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Abstract. We prove that for any two convex open bounded bodiendT there exists a diffeomor-
phism f: K — T preserving volume ratio (i.e. with constant determinant of the Jacobian) and such
that the Minkowski sunk + 7' = {x + f(x)|x € K}. As an application of this method, we prove
some of the Alexandov—Fenchel inequalities.
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1. Introduction

Let K andT be convex open bounded bodiesRh. We will discuss in this note
C-diffeomorphic bijectionsb: K — T with constant determinant of the Jacobian.
So, if volK = vol T our maps are measure preserving. There are several such
distinguished maps. For example, a Knothe map ([®])K — T has a trian-
gular Jacobian with a positive diagonal and may be naturally associated with any
fixed orthogonal basis iR". So, there are many different such maps (see [MSch,
App. 1], or [Bo] where a Knothe map was used to estimate integrals of polynomials
over convex bodies). Recently, the so-called Brenier map [Br] was introduced and
used successfully. We cdll K — T the Brenier map if there is a convex function
f € C?(K) defined onK such thatV f = b: K — T has the above properties
(bijection which preserves ratio of volumes). Existence and unigueness of such a
map was proved in [Br] (see another proof in [McC1] where more general facts
were also proved, and the proof of regularity in [C1-3]).

Naturally, the Jacobian matrix Jac= Hessf is a symmetric positive definite
matrix. One of the (many) applications of such maps is in proving the Brunn—
Minkowski inequality (and also in analyzing equality cases and their stability).
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The scheme works in the following way. Instead of considering the Minkowski
sumK + T (and estimating its volume) we consider, a priori, a smaller set

S={x+dx)x e K} CK+T,

and estimate its volume using the geometric-arithmetic mean inequality under the
integral.

However, a priori, the sef may be strictly smaller than the Minkowski sum
and then a conveniently described Sdboses information with respect to an (in-
conveniently described) Minkowski sum.

So, the following question naturally arises:

For any K and T, does there exist €'-map ® (with constant determinant of
Jacobiar) ®: K — T suchthatk + 7 = {x + ®(x)|x € K}?

Below, we answer this question positively just by combining a few known (re-
cent) results. In the proof we use an unpublished result on regularity by L. Caffarelli
and we thank Professor Caffarelli for communicating his result to us and suggesting
to add its proof in the Appendix of this note.

We also show one application of this fact by proving some cases of the
Alexandrov—Fenchel inequality.

It was observed by R. McCann ([McC2, Remark 2.5]) that the Brenier map itself
may not satisfy the above property, i.e. one can conskudt and the Brenier map
b: K — T such thaf{x + b(x)|x € K} ; K+T.

His example is as follows: let us také to be the Euclidean ball anfl to be
an ellipsoid of the same volume, then the Brenier rhap a gradient of some
guadratic form, i.e. itis a linear map. Théh! + b)(K) is an ellipsoid, buk + T
is not necessarily an ellipsoid.

Let us state the existence theorem of the Brenier map in the form due to McCann
[McC1] and discuss some of the properties of the Brenier map.

Let ¢ be a convex function ofiR” (which might be infinite outside of some
convex set). Let us denote B (x) the subdifferential of at the pointt, namely
this is the set of all supporting hyperplanesyadt x

Vo) :={zeR'|p(y) > ¢x) +(z,y — x) Vy}.

THEOREM 1.1 ([McC1]). Let u, v be probability measures oR" such thatu
vanishes on Borel subsetskif having Hausdorff dimensiom — 1 (in particular,

this condition is satisfied jf is absolutely continuous with respect to the Lebesgue
measurg Then there exists a convex functigrsuch that for every Borel subset
A C R v(A) = u(Ve~1(A)), where

Vo Y(A) = {x e R'"|Vo(x) N A # 0).

In other words,V¢ pushes forwarg to v.
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Remark. Under the assumptions on the measuré/¢(x) is a single point set
for u-almost everye € R" (see [AK]). So we may think oW ¢ as the usual map
Vo:R'" - R,

The following proposition is certainly well-known, but since we have no exact
reference, we outline its proof (under weaker conditions, a similar statement is
explicitly given in Brenier's paper [Br]).

PROPOSITION 1.2.Assume thatt, v be probability measures dR*, which are
absolutely continuous with respect to the Lebesgue measure. Then the Brenier map
V¢ has an invers&Vg)~! which is defined-almost everywhere, which is also a
Brenier map(pushing forwardv to ).

Proof. In fact, we just outline the proof and refer the reader to the paper by
McCann [McC1] for details. In order to distinguish between two copieR"ofve
will denote each of thenX andY correspondingly.

In his proof of existence of the Brenier map, McCann shows that there exists a
probability measurg on X x Y with cyclically monotone support (see [McC1] for
the definition and references), apdv are its marginals, namely for every Borel
subsetA, B Cc R"

Y(AxY)=pu(A), y(X x B) = v(B).

By the Rockafellar theorem [R] there exists a convex funcioN — R U {400}
such that

suppy C 3¢, (*)

wheredgp = {(x, y):y € Vo(x)}. SinceVg is a single point set.-almost every-
where (see [AK]),Vg is a well defined mapX — Y, and because ok} Vg
pushesu forward tov. But since the condition of cyclic monotonicity of a subset
of R x R" is symmetric with respect to both coordinates, the same argument
implies that there exists a convex functignY — R U {oo} such that

suppy C 9. ()

Again Vi is a well defined may — X v-almost everywhere and it pushes
forward to . Conditions(x) and (xx) easily imply thatVe, Vi are inverse to
each other almost everywhere. O

We now describe a regularity result of Caffarelli [C4]. For completeness of our
argument we provide in the Appendix the proof of this result which L. Caffarelli
sketched for us. We thank him for permission to use it in this Appendix.

LetI" ¢ R* be a convex bounded open set. Lf&tr) be a probability density
onR", g(y) be a probability density ofi so that

du = f - dm, dv =g -dm,
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wherem is the Lebesgue measure. Assume that

() f(x) is locally bounded and bounded away from zero on compact sets, i.e.
for everyR > 0

0<C(R) < fx) SC(R) forlx| < R;

(ii) there exist positive constants\, 2 >0 such that for everyyerT,
r<g(y) <A

THEOREM 1.3 (Caffarelli [C4]). (a)Under the conditiongi) and(ii) the Brenier
map

Ve: (R, fdv) - (R", g dx)

is continuous. MoreoveF ¢ belongs locally to the Holder clags® for somex >
0.

(b) If £, g are locally Holder, then the solutiop belongs taC?¢ for somex > 0
(locally).

2. The Main Result

THEOREM 2.1. Let K and T be open convex bounded subset®bfof volume
1. Then there exists &*-diffeomorphismF: K — T preserving the Lebesgue
measure such that, for eveky> 0,

{(x +AF(x)|x e K} = K +AT.

Before proving this result let us recall a theorem which can be found in [Gr] (in
fact, under weaker assumptions on the potenftjal

PROPOSITION 2.2 [Gr]. (iLet f:R" — R be aC?-smooth convex function with
strictly positive Hessian. Then the image of the gradient ikiap- ImV f is an
open convex set.

(i) Furthermore, iff1, f>: R" — R are two such functions ankl; = Im(V f;),
i =12 then

IM(Vfi+Vf) =K1+ K>.

Proof of TheorenR.1. Consider orR" any probability measure with smooth
strictly positive density.
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Consider the Brenier maps
Vfi: (R, pdx) — (K, d),
V2 (R, pdx) — (T, dx),

wheredx denotes the Lebesgue measure. TheyCdremooth by Theorem 1.3.
By Proposition 2.2 for every > 0

K +AT = {VAi(x) + AV fo(x)|x € R'}.

ConsiderF: K — T defined byF = V f» o (V f1)~1. Obviously it satisfies all the
conditions of the theorem. O

To prove Proposition 2.2 one needs

LEMMA 2.3. Supposef:R* — R is a convexC-function defined on the whole
domainR" and f(x) > O for everyx € R". Theninf g |V f(x)|| = 0, where
I - || denotes the Euclidean norm &.

Proof. Leta = % inf,crn ||V f(x)]| and suppose > 0. Then for every € R”
there exists some # x such thatf (x) — f(y) > « - |x — y||.

Define nowL = {x € R*; f(0) — f(x) > « - |x||}. ThenL is a honempty
compact set. Hencg, achieves its minimum oh at some poinkg € L.

But then there exists somg # xg such thatf (xg) — f(y0) > « - |lxo — yoll
and then

FO) = o) = [fO) — fxo)]+ [f (x0) — f (Vo]

= - |lxoll + o - [lxo — yoll = @ - max{|lxo — yoll, [lyoll}-
So

yo€ L and f(yo) < f(x0) —a - [lxo — yoll < f(x0)
and we get a contradiction. O

We prove here part (ii) of Proposition 2.2 only. Obviously
V(fi+ DR = {Vfi(x) + V f2(x)|x € R"}

C VAR") + Vf(R") = K1 + K.

On the other hand, givem; € Ki, u, € Ko, there existx;, x, € R* such that
u; = Vfi(x;),i =1, 2. Then for every € R" we have

(f1+ f2)(x) — (U1 + uz, x)—
—[f2(x2) + falx2) — (ua, x1) — (u2, x2)]
= [/1(x) — falx1) — (Vfi(x1), x — x1) ]+
+f2(x) = falx2) — (V fa(x2), x — x2)] 2 0.
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Thus, infcre[(f1 + f2)(x) — (u1 + up, x)] > —o0. It easily follows from Lemma
2.3 that

up +uz € V(fi+ f)(R*).
ThusV(f1+ f2(R") C K1+ K2 C V(fi+ f)(R).
Since fi1, f» are C?>-smooth and have strictly positive Hessian, then the image

of V(f1+ f>) is an open convex set by part (i) of Proposition 2.2 (which we do not
prove here). Hence

K1+ K> =V(fi+ f)([R). O

3. Application to the Alexandrov—Fenchel Inequalities

Using the above method let us prove some of the Alexandrov—Fenchel inequalities.

THEOREM 3.1.LetKq, ..., K, be convex compact subsetdiih. Then

n 1/n
V(K1 ..., Ky) > (]‘[um) ,
r=1

whereV (K4, ..., K,) denotes the mixed volumeki, ..., K,,.
Proof. By homogeneity we can normalize the volumeskaf . . ., K, to equal
1. Let us fix a probability measure @ with strictly positive smooth density. It
is enough for our purposes to consider, say, the standard Gaussian meaRtre on
Consider the Brenier maps

ViR, pdx) - (K,,dx), r=1...,n.

They areC!-smooth. For alt. > 0

n azfr
det t,
|:Z (8x,»8x,->:|
r=1 ’
— Z t t. D azfrl azfrn
- L 8x,»8xj"”’8x,-8xj ’

whereD(., ..., -) is the mixed discriminant of the corresponding matrices (see [A]
or [Sch] or [H]). Note that

2
Det( ) ) ) = p(x),

8)6,'8)(]'
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becausé’ f, is a measure preserving map. We obtain

_ 92 f, (x)
_ / det[Xr:t, ( Tnon )} dx

92 f, 02 f,
L e [ (L0 B0
n 8x,»8xj 8x,»8xj

Hence, we obtain the following expression for the mixed volumes

2 2
V(Kl,...,Kn)Z/ D(a A f,,(x)>dx

axiaxj axiaxj

Let us apply the following particular case of the Alexandrov inequalities for mixed
discriminants, which states that4f;, ..., A, are positive definite matrices, then

n 1/n
D(Ay4,...,A,) > (]_[ detA,)
r=1

(we refer to [A], [Bu, Theorem 7.17] or [H, pp. 64-65]). Hence,

- 32 £, (x)
V(Ki,..., K /ﬂ(]‘[dt(ax[ x})) dx

:/ p(x)dx = 1. O

Remarkl. R. Schneider pointed out to us that the above method, in combination
with a description of the equality cases in Alexandrov’s inequalities for mixed dis-
criminants of positive definite matrices, gives a description of the equality cases in
the inequalities of Theorem 3.1. NamelyKi, ..., K, are non-degenerate convex
bodies (i.e. with non-empty interior) and if

n 1/n
V(Ki, ..., K,) = (]‘[um) ,
r—1

then the bodieXy, ..., K, are pairwise homothetic. This follows from the fact
thatif A, ..., A, are positive definite matrices and

n 1/n
D(Ai, ..., A,) = (]_[ detA,) ,

r=1

then A,, ..., A, are pairwise proportional (see [A]). Then the above argument
(with the normalizatior| K, | = 1) implies that the matrice®? f, (x)/dx;0x,) are
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equal one to the other for every(sinceV f, are measure preserving) and, hence,
V f, coincide up to a linear functional, i.&, coincide up to translation.

Note that the classical proof of Theorem 3.1 shows that equality in this inequal-
ity implies equality in the Minkowski inequality for any two of the bodies, which
in turn implies that the bodies must be homothetic (see [Bu, p. 50], or [Sch]).

Remark2. A particular case of Theorem 3.1 is the case when one considers
only two bodiesK,, K> and the mixed volume ok, takenk times with K, taken
n — k times, which is denoted by, (K3, K3). Then
Vi(K1, K2) > |Ka|'"| Ko "0,
Here one should use Alexandrov’s inequalities for mixed discriminants of two pos-

itive definite matrices only. Namely, i1, A, are two positive definite matrices,
then

Di(A1, A) > (detAq)"/" (detAy)" 7",
where the left-hand side denotes the mixed discriminamt;alakenk times with
A, takenn — k times. This fact is much simpler and has a proof based on the
arithmetic-geometric mean inequality only. Indeed, two positive definite matrices

can be diagonalized simultaneously by a linear transformation with determinant
one. So one may assumg, A, to be diagonal. Let

A]_ = diag(ozl, e Oln), A2 = diag(,Bl, e ,Bn)-

Then, for every,

det(A; +1A2) = [ e +16,)

r=1
n

=>1 > (l_[a,») [16 "™
k=0 \ rct..m \ieI igl

|11=k

Then by the definition of the mixed discriminant
(l_[ ai) []8
ny \iel i¢l

By the arithmetic-geometric mean inequality the right-hand side of the last expres-
sion is at least
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nmy—1
()

I (1) (e

IcfL,...ny \iel i1
1=k l ¢

GG TN
()
i=1 i=1

n kin s on (n—k)/n
= (1_[ Ol,‘) . (1_[ ﬁz) — (detAl)k/n(detAz)(n_k/n.
i=1 i=1

Remark3. By the above method one can also prove the Brunn—Minkowski
inequality for two compact convex seky, K,. Namely,

|K1+ Ko|Y" > |Kq Y™ + | Ko|".

Moreover, if one of the sets, safl; has nonempty interior, the equality is achieved
if and only if K> is homothetic takK; (or is a point).

One should apply the following inequality for two positive definite matrices
Ay, Az

(det(A; + A2)Y" > (detA)™" + (detAy)V".

As in Remark 2 it is sufficient to prove the last inequality only for diagonal matri-
ces. Then it takes the form

n n 1/n n 1/n
[ [+ 804" > (H ar) + (1_[ ﬁr) :
r=1 r=1 r=1

which is known as Minkowski's inequality. The equality happensdars, > 0

iff the vectors(ay, ..., a,) and (B4, ..., B,) are proportional. This implies also
the equality cases in the Brunn—Minkowski inequality. IndeedlKif| = O, then

it is easy to see thakt’, must be a point. K, is non-degenerate, then the above
argument works.

Appendix

In this appendix we present the proof of the regularity theorem (Theorem 1.3) of
the Brenier map due to L. Caffarelli [C4], which was communicated to us by him.
We will need several lemmas.

LEMMA A.1. Let Vg be the Brenier map as above. Then for eveyWw¢(xg) N
T #0.
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Proof. It is easy to see that for any convex functiBrdefined in an open convex
domain and for every, VU (x) is a convex compact set. Moreov®tlJ is locally
bounded, and for every point, and for every neighborhool; of VU (xp) there
exists a neighborhoo#d; of xo such that for allk € V, VU (x) C Vi. Hence, if
Vo(xo) NT = @, there exist a neighborhodd, of Vo (xo) and a neighborhoof,
of xg such that

Vlﬂf =¢ and Ve(x)CVy foreveryx e V.

So

0< f@ngf Fedo= [ gdy =0,
Vo (Vo)=1(vp)

V1

We get a contradiction. O

LEMMA A.2. Letu andyv satisfy the conditions of Theoreh8. ThendetD?p is
locally bounded away from zero and infinity in the Alexandrov sense, i.e. for every
ball By of radiusR there existA(R), A(R) > 0such that for every compact subset

K C By

AR)m(K) < m(Vo(K)) < A(R)m(K),

wherem is the Lebesque measure.
Proof. Because of the invertibility o¥7¢ (Proposition 1.2(K) = v(V¢(K)),
thus

/ﬂwm=/ ¢(») dy.
K Vo(K)

The lemma follows from conditions (i),(ii) immediately. O

The following result was proved in [C1], Theorem 1 (see also [C2], where the
definitions are given).

PROPOSITION A.3.Assume that a convex functiéhin an open region, satisfies
0 < A1 < detD?U < 1, in the Alexandrov sense as aboi@ more generally,

U is a viscosity solution of these inequalitie¥hen for every point, and every
supporting hyperplané, (x) to the graph ofU at xq either the sefx|U(x) =
£4,(x)} consists ofg only or has no extremal points in the interior of the domain
of definition.

DEFINITION A.4. A convex functionl is calledstrictly convexat a pointxg with
a strict ‘modulus of convexitys (p), if for everyp > 0

diam{U < £, + p} < 0 (p),
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and lim,_,oo (p) = 0; £, denotes any supporting hyperplaneat
It is easy to see that i/ is such a convex function that for every from the
domain of definition and for every supporting plahg atxo

(X[l (x) = U} = {xo},

then on every compact subsetof the domain of definition there exists a strict
modulus of convexity (defined uniformly for all points from this subset).

PROPOSITION A.5 ([C3]). Let ¢ be a strictly convex solution df < A; <
detVp < Ay in the Alexandrov sense. Th&p belongs locally to the Holder class
C“ for somex > O (i.e. o can be chosen the same for any compact subset of the
domain of definition op).

Thus, Proposition A.5 would imply Theorem 1.3 if we show that, in our situa-
tion, every supporting plane to the graph of the potentiaf the Brenier map has
a single touching point. To check this, let us observe that if this condition is not
satisfied, then for some, a convex sefx|¢,,(x) = ¢(x)} has no extremal points,
hence it contains a lin® (sinceg is defined on alR").

Hence, any other supporting hyperplane to the grapp lodis to be parallel to
N. Hence, for everyr € R" we getVe(x) C Nt — a contradiction (sinc& is
nondegenerate). This proves Theorem 1.3(a).

Let us now prove (b) of Theorem 1.3.

Assumef, ¢ belong locally to the Holder class. By Theorem 1V3 € C*
for somea > 0 (locally). Note that deD?¢ satisfies (is the Alexandrov sense) an
equation

g(Vo(x))(detD%p)(x) = f(x).

But sinceg(Ve(x)) is a usual function, we have dbfy = h, whereh =
Fx)/g(Ve(x)).

Sincegy is a solution of the equatiof«x*) and# is locally Holder, then the
result follows from [C2, Theorem 2, p. 40], which states that if in equatiei)
h € C® theng e C?*. 0
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