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SMOOTHRESS OF THE CONVEX SURFACE OF BOUNDED
" GAUSSIAN CURVATURE

By A. ALEXANDROFF
{Communicated by I. M. Vinogradow, Member of the Academy, 25. VI, 1942)

- LetF be a convex surface, i. e. a domain on the boundary of an arbitrary
tonvex body. We take 2 point O of the surface F and a domain & on F con-
taining the point 0. Let further o(E) denote the area of the spheric image*
f the domain £, and S{£) the area eof E. We say that the Gaussian curva-
ure of the surface F in the point O is bounded if the quotient
@ (E)
: S(Ey
s bounded, when the domain & tends to the point O in an arbitrary manner
i, e. when the diameter of £ tends o zero).-The boundedness of the above
uotient does evidently not imply the existence of the limit of the quotient,
which is the Gaussian curvature. But if the Gaussian curvature exists and
5 bounded, then the above quotient is bounded.
- The aim of the present note is to outline the proof of the following
Theorem 1. If the Gaussian enrvature of the surface F in the point
0 is bounded, then either there exists the tangent plane to I at the point O, or
there exists a -rectilinear edge along which the surface is broken, passing
through O (O being not the end point of the edge). No other singularities are
possible. :

Since every rectilinear segment belonging to a closed surface possesses
an end point, Theorem 1 implies '

" Theorem 2.Theclosed convex surface with everywhere bounded Gaus-
sian curvature is smooth.

Under the conditions of Theorem 4 itis possible that there exists arecti-
linear edge passing through the point 0. Such is, e. g., the plane broken
along a straight line. As to the rectilinear edge, we have

Theorem 3. If the point O of a convex surface F lies on o rectilinear
segment L belonging to F (L may be an edge or not), then for any e >0 there
exists an arbitrarily small domain E containing O such that
: o (E)
sE <

* The spheric image of E is the set of end points of outer normals to all support-
ing planes of F at the points of E, these normals being laid off from the centre of
a nnit gphere, 1t is jmportant that this definition be.valid for any comvex surface.
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The following theorem follows from Theorems 1 and 3.

Theorem 4. Ifforea convex surface F the Gaussien curvalure or the
more general guotient %u is bounded by two positive numbers, then Fisa
smooth surface that does not contain any rectilinear segments.

Theorems 1—4 are of interest not so much by themselves, as in conne-
xion with the fact thatthe area of the spheric image w(¥) and the area S(E)
of the domain X are determined by the inner metric of the surface. Namely,
as I have proved, the area of the spheric image of any domain on an arbi-
trary oondmwfmci ace is determined by the inner metric of the surface, 1. e,
by the distadce between its points™ (the distance between any two points
of the surface is defined as the greatest lower bound of the lengths of curves
lying on the syrface and joining the given points). Our theorems establish
thus that the smoothness of the convex surface depends on the
inner metric only. :

For want of space we omit here the proof of Theorem 3 which will be pu-
blished elsewhere. .

The {following theorem that follows from Theorem {1 gives the solution
of a problem suggested by Cohn-Vossen (%.%).

Theorem 5. The regular surface of positive curvature cannot be bent
without self-intersections in such a manner that one of its points should become
an isolated singular point, i. e. that the surface should have no tangent plane
at this point, being smooth in the neighbourhood of it..

As it has been proved by Cohn-Vossen(?), if for a surface of positive cur-
vature with the analytical metric ds® there exists a tangent plane at a poing
¢ and at every point of the neighbourhood of O, then the surface is twice
differentiable in the point O, i. e. it possesses the finite elliptic indicatrix
of Dupm.

We shall now outline the proof of Theorem 4. This theorem may evident-
1y assume the following form as well,

It the surface F has no tangent plane at the point O and there is no recti-
lenear edge on F passing through O, then the Gaussian curvature in O Is not
bounded, )

if the tangent plane at the point O does not exist and O does not lie on
arectilinear edge of the surface I, then, as i} is known, three cades are pos-
gible: k
I. 0 is a conic point, i. e. there exists an infinity of supperting planes
pagsing through ¢ and bounding a convex cone that is not reduced to a di-
hedral angle. .

I1. O is «wedge-points, i. e. O does not belong to any rectilinear edge,
but the supporting planes at O bound a dihedral angle.

I1I. O 1s an end point of a rectilinear edge.

Fach of these cases must be considered separately.

1. 1f ¢ is a conic point, then the area of the spheric image of 7 itseli
is positive, consequently, the Gaussian curvature in O is infinite.

2. Suppose that O is an wedge-points, P, and P, are supporting semi-
planes that are the sides of the dihedral angle to which the tangent cone at
the tedge-points is reduced, Let the angle between these planes be n—28,
8o that 26 1is the angle between the normals to them. Denote by 7' the inter-
section line of 7, and T,. .

We take the plane @ perpendicular to the bisector of the angle formed by
the normals to P, and P, at a distance z from O, so that @ cuts ofi a pilece

*A,Emummcﬁzmmwg:w:v:mwmnﬁmgmﬁunocmmb3.H@wmnoﬁumommmmqwmcais
proof of Theorems 1—A. :
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K trom the surface #*. We also suppose that the dislance z is sufficiently
small for the angles between @,.snd the supporting planes to £ to be less
than w . .

We take the planes @, and @, perpendicular to T in such a manner that
the piece E of the surface cut off by @ lie between @, and @,, having points
in common both with ¢, and Q,. Let z, and z, be distances of the point O
from the planes @, and Q,, respectively, so that ¢ ==z,4-x, is the distance
between ), and @,, or the length of the segment of 7' bounded by @, and @,.

The planes P, P,, Q,, @, and @ bound a trihedral prism containing £.
The planes @, and @, do not cross F, since otherwise £ would have two sup-
porting planes perpendicular to @, which is impossible by the hypothesis.

It is obvious that the area of the surface of this prism is not less than
that of E. m,. B by . - , . . 13

S

The height of the prism is z, the distance of its mmw@ lying on the straight
line T from the plane @ is z, and the angle at this edge is equal to n—20.
Thus, the area of the surface of the prism is iy

=) ?//W gl . 2z mlw.mm +2rzctgh .ﬁuwoﬁm 8.
T LS p o
Consequent] uﬁﬁf& . i E

z
2 sin 6

+2zzctg a.\_Mn» cigl,

whence, strengthening the inequalily,

m‘:ma+$ Aq, .
‘ SE) <~ ; (1)
Take now, the cone K projecting from the point O the basis of E. Any
supporting plane P to K either is a supporting plane to E, or it cuts
off a piece from E, at the «stummitn of which there exists a supporting
plane parallel to P. Hence follows that the spheric image of the cone K
is included in the spheric image of £ and, consequently, the area of the

former does not exceed that of the latter, 1. e.
o (K) < o (). (2)
We ghall denote the outer normals to the supporting planes by the

same letters as the corresponding points of the spheric image. .
Let IV, be the outer normal to the supporting plane at the point O which

" is the bisector of the angle between the normals V, and N, to P, and P,.

The points N, N, , IV, belong to the spheric image of the cone X, and ¥,
is the middle point of the arc NN, : . ,

We take further the supporting planes to the cone K at those boun-
dary points of F that belong to the planes Q, and Q,. I M, and M,
are the outer nermals to these planes, ¢, and ¢, are angles between
M,, N, and M,, N, respectively, then, as it is easily seen,

z .
=g, Wa=1, (3)
where z, and x, are distances from the point O to the planes Q, and {,,
z i8 the distance from O to the plane . .

Ag the cone K is convex, its spheric image is convex, too. Besides,

the latter contains the points N, IV, and M,, M,, and consequently it

*m:orwﬁmammﬁmﬁmmooou.&\cmr.._SEywwoﬁ_mm»mﬁvﬁoﬂu%mwgwlo:mgm
rectilinear segment lying on F, .

197




contains the whole spheric quadrangle N M, N, M,. It is easy to see that
the diagonals of this quadrangle are perpendicular and intersect in the
point &,. The arcs N N, and NN, are equal to 0, and N M, N M,
are equal to ¢, and ¢,, respectively. It is evidently possible to choose
such a positive constant a that the area of the quadrangle considered be
no less than ¢l (p, +-9,). Since the quadrangle is included in the spheric
image of the cone K, we shall have

o (K) = ab (g, + ¢,)- (4

(Here @ is an absolute constant. If ¢, and ¢, are very small, then the
-quadrangle /.a.mhﬁea,\.&@u can bhe mmﬂ&nﬁ%mm almost wmouﬁmnlnmﬂq into a
plane, so that-its area be equal to §(p,+9,) up to the small quantities of
higher orders).

If we take the plane @ sulficiently close to the poing O, then the

angles 9, and ¢, will be less than a certain « Ar.ww, and we shall have

@ a

P> g 8P P > tga 8P (5)

On the other hand, since z, and z, are less than =z, t-z,, it fol-
lows from (3) that

*
-z

ﬁmmoHVM“ #mﬁwvm. {6)
Using {5) and (6) and putling ﬁmﬂ ={, we shall obtain from (4)
o (K) VMQWM @
whence by inequality (2)
w(E) >2002 . {8)

@
Now from this inequality and from (1) follows.

w(B) _ Cb 1 :
SE) ~ el T F D (9)

_ If the plane Q cutting off £ is drawn nearer and nearer to 0, i e
31 2— 0, then  — 0. Consequently, the curvature in the poini O is
not, bounded. .

~ 3. Let 0 be an end poing of a rectilinear edge L, being ai the same
trme no conic point. Let P, and P, be the exireme supporting planes
passing through L. We take the plane Q perpendicular to the bisecior
of the angle between the normals (o P, and P, and crossing the sur-
face F. Then we take the plane @, passing through the poing @ perpen-
dicular to P, and P,. The planes Q and @, cut off a piece £ from the
surface I'. To this plece we can applyl the same reasoning as to the case
of the «edge-point». Considering the spheric image of the come K pro-
jecting the boundary of £ from the point O, we must take only those
supporting planes to & that do not cross the boundary of £. Otherwise
E may contain no points with a supporting plane parallel to the given
supporting plane to the cone K. It is easy to show that the supporling
plane P to the cone K does not cross the boundary of E, if the angle ¢
between the plane @, and the intersection of plines P and Q satisfies
the condition

cig{ > W,n_m h,
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where z is the distance from @ to the plane @; 2z is the maximum dis-
tance from a point of the boundary of £ to the plane ¢; (x—20) is
the angle formed by the planey P, and P,. ‘

Using the above condition, it is easy to obtain the evaluation for the
area of the spheric image of E that differs from the evaluation (8) by a con-
stant, factor only. This enables us 1o conclude in an analogous way to ihe
preceding case that the Gaussian curvature in the point O is not bounded.

This completes the proef of the theorem.

We shall now sketch the proof of Theorem 5. :

Let F be asurface withoul self-intersections with everywhere finite con-
tinuous positive curvature. We shall suppose F to be regular everywhere,
-except, perhaps, the single point 0. We intend {o prove thatZ has a tangent
plane at the point O, loo. According to Theorem 1, it is sufficient to prove
that the surface F is convex in the neighbourhood of the point 0.

We take the point A on F, different from O, and the tangent plane P,
to F at this point. Les us take the plane P parallel to P, and move it from P,
ta the point @ in the direction of the inner normal {0 F. As it was shown by
Cohn-Vossen(*), the piece £ of F cut off by the plane P will be convex until
the plane reaches the position P,, at which the boundary of E contains either
the boundary points of F or the singular peing Q. If the boundary of £ con-

_tains the pointa of the boundary of ¥, however near the point 4 to the poinl O

may be, then, as it is easily verified, F contains arectilinear segment joining

the point A with the boundary of F. This is impussible, because F hay the

positive curvature and is regular everywhere, except the peint 0.
Therefore, as soon as the point A4 is sufficiently close to ¢, the plane P,

. passes through ¢ and cuts off a convex piece £ from the surface . Conse-

quently, the neighbourhood of the point @ in F consists of such convex pie-

" ces, If we subject F to an infinite similitude transformation with the centre 0,

it will be carried into a cone K consisting of pieces of convex cones, into

_which the above convex pieces are taken. We may conclude that if £ has no

self-intersections, K is convex. Henee it is possible to deduce that the neigh-
bourhood of the point () consisting of convex pieces is convex. )
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