to the size of the system, the continuity assumption collapses.  The 

discreteness of a fluidic system is characterized by the Knusden number, Kn. Kn is the ratio of 

the mean free path length to the characteristic length of the system.  If Kn < 0.1 [6], the Navier-

Stokes equation can be used.  If Kn is > 0.1, then the flow must be analyzed by different 

methods.   

For all values of Kn, the behaviour of the fluid can be calculated by directly integrating 

the equations of motion for the individual particles, subject to the appropriate forces and 

boundary conditions.  This process, typically referred to as a molecular dynamics simulation, is 

extremely computationally intensive.  Approximations have been made to simplify these 

simulations.  The most common approximation, a simplification to the particle collision rule, 

leads to the Boltzman Equation (B).  Unfortunately, because of the computational requirements 

of the B equation, it is seldom possible to simulate these systems for more than a few 

picoseconds, while most flow behaviour cannot be determined without microseconds of 

simulation [7].  It is possible to make even further simplifications to the B equation. Within a 

diminished range of Kn, the results of these simplifications result in meso-scopic solvent models, 

such as direct simulation monte carlo (DSMC) and stochastic rotation dynamics (SRD), and 

higher order continuum equations such as the Burnett equation.  In general: for Kn < 0.1, the NS 

equation is used; for 0.1<Kn<10, the meso-scopic solvent models are used; and for Kn > 10, the 

B equation is used [6].  

 

The rest of this paper will be divided as follows.  Sections 2-5 will introduce the 

equations and explain their principles of operation, Section 6 will provide examples of 

applications of these equations and when possible connect them to experimental evidence.  

Finally, section 7 will summarize the results of this paper. 
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SECTION 2: THE BOLTZMAN EQUATION: 

 To derive the hydrodynamic properties, we are interested in the average properties of a 

single particle [8, 9].  Consider an equilibrium system of N particles with Hamiltonian 

( )NN prH vv , .  The probability of all the particles having a specified set of positions and momenta 

(phase point) is given by a phase-space probability density ( )( )tprf NNN ,, vv .  The time evolution 

of this probability density is given by Liouville equation, 

( )
( )N

N

Lf
t

f
−=

∂
∂  2.1

where L is the Liouville operator, 

∑
=









∂
∂

∂
∂

−
∂
∂

∂
∂

=
N

i iiii rp
H

pr
HL

3

1

 2.2

It can be shown that all the equations used to analyze flow can be derived from the Liouville 

equation.  While this is useful, it does not provide assistance in determining the behaviour of a 

single particle in the system.  A reduced phase space probability density function ( )( )tprf nnn ,, vv  

can be defined that specifies the phase space behaviour of n of the N particles of the system, 
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The time evolution of this probability density is considerably more complicated.  In general, a 

recurrence relationship can be found of the form, 
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where iF  is an external force acting on the ith particle, and ijΨ is the interaction force between 

particles i and j.   

 

In order to calculate the trajectory of a single particle in a system, the reduced distribution 

function of a single particle must be calculated.  Thus equation 2.4 becomes, 
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Under the assumptions that collisions between particles are binary in nature (i.e. no more than 

two particles collide at any time) and that successive collisions are uncorrelated, Boltzman 

simplified equation 2.5 to, 
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Where the right hand term is, 
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Here the primes denote post collision momenta and ( )21, pp vv −Ωσ  is the cross-section for 

scattering into a solid angle Ω, the simplest expression for this is Ωπ2  [9].     

 

Equation 2.6 is the Boltzman kinetic equation.  The advantage of this equation is that it is 

accurate for all Knusden numbers.  However, this too is computationally intensive.  Integration 

of this equation for a low density system of particles, subject to the necessary constraints to 

maintain flow, will result in an accurate simulation of flow.  Certain statistical averages of 

Hydrodynamic parameters can be used to calculate velocity profiles, pressure drops, viscosity 

coefficients and other rheological parameters.  Let ψi be an observable flux associated with a 

particle of the system (e.g. ( )∫ == iiiiii jdvvfm v1ψ  where ji is the mass flux, 

( )∫ == iiiiiixii mdvvfvm iixvv vv ρψ 1  where this is the momentum flux in the x direction and 
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ψ where this is the energy flux) in general one can write the time 

evolution of ψi as [9], 
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Substituting the appropriate ψi recovers the continuity equation, the conservation of momentum 

equation and the conservation of kinetic energy equations that are required to derive the Navier-

Stokes equation.   

 

While the Boltzman equation establishes the time progression of the reduced phase-space 

density function, how does one establish that it does this in a physically realistic manner?  For 

this, it is required that the Boltzman equation, or any other kinetic equation, satisfy two 

conditions; Boltzman invariance and Galilean invariance.  The former is a statistical statement of 

the second law of thermodynamics which states that, as time progresses, the system progresses 

towards equilibrium.  Galilean invariance requires that under any inertial frame of reference, the 

laws of motion remain unchanged.  To prove the former, Boltzman established an H-theorem [9], 

( ) ( ) ( ) vdrdtvrftvrftH vvvvvv ,,ln,,∫∫=  2.8

Where H(t) is analogous to entropy, hence requiring that ( ) 0≤
∂

∂
t
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∂

∂
t
tS and the system will progress towards equilibrium.  Galilean invariance is 

satisfied as long as, for a collision, the probability of a particle being deflected by an angle θ is 

the same as the probability of a particle being deflected by an angle –θ. 

 

SECTION 3: THE NAVIER-STOKES EQUATION 

In section 2, it was mentioned that different choices of ψi in equation 2.7 will produce the 

continuity equations we require for the Navier-Stokes equation.   The resulting equations for 

conservation of mass, the continuity equation, and momentum in a differential element of fluid 

are [9, 10]:  
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Where ρ is the local density, vv  is the local velocity and n is the normal vector to the differential 

fluid element,  is the pressure gradient, g is the gravitational acceleration and  p∇
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∂τττ _  where τyx is the stress on the surface normal to y in the x direction. 

The right hand side in the momentum equation is the resolution of the Fi terms in equation 2.7.  

 

 The continuity equation can be used to simplify the left hand side of the momentum 

equation.  The resulting equation is, 
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where µ is the viscosity coefficient, is typically inserted into equation 3.3.  This yields the 

Navier-Stokes equation, 

gpv
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 The Navier-Stokes equation is the most common, and simplest, equation used to describe 

flow.  However, it is contingent on validity of the continuity equation, which requires a 

continuous density.  For low Knusden numbers the discrete nature of the density can no longer 

be ignored and the equation is no longer valid [11]. 

 

SECTION 4: CONTINUUM EQUATIONS 

 There are several possible modifications that can be made to the Navier-Stokes equation 

to enhance its perfomance.  Most pertain to modifications of the Stokes’ viscosity relation, but 

these do not extend the range of Kn for which the equation is accurate.  The Navier-Stokes 

equation is based only on the mean values of the hydrodynamic parameters, and hence it is a first 

order equation.  It is possible to make corrections to equation by including 2nd moment terms, 
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and higher.  The Burnett equation, a second order equation, is the most commonly used higher 

order equation.  This equation is the continuum approximation to the Boltzman equation through 

the Chapman-Enskog approximation [11]. Burnett’s actual equation is too large to be included in 

this article.  The equation and its derivation can be found in its entirety in the original paper [11].  

This equation also includes heat transport terms, so it is often used when thermal effects are 

important.  It should be noted that, while Burnett’s equation is assumed valid within the Knusden 

range of 0.1 to 10, it has never been formally proven to be accurate outside the range of the 

Navier-Stokes equation [12]. 

 

SECTION 5: STOCHASTIC EQUATIONS 

 The Burnett equation is a continuum approximation to the Boltzman equation.  While this 

is one method to alleviate the computational intensity of the latter equation, another approach is 

to try to find shortcuts in the simulation procedure and approximations to the Boltzman equation 

that can be simulated with greater ease.  Approaches of this kind have led to the development of 

two mesoscopic solvent techniques, direct simulation monte carlo (DSMC) and stochastic 

rotation dynamics (SRD). 

 

 Direct simulation monte carlo method was developed by Bird [13, 14], and can be 

outlined as follows: 

1. The domain being considered for simulation is subdivided into cells. 

2. The particles are positioned within the domain with their initial velocities and positions.  

3. The particles are moved and their interactions with the boundaries are computed 

4. The particles are indexed into their respective cells 

5. Within each cell, a random number of particles are selected for collision and the collision 

is performed. 
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6. The flow properties are calculated and the results are outputted. 



7. Until the simulation has ended the algorithm loops through steps 3-6. 

Randomly assigning collisions, rather than calculating when particle trajectories collide, provides 

a substantial decrease in the amount of calculation that needs to be performed in the Boltzman 

Equation.  It can also been shown that this equation has the same properties as the Boltzman 

equation [13], and is hence Boltzman invariant and Galilean invariant.  

 

The second method to be outlined here is SRD [15, 16, 17, 18].  This method has some 

similarities with DSMC, but it forgoes collisions entirely.  In this case a collision is replaced with 

a random rotation of the momenta of the particles.  In effect, the same as if the particles collided 

elastically with a massive stationary object.  SRD operates as follows: 

1. The domain of the simulation is subdivided into cells of size L3 

2. The particles are positioned within the domain so that their initial velocities and positions 

satisfy initial conditions 

3. The particles are moved and their interactions with the boundaries are computed 

4. The particles are displaced in a random direction by a random distance between zero and 

L, by a displacement vector d
v

. 

5. The average momentum of the particles in each cell is calculated 

6. The momenta of the particles in the cells are rotated about the average momentum of the 

cell in a random direction (θ,φ) (where θ and φ are the latitude and the azimuth in 

spherical coordinates).  The same rotation is applied to all the particles in the same cell, 

but a different rotation is chosen for each cell. 

7. All of the particles are displaced by - d
v

. 

8. The flow properties are calculated and the results are outputted. 

9. Until the simulation has ended the algorithm loops through steps 3-8. 
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The displacement by d
v

 may seem unnecessary, but it is required for Galilean invariance [17].  

Despite the elimination of collisions the algorithm is also Boltzman invariant [15].   

SECTION 6: EXPERIMENTAL RESULTS 

 As previously mentioned, the channels produced in nanofluidic devices have varying 

geometries.  Hence simulations have been performed on channels of differing geometry.  

Because of the scale of the channels, measurements of flow parameters are difficult, and very 

few results have been published.  Thus, it is difficult to find experimental data for which 

simulations of all kinds have been conducted and there is no common reference point. 

 

 As was mentioned in section 4, the Burnett equation includes thermal effects, it is 

frequently used to examine systems where thermal effects are important.  An example of such a 

system was examined by Mackowski et al [12].  In this study, they created a system where a hard 

sphere potential gas was trapped between two plates separated by length L. A heat flux of q is 

induced between the two plates and maintained.  Overtime, the system reaches steady state.  The 

pressure distribution between the two plates is shown in figure 6.1 [12].  Note the strong 

agreement between the DSMC model and the Burnett equation.  The outer equation is the result 

of expanding the Burnett equation solution to the normalized pressure in terms of Kn and 

truncating at Kn2.    
Figure 6.1 [12] The y-axis is normalized pressure, the x-
axis is the normalized position within the gap. 

 

 For a rectangular channel, an 

approximate analytical solution to the NS 

equation is possible [14].  For a compressible 

fluid in a rectangular channel, with Kn 

dependent slip boundary conditions:  The slip 
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velocity is 
wall

slip dy
duKn
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where H is the channel height, µ is the viscosity coefficient and σ is (2-F)/F.  The relationship 

between this projected velocity profile and the DSMC simulation of flow is shown below in 

figure 6.2.  Experimental data on velocity profiles is very difficult to record for these devices. 

Pressure drop data is much easier to gather.  Pressure drop data for argon gas across a membrane, 

containing 200nm cylindrical pores, is plotted vs. the predictions for the Navier-Stokes equation 

with slip flow boundary conditions in figure 6.3  [7] .  

 

Figure 6.2 [14]. Plots of normalized velocity, y-axis,  vs. normalized position across the width of the channel, at different positions between the 
inlet and the outlet of the channel.  Equation 14 is the same as equation 6.1. 
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The SRD method has primarily been 

used to study flow in 2 dimensional systems.  It 

has recently been extended to 3D applications 

[18, 19].  It has been used to study gravitational 

flow in channels of height H and infinite width, 

both an empty channel and a channel with a 

spherical barrier.  Figure 6.4 [19] shows 

velocity profiles for an SRD model of flow in 

an empty channel, with a rotation angle of ± 

90o, for Knusden numbers of 1.84 x 10-3, 0.0232 x 10-2 and 4.64 x 10-2.  The predictions of this 

model for flow around a spherical object are in good agreement with experimental 

measurements. Figure 6.5 shows a comparison of wake length vs. Reynolds number for 

experimental data and the SRD model [19].  

L. Figure 6.3 [7] Pressure drop across a 200 nm pore membrane, 
vs. gas flux across the membrane. 
R. Figure 6.4 [19] channel width vs. velocity, for Kn = 1.84 x 10-

3, 2.32 x 10-2 and 4.64 x 10-2 . 

Figure 6.5 [19] Wake length behind a spherical obstacle in a 
channel vs. Reynolds number.  Kn is proportional to Mach 
number over Reynolds number [7].  

 

SECTION 7: CONCLUSIONS 

Partial differential equations are the basis for all analysis of fluid flow.  In particular, the 

Liouville equation forms the basis for developing the Boltzman equation and from this equation 
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the Navier Stokes equation and Burnett equation are developed as well as the DSMC and SRD 

algorithms. 

 

Fluid flow can be characterized by several equations of varying complexity, depending 

on the degree of accuracy needed in the description of the system.  That degree of accuracy is 

dictated by the magnitude of fluctuations within the system, which is characterized by the ratio 

of the mean free path to the characteristic length of the system, or the Knudsen number.  If Kn is 

< 0.1, the NS equation is used for analysis. When Kn is >10, direct simulation of the B equation 

is the only method of analysis.  The range of 0.1 <Kn <10 is a transition range where mesoscale 

solvent models like DSMC and SRD compete with higher order equations such as the Burnett 

equation. 

 

While this intermediate range is of particular interest, there is very little experimental 

data within this range.  Instead most systems for which there is data are with the range Kn which 

is still describable by the NS equation, and within the intermediate range.  Equations such as the 

Burnett equation are typically compared to solvent models such as SRD and DSMC.   The 

experimental data that does exist, confirms the accuracy of these models.  Each of these models 

is suited to different tasks; SRD can very quickly analyze the behaviour of a gas. DSMC 

represents a more general version of SRD, which may not be as fast, but can analyze a larger 

variety of systems.  Second order equations, such as Burnett equation, are capable of analyzing 

thermal effects on these solvents.  If they are proven accurate, the latter may become the 

preferred form of analysis for these systems, as they can be solved using finite element methods.   

In the end, all of these equations have a vital role to play in expanding our understanding and 

design of nanofluidic devices. 
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