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Abstract. We prove that for any two convex open bounded bodiesK andT there exists a diffeomor-
phismf : K → T preserving volume ratio (i.e. with constant determinant of the Jacobian) and such
that the Minkowski sumK + T = {x + f (x)|x ∈ K}. As an application of this method, we prove
some of the Alexandov–Fenchel inequalities.
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1. Introduction

Let K andT be convex open bounded bodies inRn . We will discuss in this note
C1-diffeomorphic bijections8:K → T with constant determinant of the Jacobian.
So, if volK = vol T our maps are measure preserving. There are several such
distinguished maps. For example, a Knothe map ([K])8:K → T has a trian-
gular Jacobian with a positive diagonal and may be naturally associated with any
fixed orthogonal basis inRn . So, there are many different such maps (see [MSch,
App. 1], or [Bo] where a Knothe map was used to estimate integrals of polynomials
over convex bodies). Recently, the so-called Brenier map [Br] was introduced and
used successfully. We callb:K → T the Brenier map if there is a convex function
f ∈ C2(K) defined onK such that∇f = b:K → T has the above properties
(bijection which preserves ratio of volumes). Existence and uniqueness of such a
map was proved in [Br] (see another proof in [McC1] where more general facts
were also proved, and the proof of regularity in [C1-3]).

Naturally, the Jacobian matrix Jacb = Hessf is a symmetric positive definite
matrix. One of the (many) applications of such maps is in proving the Brunn–
Minkowski inequality (and also in analyzing equality cases and their stability).
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202 S. ALESKER ET AL.

The scheme works in the following way. Instead of considering the Minkowski
sumK + T (and estimating its volume) we consider, a priori, a smaller set

S = {x +8(x)|x ∈ K} ⊂ K + T,
and estimate its volume using the geometric-arithmetic mean inequality under the
integral.

However, a priori, the setS may be strictly smaller than the Minkowski sum
and then a conveniently described setS looses information with respect to an (in-
conveniently described) Minkowski sum.

So, the following question naturally arises:

For anyK andT , does there exist aC1-map8 (with constant determinant of
Jacobian) 8:K → T such thatK + T = {x +8(x)|x ∈ K}?

Below, we answer this question positively just by combining a few known (re-
cent) results. In the proof we use an unpublished result on regularity by L. Caffarelli
and we thank Professor Caffarelli for communicating his result to us and suggesting
to add its proof in the Appendix of this note.

We also show one application of this fact by proving some cases of the
Alexandrov–Fenchel inequality.

It was observed by R. McCann ([McC2, Remark 2.5]) that the Brenier map itself
may not satisfy the above property, i.e. one can constructK,T and the Brenier map
b:K → T such that{x + b(x)|x ∈ K} $ K + T .

His example is as follows: let us takeK to be the Euclidean ball andT to be
an ellipsoid of the same volume, then the Brenier mapb is a gradient of some
quadratic form, i.e. it is a linear map. Then(Id + b)(K) is an ellipsoid, butK + T
is not necessarily an ellipsoid.

Let us state the existence theorem of the Brenier map in the form due to McCann
[McC1] and discuss some of the properties of the Brenier map.

Let ϕ be a convex function onRn (which might be infinite outside of some
convex set). Let us denote by∇ϕ(x) the subdifferential ofϕ at the pointx, namely
this is the set of all supporting hyperplanes ofϕ atx

∇ϕ(x) := {z ∈ Rn |ϕ(y) > ϕ(x)+ 〈z, y − x〉 ∀y}.
THEOREM 1.1 ([McC1]). Let µ, ν be probability measures onRn such thatµ
vanishes on Borel subsets ofRn having Hausdorff dimensionn− 1 (in particular,
this condition is satisfied ifµ is absolutely continuous with respect to the Lebesgue
measure). Then there exists a convex functionϕ such that for every Borel subset
A ⊂ Rn ν(A) = µ(∇ϕ−1(A)), where

∇ϕ−1(A) = {x ∈ Rn |∇ϕ(x) ∩ A 6= ∅}.
In other words,∇ϕ pushes forwardµ to ν.
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DIFFEOMORPHISM BETWEEN TWO CONVEX BODIES INRN 203

Remark.Under the assumptions on the measureµ, ∇ϕ(x) is a single point set
for µ-almost everyx ∈ Rn (see [AK]). So we may think of∇ϕ as the usual map
∇ϕ:Rn → Rn .

The following proposition is certainly well-known, but since we have no exact
reference, we outline its proof (under weaker conditions, a similar statement is
explicitly given in Brenier’s paper [Br]).

PROPOSITION 1.2.Assume thatµ, ν be probability measures onRn , which are
absolutely continuous with respect to the Lebesgue measure. Then the Brenier map
∇ϕ has an inverse(∇ϕ)−1 which is definedν-almost everywhere, which is also a
Brenier map(pushing forwardν toµ).

Proof. In fact, we just outline the proof and refer the reader to the paper by
McCann [McC1] for details. In order to distinguish between two copies ofRn we
will denote each of themX andY correspondingly.

In his proof of existence of the Brenier map, McCann shows that there exists a
probability measureγ onX×Y with cyclically monotone support (see [McC1] for
the definition and references), andµ, ν are its marginals, namely for every Borel
subsetA,B ⊂ Rn

γ (A× Y ) = µ(A), γ (X × B) = ν(B).
By the Rockafellar theorem [R] there exists a convex functionϕ:X→ R ∪ {+∞}
such that

suppγ ⊂ ∂ϕ, (∗)
where∂ϕ = {(x, y): y ∈ ∇ϕ(x)}. Since∇ϕ is a single point setµ-almost every-
where (see [AK]),∇ϕ is a well defined mapX → Y , and because of (∗) ∇ϕ
pushesµ forward toν. But since the condition of cyclic monotonicity of a subset
of Rn × Rn is symmetric with respect to both coordinates, the same argument
implies that there exists a convex functionψ :Y → R ∪ {∞} such that

suppγ ⊂ ∂ψ. (∗∗)
Again ∇ψ is a well defined mapY → X ν-almost everywhere and it pushesν
forward toµ. Conditions(∗) and (∗∗) easily imply that∇ϕ,∇ψ are inverse to
each other almost everywhere. 2

We now describe a regularity result of Caffarelli [C4]. For completeness of our
argument we provide in the Appendix the proof of this result which L. Caffarelli
sketched for us. We thank him for permission to use it in this Appendix.

Let 0 ⊂ Rn be a convex bounded open set. Letf (x) be a probability density
onRn , g(y) be a probability density on0 so that

dµ = f · dm, dν = g · dm,
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204 S. ALESKER ET AL.

wherem is the Lebesgue measure. Assume that

(i) f (x) is locally bounded and bounded away from zero on compact sets, i.e.
for everyR > 0

0< C(R) 6 f (x) 6 C(R) for |x| 6 R;

(ii) there exist positive constants3,λ>0 such that for everyy ∈0,
λ 6 g(y) 6 3.

THEOREM 1.3 (Caffarelli [C4]). (a)Under the conditions(i) and(ii) the Brenier
map

∇ϕ: (Rn , f dx)→ (Rn, g dx)

is continuous. Moreover,∇ϕ belongs locally to the Hölder classCα for someα >
0.

(b) If f, g are locally Hölder, then the solutionϕ belongs toC2,α for someα > 0
(locally).

2. The Main Result

THEOREM 2.1. LetK andT be open convex bounded subsets ofRn of volume
1. Then there exists aC1-diffeomorphismF :K → T preserving the Lebesgue
measure such that, for everyλ > 0,

{x + λF(x)|x ∈ K} = K + λT .

Before proving this result let us recall a theorem which can be found in [Gr] (in
fact, under weaker assumptions on the potentialf ).

PROPOSITION 2.2 [Gr]. (i)Letf :Rn → R be aC2-smooth convex function with
strictly positive Hessian. Then the image of the gradient mapK = Im∇f is an
open convex set.

(ii) Furthermore, iff1, f2:Rn → R are two such functions andKi = Im(∇fi),
i = 1,2, then

Im(∇f1+∇f2) = K1 +K2.

Proof of Theorem2.1. Consider onRn any probability measure with smooth
strictly positive densityρ.
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DIFFEOMORPHISM BETWEEN TWO CONVEX BODIES INRN 205

Consider the Brenier maps

∇f1: (Rn , ρ dx)→ (K,dx),

∇f2: (Rn , ρ dx)→ (T ,dx),

wheredx denotes the Lebesgue measure. They areC1-smooth by Theorem 1.3.
By Proposition 2.2 for everyλ > 0

K + λT = {∇f1(x)+ λ∇f2(x)|x ∈ Rn}.
ConsiderF :K → T defined byF = ∇f2 ◦ (∇f1)

−1. Obviously it satisfies all the
conditions of the theorem. 2

To prove Proposition 2.2 one needs

LEMMA 2.3. Supposef :Rn → R is a convexC1-function defined on the whole
domainRn andf (x) > 0 for everyx ∈ Rn . Theninfx∈Rn ‖∇f (x)‖ = 0, where
‖ · ‖ denotes the Euclidean norm onRn .

Proof.Let α = 1
2 infx∈Rn ‖∇f (x)‖ and supposeα > 0. Then for everyx ∈ Rn

there exists somey 6= x such thatf (x)− f (y) > α · ‖x − y‖.
Define nowL = {x ∈ Rn ; f (0) − f (x) > α · ‖x‖}. ThenL is a nonempty

compact set. Hence,f achieves its minimum onL at some pointx0 ∈ L.
But then there exists somey0 6= x0 such thatf (x0) − f (y0) > α · ‖x0 − y0‖

and then

f (0)− f (y0) = [f (0)− f (x0)] + [f (x0)− f (y0)]
> α · ‖x0‖ + α · ‖x0− y0‖ > α ·max{‖x0− y0‖, ‖y0‖}.

So

y0 ∈ L and f (y0) 6 f (x0)− α · ‖x0− y0‖ < f (x0)

and we get a contradiction. 2

We prove here part (ii) of Proposition 2.2 only. Obviously

∇(f1+ f2)(Rn) = {∇f1(x)+∇f2(x)|x ∈ Rn }
⊂ ∇f1(Rn)+ ∇f2(Rn) = K1 +K2.

On the other hand, givenu1 ∈ K1, u2 ∈ K2, there existx1, x2 ∈ Rn such that
ui = ∇fi(xi), i = 1,2. Then for everyx ∈ Rn we have

(f1+ f2)(x)− 〈u1+ u2, x〉−
−[f1(x1)+ f2(x2)− 〈u1, x1〉 − 〈u2, x2〉]
= [f1(x)− f1(x1)− 〈∇f1(x1), x − x1〉]+
+[f2(x)− f2(x2)− 〈∇f2(x2), x − x2〉] > 0.
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206 S. ALESKER ET AL.

Thus, infx∈Rn[(f1+ f2)(x)− 〈u1+ u2, x〉] > −∞. It easily follows from Lemma
2.3 that

u1+ u2 ∈ ∇(f1+ f2)(Rn).

Thus∇(f1+ f2)(Rn) ⊂ K1+K2 ⊂ ∇(f1+ f2)(Rn ).
Sincef1, f2 areC2-smooth and have strictly positive Hessian, then the image

of ∇(f1+f2) is an open convex set by part (i) of Proposition 2.2 (which we do not
prove here). Hence

K1+K2 = ∇(f1+ f2)(Rn ). 2

3. Application to the Alexandrov–Fenchel Inequalities

Using the above method let us prove some of the Alexandrov–Fenchel inequalities.

THEOREM 3.1. LetK1, . . . ,Kn be convex compact subsets inRn . Then

V (K1, . . . ,Kn) >

(
n∏
r=1

|Kr |
)1/n

,

whereV (K1, . . . ,Kn) denotes the mixed volume ofK1, . . . ,Kn.
Proof. By homogeneity we can normalize the volumes ofK1, . . . ,Kn to equal

1. Let us fix a probability measure onRn with strictly positive smooth densityρ. It
is enough for our purposes to consider, say, the standard Gaussian measure onRn .
Consider the Brenier maps

∇fr : (Rn , ρ dx)→ (Kr,dx), r = 1, . . . , n.

They areC1-smooth. For alltr > 0

det

[
n∑
r=1

tr

(
∂2fr

∂xi∂xj

)]

=
∑
r1,...,rn

tr1 . . . trnD

(
∂2fr1

∂xi∂xj
, . . . ,

∂2frn

∂xi∂xj

)
,

whereD(·, . . . , ·) is the mixed discriminant of the corresponding matrices (see [A]
or [Sch] or [H]). Note that

Det

(
∂2fr

∂xi∂xj

)
(x) = ρ(x),
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because∇fr is a measure preserving map. We obtain∣∣∣∣∣
n∑
r=1

trKr

∣∣∣∣∣ =
∫
Rn

det

[∑
r

tr

(
∂2fr(x)

∂xi∂xj

)]
dx

=
∑
r1,...,rn

tr1 . . . trn

∫
Rn

D

(
∂2fr1(x)

∂xi∂xj
, . . . ,

∂2frn(x)

∂xi∂xj

)
dx.

Hence, we obtain the following expression for the mixed volumes

V (K1, . . . ,Kn) =
∫
Rn

D

(
∂2f1(x)

∂xi∂xj
, . . . ,

∂2fn(x)

∂xi∂xj

)
dx.

Let us apply the following particular case of the Alexandrov inequalities for mixed
discriminants, which states that ifA1, . . . , An are positive definite matrices, then

D(A1, . . . , An) >

(
n∏
r=1

detAr

)1/n

(we refer to [A], [Bu, Theorem 7.17] or [H, pp. 64–65]). Hence,

V (K1, . . . ,Kn) >

∫
Rn

(
n∏
r=1

det

(
∂2fr(x)

∂xi∂xj

))1/n

dx

=
∫
Rn

ρ(x)dx = 1. 2

Remark1. R. Schneider pointed out to us that the above method, in combination
with a description of the equality cases in Alexandrov’s inequalities for mixed dis-
criminants of positive definite matrices, gives a description of the equality cases in
the inequalities of Theorem 3.1. Namely, ifK1, . . . ,Kn are non-degenerate convex
bodies (i.e. with non-empty interior) and if

V (K1, . . . ,Kn) =
(

n∏
r−1

|Kr |
)1/n

,

then the bodiesK1, . . . ,Kn are pairwise homothetic. This follows from the fact
that ifA1, . . . , An are positive definite matrices and

D(A1, . . . , An) =
(

n∏
r=1

detAr

)1/n

,

thenA1, . . . , An are pairwise proportional (see [A]). Then the above argument
(with the normalization|Kr | = 1) implies that the matrices(∂2fr(x)/∂xi∂xj ) are
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208 S. ALESKER ET AL.

equal one to the other for everyx (since∇fr are measure preserving) and, hence,
∇fr coincide up to a linear functional, i.e.Kr coincide up to translation.

Note that the classical proof of Theorem 3.1 shows that equality in this inequal-
ity implies equality in the Minkowski inequality for any two of the bodies, which
in turn implies that the bodies must be homothetic (see [Bu, p. 50], or [Sch]).

Remark2. A particular case of Theorem 3.1 is the case when one considers
only two bodiesK1,K2 and the mixed volume ofK1 takenk times withK2 taken
n− k times, which is denoted byVk(K1,K2). Then

Vk(K1,K2) > |K1|k/n|K2|(n−k)/n.

Here one should use Alexandrov’s inequalities for mixed discriminants of two pos-
itive definite matrices only. Namely, ifA1, A2 are two positive definite matrices,
then

Dk(A1, A2) > (detA1)
k/n(detA2)

(n−k)/n,

where the left-hand side denotes the mixed discriminant ofA1 takenk times with
A2 takenn − k times. This fact is much simpler and has a proof based on the
arithmetic-geometric mean inequality only. Indeed, two positive definite matrices
can be diagonalized simultaneously by a linear transformation with determinant
one. So one may assumeA1, A2 to be diagonal. Let

A1 = diag(α1, . . . , αn), A2 = diag(β1, . . . , βn).

Then, for everyt ,

det(A1+ tA2) =
n∏
r=1

(αr + tβr )

=
n∑
k=0

 ∑
I⊂{1,...,n}
|I |=k

(∏
i∈I
αi

)∏
i 6∈I
βi


 tn−k.

Then by the definition of the mixed discriminant

Dk(A1, A2) =
(
n

k

)−1 ∑
I∈{1,...,n}
|I |=k

(∏
i∈I
αi

)∏
i 6∈I
βi

 .
By the arithmetic-geometric mean inequality the right-hand side of the last expres-
sion is at least
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DIFFEOMORPHISM BETWEEN TWO CONVEX BODIES INRN 209 ∏
I⊂{1,...,n}
|I |=k

(∏
i∈I
αi

)∏
i 6∈I
βi



(nk)
−1

=
( n∏

i=1

αi

)(n−1
k−1)

·
(

n∏
i=1

βi

)(n−1
k )
(

n
k)
−1

=
(

n∏
i=1

αi

)k/n
·
(

n∏
i=1

βi

)(n−k)/n
= (detA1)

k/n(detA2)
(n−k/n.

Remark3. By the above method one can also prove the Brunn–Minkowski
inequality for two compact convex setsK1,K2. Namely,

|K1+K2|1/n > |K1|1/n + |K2|1/n.
Moreover, if one of the sets, say,K1 has nonempty interior, the equality is achieved
if and only ifK2 is homothetic toK1 (or is a point).

One should apply the following inequality for two positive definite matrices
A1, A2

(det(A1+A2))
1/n
> (detA1)

1/n + (detA2)
1/n.

As in Remark 2 it is sufficient to prove the last inequality only for diagonal matri-
ces. Then it takes the form

n∏
r=1

(αr + βr)1/n >
(

n∏
r=1

αr

)1/n

+
(

n∏
r=1

βr

)1/n

,

which is known as Minkowski’s inequality. The equality happens forαr, βr > 0
iff the vectors(α1, . . . , αn) and (β1, . . . , βn) are proportional. This implies also
the equality cases in the Brunn–Minkowski inequality. Indeed, if|K2| = 0, then
it is easy to see thatK2 must be a point. IfK2 is non-degenerate, then the above
argument works.

Appendix

In this appendix we present the proof of the regularity theorem (Theorem 1.3) of
the Brenier map due to L. Caffarelli [C4], which was communicated to us by him.

We will need several lemmas.

LEMMA A.1. Let∇ϕ be the Brenier map as above. Then for everyx0 ∇ϕ(x0) ∩
0 6= ∅.
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210 S. ALESKER ET AL.

Proof.It is easy to see that for any convex functionU defined in an open convex
domain and for everyx, ∇U(x) is a convex compact set. Moreover,∇U is locally
bounded, and for every pointx0 and for every neighborhoodV1 of ∇U(x0) there
exists a neighborhoodV2 of x0 such that for allx ∈ V2 ∇U(x) ⊂ V1. Hence, if
∇ϕ(x0) ∩ 0 = ∅, there exist a neighborhoodV1 of ∇ϕ(x0) and a neighborhoodV2

of x0 such that

V1

⋂
0 = ∅ and ∇ϕ(x) ⊂ V1 for every x ∈ V2.

So

0<
∫
V2

f (x)dx 6
∫
(∇ϕ)−1(V1)

f (x)dx =
∫
V1

g(y)dy = 0.

We get a contradiction. 2

LEMMA A.2. Letµ andν satisfy the conditions of Theorem1.3. ThendetD2ϕ is
locally bounded away from zero and infinity in the Alexandrov sense, i.e. for every
ball BR of radiusR there exist3(R), λ(R) > 0 such that for every compact subset
K ⊂ BR

λ(R)m(K) 6 m(∇ϕ(K)) 6 3(R)m(K),
wherem is the Lebesque measure.

Proof.Because of the invertibility of∇ϕ (Proposition 1.2)µ(K) = ν(∇ϕ(K)),
thus ∫

K

f (x)dx =
∫
∇ϕ(K)

g(y)dy.

The lemma follows from conditions (i),(ii) immediately. 2

The following result was proved in [C1], Theorem 1 (see also [C2], where the
definitions are given).

PROPOSITION A.3.Assume that a convex functionU in an open region, satisfies
0 < λ1 6 detD2U 6 λ2 in the Alexandrov sense as above(or more generally,
U is a viscosity solution of these inequalities). Then for every pointx0 and every
supporting hyperplanèx0(x) to the graph ofU at x0 either the set{x|U(x) =
`x0(x)} consists ofx0 only or has no extremal points in the interior of the domain
of definition.

DEFINITION A.4. A convex functionU is calledstrictly convexat a pointx0 with
a strict ‘modulus of convexity’σ(ρ), if for everyρ > 0

diam{U 6 `x0 + ρ} 6 σ(ρ),
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DIFFEOMORPHISM BETWEEN TWO CONVEX BODIES INRN 211

and limρ→0 σ(ρ) = 0; `x0 denotes any supporting hyperplane atx0.
It is easy to see that ifU is such a convex function that for everyx0 from the

domain of definition and for every supporting plane`x0 atx0

{x|`x0(x) = U(x)} = {x0},
then on every compact subsetν of the domain of definition there exists a strict
modulus of convexity (defined uniformly for all points from this subset).

PROPOSITION A.5 ([C3]). Let ϕ be a strictly convex solution of0 < λ1 6

det∇ϕ 6 λ2 in the Alexandrov sense. Then∇ϕ belongs locally to the Hölder class
Cα for someα > 0 (i.e. α can be chosen the same for any compact subset of the
domain of definition ofϕ).

Thus, Proposition A.5 would imply Theorem 1.3 if we show that, in our situa-
tion, every supporting plane to the graph of the potentialϕ of the Brenier map has
a single touching point. To check this, let us observe that if this condition is not
satisfied, then for somex0 a convex set{x|`x0(x) = ϕ(x)} has no extremal points,
hence it contains a lineN (sinceϕ is defined on allRn ).

Hence, any other supporting hyperplane to the graph ofϕ has to be parallel to
N . Hence, for everyx ∈ Rn we get∇ϕ(x) ⊂ N⊥ – a contradiction (since0 is
nondegenerate). This proves Theorem 1.3(a).

Let us now prove (b) of Theorem 1.3.
Assumef, g belong locally to the Hölder class. By Theorem 1.3,∇ϕ ∈ Cα

for someα > 0 (locally). Note that detD2ϕ satisfies (is the Alexandrov sense) an
equation

g(∇ϕ(x))(detD2ϕ)(x) = f (x).
But sinceg(∇ϕ(x)) is a usual function, we have detD2ϕ = h, whereh =

f (x)/g(∇ϕ(x)).
Sinceϕ is a solution of the equation(∗∗∗) andh is locally Hölder, then the

result follows from [C2, Theorem 2, p. 40], which states that if in equation(∗∗∗)
h ∈ Cα thenϕ ∈ C2,α. 2
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